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Intelligent predictive models are fundamental in peer-to-peer (P2P) energy
trading as they properly estimate supply and demand variations and optimize
energy distribution, and the other featured values, for participants in
decentralized energy marketplaces. Consequently, DeepResTrade is a
research work that presents an advanced model for predicting prices in a
given traditional energy market. This model includes numerous fundamental
components, including the concept of P2P trading systems, long-term and
short-term memory (LSTM) networks, decision trees (DT), and Blockchain.
DeepResTrade utilized a dataset with 70,084 data points, which included
maximum/minimum capacities, as well as renewable generation, and price
utilized of the communities. The developed model obtains a significant
predictive performance of 0.000636% Mean Absolute Percentage Error
(MAPE) and 0.000975% Root Mean Square Percentage Error (RMSPE).
DeepResTrade’s performance is demonstrated by its RMSE of 0.016079
and MAE of 0.009125, indicating its capacity to reduce the difference
between anticipated and actual prices. The model performs admirably in
describing actual price variations in, as shown by a considerable R2 score of
0.999998. Furthermore, F1/recall scores of [1, 1, 1] with a precision of 1, all
imply its accuracy.
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Introduction

The driving motivation behind this work lies in the domain of P2P electrical energy
trading a promising solution to the limitations of traditional centralized energy markets this
approach facilitates direct transactions between energy producers and consumers enhancing
flexibility efficiency and sustainability in the energy sector (Moniruzzaman et al., 2023),
however, issues occur as a result of renewable energy volatility and the requirement for
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precise price estimates, focusing on the importance of fair and
reliable trading platforms. This word, which introduces the new
DeepResTrade idea, presents Blockchain-enabled LSTM-DT-based
price forecasting by employing historical data-based calculators that
leverage artificial intelligence and machine learning algorithms to
properly estimate energy prices. Interaction with operators and the
restructuring of decentralized renewable energy markets, P2P
members are enabled to make informed decisions. Integration of
Blockchain technology provides a transparent method for
communication, and data integrity in P2P energy marketplaces.

The vision of DeepResTrade extends to renewable energy
communities encompassing producers and consumers alike through
seamless transactions The system fosters local energy generation and
consumption promoting collaboration and resource optimization in its
structure the paper introduces the motivation reviews recent advances
and presents the smart sustainable grid concept in P2P energy trading it
details theDeepResTrade framework simulations results in comparative
analysis future directions and concludes the study.

Accordingly, the paper is structured as follows: Section 1 is the
introduction covering the motivation of the study and recent
advances, and a literature review of the field presenting the smart
sustainable grid in the presence of P2P energy trading, Section 2
details the structure and operating framework, Section 3 focuses on
simulations and results, Section 4 provides a comparative analysis, as
well Section 8 discusses future works and concludes the paper.

Literature review

The effectiveness, capacity, and robustness of the system
presented in (Moniruzzaman et al., 2023), which combines
cooperative game theory and blockchain technology to
encourage safe peer-to-peer energy trading, was demonstrated
by comprehensive analysis and experiments, resulting in 6.5%
improvement in terms of energy savings compared to the
baseline model in the financial benefits of prosumers. Chien
et al. (2023) proposed auto-executing blockchain-based peer-to-
peer energy transaction market. The proposal to integrate
blockchain into the business system is motivated by the
decline in conventional energy generation and the growing
popularity of renewable energy sources such as solar energy
to consider energy consumption to ensure transparency,
security, and integrity of transactions, and forecasting for
effective energy demand planning (Boumaiza and Sanfilippoa,
2022) deploys an ABM simulation framework to demonstrate
the efficiency of blockchain in facilitating electricity exchange
and implementing transactional energy distributed energy
resources, demonstrating the effectiveness of a proposed
hybrid deep learning neural network in power consumption
forecasting within a blockchain-based local energy market.
Consumer energy costs are reduced by 17.8%, and utility grid
loads are reduced by 76.4% by using the Federated Network, a
Blockchain-based P2P energy trading and sharing platform that
incorporates federated learning (Bouachir et al., 2022; Wang
et al., 2022) introduces a blockchain-based cloud service
platform for an integrated energy market, which enables
secure and efficient energy trading and dispatch. A reliable
smart grid implementation is proposed, and a novel machine

learning-based approach using MLP-ELM and PCA is employed
to predict smart grid stability, which surpasses traditional
techniques in high accuracy, precision, recall, and F-measure
(Qayyum et al., 2022) Co-workers in nanogrids. Presents a
predictive optimization model for peer-to-peer energy
trading, demonstrates its potential in increasing efficiency
and reducing costs to reduce costs and optimize energy
sharing among peers A novel algorithm is proposed for
community energy management control, which enables
customer engagement in energy trading and can achieve a
significant reduction in energy demand and interaction with
the electricity grid (Merrad et al., 2022) presents a blockchain-
based P2P energy trading platform, including the use of smart
contracts, deep learning inferences, and K-means clustering for
transparent and secure energy routing. Blockchain technology
enables the elimination of the producer-consumer gap in
distributed energy production, with a versatile ABM
simulation framework demonstrating its potential in
forecasting household electricity usage within the ECCH
microgrid (Boumaiza and Sanfilippob, 2023; Piao et al., 2023)
proposed a P2P electricity trading framework for distributed
photovoltaic power stations, using blockchain-based federated
learning for decentralized model training and smart contracts
for market matching and transaction recording, reliable and
trustworthy transactions in the growing distributed energy
landscape.

A self-tuned ANN-based adaptive predictor for accurate
power consumption forecasting is proposed, with its design,
training process, and results characterization, and its effects
demonstrated through practical examples using K-means
clustering and genetic algorithm (Baba, 2022). Gomes et al.
(2022) proposed a practical solution that deploys end-user
energy management systems, enables energy forecasting, and
establishes a distributed discrimination-price auction peer-to-
peer energy transaction market. This solution demonstrates its
ability to reduce costs and validate forecasting models in real-
world settings. A P2P Energy Management System (EMS) is
presented, which uses energy forecasts 2 days in advance to
minimize the net energy exchange with the utility and enables
surplus energy sharing among users, resulting in improved
energy independence and reduced operating costs (Al-Sorour
et al., 2022; Choobineh et al., 2023) presents an overview of the
development of blockchain, and its use in power systems, and
explores barriers and emerging trends to widespread adoption in
the power sector, emphasizing its potential for secure,
decentralized energy trading platforms. The role of blockchain
technology (BCT) in sustainable smart cities is examined, its
applications in various fields are analyzed and trends, challenges,
and future research directions are presented (Ullah et al., 2023;
Lin et al., 2022) proposed a blockchain-based smart EV charging
system to address congestion and demand imbalance, for privacy,
fairness, and real-time control. A customized pricing scheme for
a local electricity market (LEM) with distributed energy
resources, including behind-the-meter photovoltaics (BTM
PV) and energy storage (ES), is proposed, where the LEM
agent, which is an ES system, works. Facilitates energy sharing
within markets and communities, resulting in LEM agent
profitability increasing from 4% to 130%, depending on
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weather conditions and load patterns (He and Zhang, 2023; Li
et al., 2023) proposed a load forecasting method for energy cell-
tissue systems that incorporates inter-cellular correlations using
a BiLSTM network to enhance forecasting accuracy.

A hierarchical electricity trading scheme is presented to optimize
power system functioning in smart grids using peer-to-peer electricity
trading (Symiakakis and Kanellos, 2023; Niaei et al., 2022) presented an
energy-sharing architecture based on peer-to-peer (P2P) that maximizes
customer involvement, cost, revenue, and real-time programming to
maximize profitability and revenue while managing unpredictability.
Results for edge weight prediction in financial networks are obtained
through the construction and training of deep learning models, with
implications for portfolio diversification and systemic risk management
(Bhattacharjee et al., 2022; Jin et al., 2023) presented a peer-to-peer (P2P)
trading technique for power management in nanogrids using renewable
energy sources (RES) and energy storage systems (ESSs). Electricity costs
in smart homes are reduced by optimizing smart appliance scheduling
and using a smart bidding technique for P2P trade, whichminimizes grid
reliance and leads to significant cost reductions (Kanakadhurga and
Prabaharan, 2022; Timilsina and Silvestri, 2023) describes an automated
framework for peer-to-peer energy trading that takes into consideration
user perception and behavioral modeling to maximize utility for buyers
while increasing profitability for sellers. In the absence of specialized
models, an attempt is made to offer a price prediction approach based on
machine learning and created statistical models (Mohamed et al., 2022;
Hashemipour et al., 2022) provided amore accurate and economical way
for simulating EV uncertainty in P2P trading, with less computing cost.
To increase the accuracy of day-ahead forecasting, a unique dense
dropout attention-based deep learning model is developed in (Li
et al., 2022; Annamalai et al., 2022a) developed an adaptive machine
learning-based SOC estimate (OML-SOCE) model for HEVs in TEM,
ensuring dependable operation and effective battery balancing. A
regulated peer-to-peer market structure is proposed allowing energy
curves to be submitted by prosumers in transactive energy systems and
achieving significant reductions in peak load and ramp rates while
promoting local electricity generation (Lee and Zhang, 2023; Mehdin
et al., 2022) proposed a decentralized energy market for small-scale
prosumers, facilitating P2P trading and addressing uncertainty through
robust optimization and the FADMM approach. Distributed TE
management for P2P energy trading considers network constraints,
utilizes the AC OPF model, and employs decentralized transaction
clearing (Zhou et al., 2023; Nguyen, 2023) explores stochastic market
clearing solutions in P2P energy markets, deriving explicit formulas for
probability density functions and validating theoretical findings through
simulations. A decentralized dual-loop scheme is proposed for network-
aware peer-to-peer multi-energy scheduling and trading (P2P-MEST) in
decentralized electric-heat systems, resulting in enhanced efficiency and
cost reduction (Sun et al., 2023; Sedgh et al., 2023) A completely
decentralized P2P electricity and gas market provides improved
flexibility and economy, as well as the ability to engage in bilateral
discussions with retailers and merchants to sell power upstream.
Furthermore (Jamil et al., 2021), discusses the significance of AI in
smart grids (Safari and Ghavifekra, 2021a). discusses quantum
technologies in the context of smart grids, with a focus on predictive
characteristics (Safari, 2022). uses precise AI-driven stock estimates
(Safari and Ghavifekrb, 2021b). provides dependable AI-powered
pricing projections (Abriz et al., 2023). looks into the frequency
control of microgrids using a modified COA (Gharehbagh et al.,

2023). investigates the impact of eclipses on Danish electrical stability,
with a focus on dependability.

Smart sustainable grids are advanced power distribution systems that
integrate various technologies to efficiently manage energy generation
distribution and consumption while promoting sustainability and
environmental responsibility, as conceptualized in Figure 1. These
grids are designed to improve the reliability flexibility, and efficiency
of the energy infrastructure while accommodating the integration of
renewable energy sources and enabling P2P energy trading.

The fundamental components of Smart Sustainable Grids include:
Advanced Metering Infrastructure (AMI): Smart meters are

deployed at consumer premises to measure real-time electricity
consumption and communicate the data back to the utility company
this enables consumers to monitor their energy usage and make
informed decisions to optimize consumption patterns and reduce waste.

Renewable Energy Integration: Smart grids facilitate the
seamless integration of renewable energy sources such as solar
wind and hydroelectric power into the existing energy grid by
managing these variable energy sources efficiently the smart grid
can ensure a stable and consistent energy supply.

Energy Storage Systems: The inclusion of energy storage systems
such as batteries allows excess energy generated during peak times to
be stored and used when demand exceeds supply this feature helps
to balance the grid and reduces the need for traditional fossil fuel-
based backup power plants.

Demand Response: Smart grids enable demand response programs
that incentivize consumers to adjust their energy consumption during
peak periods through real-time pricing or other methods consumers
can choose to reduce electricity usage when demand is high thereby
reducing strain on the grid and enhancing its stability.

Distribution Automation: Automation and advanced control
systems in smart grids enable rapid fault detection isolation and
restoration this helps minimize downtime during power outages and
reduces the overall operational costs of maintaining the grid.

P2P Energy Trading: One of the revolutionary features of smart
sustainable grids is the implementation of P2P energy trading P2P
trading allows individuals and businesses to buy and sell excess
energy directly with each other through a decentralized platform this
creates a new dynamic where prosumers consumers who also
produce energy can become active participants in the energy
market fostering a more community driven and decentralized
approach to energy distribution.

The incorporation of P2P energy trading in smart grids offers
several advantages:

Decentralization: P2P energy trading reduces the reliance on a
central authority for energy distribution instead it empowers local
communities and individuals to take charge of their energy needs
promoting energy autonomy.

Enhanced Efficiency: P2P trading enables surplus energy
generated from renewable sources to be efficiently distributed
and utilized within the local community reducing transmission
losses and promoting overall grid efficiency.

Flexibility and Resilience: With P2P trading communities can
remain resilient during disasters or grid failures if the centralized grid
goes down participants can still rely on localized energy transactions.

Cost Savings: By eliminating intermediaries and reducing
transmission costs P2P trading can lead to cost savings for both
energy producers and consumers.

Frontiers in Energy Research frontiersin.org03

Safari et al. 10.3389/fenrg.2023.1275686

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1275686


Renewable Energy Encouragement: P2P trading provides a
direct market for renewable energy producers encouraging more
individuals and businesses to invest in clean energy generation.

Structure and operating framework

Overall structure

The architecture of DeepResTrade is designed to seamlessly
integrate advanced predictive models and blockchain technology
creating a robust and efficient system for P2P energy trading in
decentralized renewable energy markets The framework consists of
two main components the LSTM-DT-based price prediction model
and the blockchain-enhanced trading system. The overall process of
DeepResTrade is presented in Figure 2.

The overall process of DeepResTrade entails a seamless and efficient
flow enabling accurate price prediction and secure P2P energy trading
within decentralized renewable energy markets this comprehensive
process initiates with the meticulous collection of historical data
comprising crucial variables such as market prices maximum power
minimumpower and renewable energy production to ensure consistent
and precise training of the LSTM-DT based price prediction model the
collected data undergoes essential preprocessing steps including
normalization and feature scaling subsequently the preprocessed
data is utilized to train the long short term memory LSTM model
which serves as the cornerstone of DeepResTrade’s price prediction
capabilities the LSTM-DT network is expertly designed to capture
temporal dependencies present in the historical data empowering it to
generate accurate forecasts of future energy prices through a rigorous

iterative training process the LSTM-DT model learns and optimizes its
predictive capabilities becoming proficient in providing reliable and
trustworthy energy price forecasts.

The next crucial phase of the process involves trading decision
making leveraging the accurate price predictions derived from the
LSTM-DT model active participants within the P2P energy market
make informed and data driven trading decisions DeepResTrade adopts
a straightforward yet effective trading strategy where a buy decision is
executed when the predicted price exceeds the previous value indicating
a potential price increase conversely a sell decision is implemented if the
predicted price is lower hinting at a potential price decrease these
informed trading actions facilitate a transparent and efficient trading
environment for all participants to instill transparency in the trading
process DeepResTrade integrates blockchain technology into its
framework all trading decisions made by market participants are
securely recorded as individual blocks within the blockchain each
block comprehensively encapsulates vital information including the
timestamp of the trade the predicted price at the time of the trade and
the corresponding trading action undertaken by operating as a
decentralized and tamper proof ledger the blockchain ensures that
all participants possess access to identical transparent information this
fosters an environment where trust and fairness prevail reinforcing the
credibility of the P2P energy trading ecosystem following the successful
execution of trading decisions DeepResTrade offers the opportunity for
post trade analysis market participants can thoroughly assess the
accuracy of the LSTM-DT predictions and the overall performance
of their trading strategies such valuable insights enable participants to
fine tune their trading approaches optimize their strategies and
capitalize on emerging market trends accordingly DeepResTrade
empowers market participants within decentralized renewable energy

FIGURE 1
Concept of smart sustainable grids.
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markets tomake well informed and data driven decisions optimize their
trading strategies and actively contribute to the development of a
sustainable energy ecosystem the seamless integration of advanced
predictive models specifically the LSTM-DT based price prediction
model with the enhanced security of blockchain technology establishes
DeepResTrade as a pioneering solution for the future of P2P energy
trading promoting a cleaner greener and more efficient energy
landscape.

P2P structure: a case study of IEEE 14-bus
system

The world is undergoing a remarkable transformation in the energy
sector driven by the increasing integration of renewable energy sources
the proliferation of smart grid technologies and the rise of innovative
solutions among these groundbreaking developments P2P energy
trading has emerged as a promising concept that has the potential
to revolutionize thewaywe produce distribute and consume energy P2P
energy trading is an innovative system that enables consumers and
prosumers to directly exchange surplus energy with each other fostering
a decentralized and sustainable energy exchange ecosystem P2P energy
trading is an advancement in the energy sector that leverages blockchain
technology and smart grid capabilities to enable direct energy exchange

between individual consumers and prosumers in a traditional energy
model consumers rely on centralized utilities for their energy needs
which are usually generated from non-renewable sources however with
P2P energy trading consumers who generate their own energy through
renewable sources such as solar panels or wind turbines can sell their
surplus energy to nearby consumers creating a more localized and
sustainable energy economy.

P2P energy trading in the IEEE 14-Bus system demonstrates how
this innovative concept can be implemented in a small-scale power grid
to enable decentralized energy exchange among consumers and
prosumers. The IEEE 14-Bus system is a widely used standard test
system in power system research and serves as an excellent platform for
exploring P2P energy trading s feasibility and benefits the structure of
the IEEE 14-Bus system is presented in Figure 3 andTable 1 as shown in
this figure the IEEE 14-Bus system represents a simplified but realistic
model of a power distribution network with 14 buses 20 transmission
lines and 5 generators it is commonly used for power system analysis
and control studies due to its moderate complexity and diverse system
components to integrate P2P energy trading into the IEEE 14-Bus
system several components and strategies can be employed:

Smart Meters: The first step is to install smart meters at consumer
and prosumer locations these smartmeters enable real-timemonitoring
of energy generation and consumption data which is crucial for
facilitating energy trading and ensuring accurate billing.

FIGURE 2
The overall process of DeepResTrade.
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Communication Infrastructure: Robust communication infrastructure
is required to enable data exchange between smart meters and the trading
platform communication protocols, such asWiFi or cellular networks can
be used to establish secure and reliable connections.

Trading Platform: A decentralized trading platform using blockchain
technology can be implemented the blockchain acts as a ledger recording
all energy transactions and ensuring transparency and immutability.

Tariff and Pricing Mechanism: Establishing a judicious and
equitable tariff and pricing framework assumes paramount
importance in catalyzing the active engagement of both consumers
and prosumers within the dynamic tapestry of the P2P energy trading
ecosystem this intricate orchestration necessitates the calibration of
pricing mechanisms that harmoniously align the interests of prosumers
who contribute their surplus energy to the grid with those of consumers
seeking an economical energy supply striking this delicate balance
entails meticulous consideration of factors spanning energy production
distribution costs market dynamics and the prevailing regulatory
landscape prosumers the linchpin of this paradigm shift stand
poised to be adequately incentivized through a compensation
structure that accurately reflects the value of their surplus energy
contributions thus fostering a sense of recognition and fair reward

for their pivotal role in the energy ecosystem concurrently consumers
stand to reap the rewards of a competitive pricing environment where
the allure of cost effective energy beckons thereby amplifying their
motivation to actively participate and fortifying the foundations of a
sustainable mutually beneficial P2P energy trading frontier.

The P2P system on the IEEE 14-Bus system is formulated as,
conceptualized form (Jin et al., 2020):

γj,t �
γup,t + γLow,t

2
+ γ × Preq

j,t − Pexc
j,t( ) (1)

In which, γj,t, γup,t, and γLow,t are P2P trading, import, and
export price of prosumer j at time t, respectively. Also, γ is the
price update parameter. The selling price is assumed to be
determined by the principles of a free competition market. In
this context, the market price follows the demand and supply,
which is expressed as (1). Accordingly, if the demand exceeds the
surplus power generation, the price will be higher. Conversely, if
the supply exceeds the demand, the strategy is to increase sales
revenue by lowering the price.

Once the price is established, individuals make scheduling
decisions aimed at maximizing their utility. These decisions take

FIGURE 3
The grid structure utilized in DeepResTrade.
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into account factors such as surplus power, load consumption,
required demand, grid energy price, P2P trading price, and
other relevant variables. The primary goal is to determine the
optimal quantity to be traded within a 1-h time frame, ensuring
the maximization of revenue. The objective function and
constraints governing the determination of sales quantity for
the prosumers can be outlined as follows:

Max Rj,t{ } � Uj,t + PP2P
j,t × γj,t − Pgrid,buy

j,t × γup,t + Pgrid,sell
j,t × γLow,t

(2)
Uj,t � Pj × Ln PLoad

j,t( )
S.t:

(3)

Pgen
j,t + Pgrid,buy

j,t − Pgrid,sell
j,t − Pch

j,t + Pdch
j,t � Preq

j,t + PLoad
j,t (4)

SOCj,t � SOCj,t−1 +
ηchaP

cha
j,t − 1/ηdch( )Pdch

j,t

Erate
j

tstep (5)

SOCj,T � SOCj,0 (6)
Pcha
j,t × ucha

j,t ≤Prate
j (7)

Pdch
j,t × udch

j,t ≤Prate
j (8)

pgrid,buy
j,t × ugrid,buy

j,t ≤P grid
max (9)

Pgrid,sell
j,t × ugrid,sell

j,t ≤P grid
max (10)

0≤Pgrid,buy
j,t ≤P grid

max (11)
0≤Pcha

j,t ≤Prate
j (12)

0≤Pdch
j,t ≤Prate

j (13)
SOCj

min ≤ SOCj,t ≤ SOCj
max (14)

ucha
j,t + udch

j,t ≤ 1 (15)
ugrid,sell
j,t + ugrid,buy

j,t ≤ 1 (16)
0≤ ucha

j,t ≤ 1 (17)
0≤ udch

j,t ≤ 1 (18)
0≤ ugrid,buy

j,t ≤ 1 (19)
0≤ ugrid,sell

j,t ≤ 1 (20)

Where, Rj,t, Uj,t, PP2P
j,t , Pgrid,buy

j,t , and Pgrid,sell
j,t are symbolized

as revenue function, utility function, P2P trading power,
imported power from the utility, and exported power to the
grid of prosumer j at time t, respectively. As well, Load
consumption, Generated power, ESS charging power, ESS
discharging power, and Required demand of prosumer j at
time t are denoted by PLoad

j,t , Pgen
j,t , Pch

j,t, Pdch
j,t , and Preq

j,t .
Moreover, SOCj,t, SOCj,t−1, ηcha, ηdch, E

rate
j , and tstep present

Final SOC, Initial SOC levels, ESS charging, discharging
efficiency, ESS rated capacity of prosumer j, and time step,

TABLE 1 IEEE 14-bus system information.

Line Businitial Busfinal RGrid XGrid BGrid CGrid T .RGrid

1 1 2 0.01938 0.05917 0.0528 120 0

2 1 5 0.05403 0.999987875656548304 0.0492 65 0

3 2 3 0.04699 0.19797 0.0438 36 0

4 2 4 0.05811 0.17632 0.034 65 0

5 2 5 0.05695 0.17388 0.0346 50 0

6 3 4 0.06701 0.17103 0.0128 65 0

7 4 5 0.01335 0.04211 0 45 0

8 4 7 0 0.20912 0 55 0.978

9 4 9 0 0.55618 0 32 0.969

10 5 6 0 0.25202 0 45 0.932

11 6 11 0.09498 0.1989 0 18 0

12 6 12 0.12291 0.25581 0 32 0

13 6 13 0.06615 0.13027 0 32 0

14 7 8 0 0.17615 0 32 0

15 7 9 0 0.11001 0 32 0

16 9 10 0.03181 0.0845 0 32 0

17 9 14 0.12711 0.27038 0 32 0

18 10 11 0.08205 0.19207 0 12 0

19 12 13 0.999987875656548092 0.19988 0 12 0

20 13 14 0.17093 0.34802 0 12 0
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respectively. Consequently, ESS rated power of prosumer j,
Charge, discharge, buy, and sell state variable of prosumer j
at time t, as well as Minimum, and Maximum SOC of prosumer j
are anticipated by Prate

j , uchaj,t , u
dch
j,t , u

grid,buy
j,t , ugrid,sellj,t , SOCj

min,
and SOCj

max.
In (3), Uj,t represents the utility derived from individual

prosumers’ load consumption. Generally, satisfaction with load
consumption follows a logarithmic or quadratic function,
adhering to the law of diminishing marginal utility. The
parameter Pj signifies the preference of prosumer j for load
consumption, varying based on the unique characteristics of
each prosumer. A higher value Pj indicates a prosumer with a
strong preference for energy consumption, implying greater
utility. Hence, the prosumer’s overall profit is represented as
(2), which combines transaction costs with the system and P2P
trading, along with its utility.

The constraints for the sales energy determination algorithm
are outlined in (4) to (21). Equation 4 ensures energy balance,
while Equation 5 determines the State of Charge (SOC) of the
Energy Storage System (ESS) based on the SOC from the previous
time step and the ESS output power in the current time
step. Equation 6 allows the final and initial SOCs of the ESS
to be set to the same value, which can be adjusted as desired.
Additionally, Equation 7 and (8) impose limitations on the ESS
output power to stay below the rated capacity.

Equation 9 and (10) introduce constraints related to the quantity
of trading with the main grid, ensuring that it remains within
defined limits. Equation 11 through (21) establish upper and
lower bounds for the decision variables.

Operating framework

The LSTM-GBR structure of DeepResTrade forms the core
of its advanced price prediction capabilities for P2P energy
trading in decentralized renewable energy markets The LSTM
model is a specialized type of recurrent neural network rnn that
excels at capturing long-term dependencies and temporal
patterns in sequential data making it well suited for time
series forecasting tasks. The LSTM structure of the system is
depicted in Figure 4.

According to Figure 4, the input to the LSTM-DT structure
consists of historical data including market prices maximum power
minimum power, and renewable energy production preprocessed
and scaled to ensure consistency and optimal training the LSTM-DT
architecture is designed to process sequential data efficiently
allowing it to learn from past observations and generate accurate
predictions of future energy prices.

DeepResTrade’s LSTM-DT model comprises multiple LSTM
cells, and Decisioning trees each responsible for capturing and
storing relevant information from the input sequence these
LSTM-DT cells maintain a memory state that enables them to
retain information from earlier time steps and selectively forget
or update this information based on the relevance to the current
prediction this characteristic of LSTM-DT networks/trees makes
them particularly adept at addressing the vanishing gradient
problem which commonly occurs in traditional RNNs and

empowers them to handle long term dependencies effectively the
LSTM-DT model of DeepResTrade is arranged in layers with the
first layer accepting the input data and subsequent layers facilitating
the learning of increasingly complex patterns the return sequence
parameter is set to true for the first LSTM layer to ensure that the
output of each time step is passed to the subsequent LSTM layer
furthermore the LSTM structure is augmented with dense layers to
consolidate and refine the extracted features before generating the
final prediction the final dense layer ensures that the output has the
same number of features as the input making it suitable for price
forecasting across multiple dimensions including market price
renewable production and power limits. The LSTM formulation
is performed as:

i1t � σ W1ih1t−1 + U1i γ P grid
max P grid

min RP[ ]
1t
+ b1i( ) (21)

f1t � σ W1fh1t−1 + U1f γ P grid
max P grid

min RP[ ]
1t
+ b1f( ) (22)

O1t � σ W1oh1t−1 + U1o γ P grid
max P grid

min RP[ ]
1t
+ b1o( ) (23)

~C1t � σ W1h1t−1 + U1 γ P grid
max P grid

min RP[ ]
1t
+ b1( ) (24)

C1t � f1t ⊙ C1t−1( ) + i1t ⊙ ~C1t( ) (25)

Where, i1t, and f1t compensating the input gate, and the forget
gate, respectively. O1t, and ~C1t are utilized as the output gate, and
memory cell candidate of the LSTM. B1 network. As the output vector
of the LSTM.B1, h1t is defined of the output of the network as (9):

h1t � Ot ⊙ tanh C1t( ) (26)
Also, tanh (), and σ() are the activation functions utilized in

LSTM, as illustrated in Figure 5.

σ x( ) � 1
1 + e−x

(27)

tanh x( ) � ex − e−x

ex + e−x
(28)

For the last step, the final prediction should be derived by
Decision Tree:

χ � stack ~Vj d( ), L t( ), h1t( ) (29)

Y
∧

χ( ) � ∑5
i�1
Yi × Ii χ( ) (30)

PY D( ) � δY�y1 D( )∣∣∣∣ ∣∣∣∣
D| | ,

δY�y2 D( )∣∣∣∣ ∣∣∣∣
D| | , ...,

δY�yk D( )∣∣∣∣ ∣∣∣∣
D| |( ) (31)

In which, δφ(D) is the set of all X ∈ D subjected to the
expression φ hold true for χ.

impurityY D( ) � ϕ PY D( )( ) (32)
ΔiY Xi, D( ) � impurityY D( )

−∑m
j�1

δXi�vj D( )∣∣∣∣ ∣∣∣∣
D| | impurityY δXi�vj D( )( ) (33)

Entropy P( ) � −∑n
i�1
Pilog2 Pi( ) (34)

IGY Xi, D( ) � Entropy PY D( )( )

−∑m
j�1

δXi�vj D( )∣∣∣∣ ∣∣∣∣
D| | Entropy PY δXi � vj D( )( )( (35)

IGY Xi, D( ) � EntropyBeforeSplit − EntropyAfterSplit (36)
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Entropy Q|P( ) � −∑
i

Pi ∑
j

Pij

Pi
log2

Pij

Pi
( ) � −∑

i,j

Pijlog2
Pi,j

Pi
( )

(37)

Entropy P|Q( ) � −∑
j

qj ∑
i

Pij

qi
log2

Pij

qj
( ) � −∑

i,j

Pijlog2
Pi,j

qi
( )

(38)

FIGURE 4
(A) Neuro-structure of LSTM-DT, and (B) block of LSTM utilized in DeepResTrade.
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IGY Xi, D( ) � Entropy PY D( )( ) − Entropy PY D( )|PXi D( )( ) (39)

Entropy Q( ) − Entropy Q|P( ) � −∑
j

qjlog2 qj( ) +∑
i,j

Pi jlog2
Pi j

Pi
( )
(40)

� ∑
i,j

Pi jlog2
Pi j

Pi
( ) −∑

j

log2 qj( )(∑
i

Pi j) (41)

� ∑
i,j

Pi jlog2
Pi j

Pi
( ) −∑

i,j

Pi,jlog2 qj( )
� ∑

i,j

Pi jlog2
Pi j

Pi
( ) −∑

i,j

Pi,jlog2 qj( )
� ∑

i,j

Pi jlog2
Pi j

Piqj
( )

� −∑
i,j

Pi jlog2
Piqj
Pi j

( )
≥ − log2 ∑

i,j

Pi j
Piqj
Pi j

( )⎛⎝ ⎞⎠ by Jensen′s inequality( )
� −log2 ⎛⎝∑

i,j

Piqj)
� −log2 ∑

i

Pi
⎛⎝∑

j

qj⎛⎝ ⎞⎠⎞⎠

(42)

IGY X,D( ) � IGX Y,D( ) (43)

Entropy Q( ) − Entropy Q|P( ) � ∑
i,j

Pi jlog2
Pi j

Piqj
( ) (44)

∑
i,j

Pi jlog2
Pi j

Piqj
( ) � Entropy P( ) − Entropy P|Q( ) (45)

Letting P � PX D( ) andQ � PY D( ): (46)
IGY X,D( ) � IGX Y,D( ) (47)

GainRatioY Xi D( ) � IGY Xi, D( )
Entropy PXi D( )( ) (48)

Gini P( ) � ∑n
i�1
Pi(1 − Pi) � 1 −∑n

i�1
Pi( )2 (49)

GiniGainiY Xi, D( ) � Gini Py D( )( )
−∑m

j�1

σXi�Vj D( )∣∣∣∣ ∣∣∣∣
D| | Gini PY σXi�Vj D( )( )( ) (50)

Misclassification PY D( )( )

−∑m
j�1

σXi�Vj D( )∣∣∣∣ ∣∣∣∣
D| | Misclassification PY σXi�Vj D( )( )( ) (51)

DeepResTrade’s LSTM-DT structure undergoes a supervised
learning process where historical data is fed into the model the
model is trained to minimize my loss function between its
predictions and the true labels through extensive training
iterations the LSTM structure effectively learns from historical
data to identify temporal patterns and adapts to dynamic
changes in the energy market enabling it to provide highly
accurate and reliable price predictions the integration of the
LSTM-DT based price prediction model with blockchain
technology ensures that DeepResTrade excels in transparent P2P
energy trading promoting a sustainable and efficient energy
ecosystem for the future. Accordingly, the overall
PSEUDOCODE of DeepResTrade is defined in Algorithm 1.

FIGURE 5
Characteristics of Tanh(), and Sigmoid().
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Data Preparation:

Collect market price, min power, max power, and

renewable generation data.

Organize the data into a matrix format where each row

represents a data point with these attributes.

Train-Test Split:

Split the data into training and testing sets (e.g., 80%

training, 20% testing).

Maintain the order of data to preserve temporal

relationships. LSTM Model:

Initialize an LSTM (Long Short-Term Memory) neural

network.

Configure the LSTM layers, such as the number of units,

activation functions, and input shape.

Compile the model with an appropriate optimizer and loss

function.

Train LSTM:

Extract features (Market Price, Min Power, Max Power,

Renewable Generation) and target (Buy/Sell decision)

from the training data.

Fit the LSTM model using the training data, specifying

the number of epochs and batch size.

Decision Tree Model:

Initialize a Decision Tree classifier.

Train Decision Tree:

Train the Decision Tree model using the same training

data used for the LSTM model.

Analysis:

Extract features from the testing data.

Use the trained LSTM model to predict Buy/Sell decisions

for the testing data.

Use the trained Decision Tree model to predict Buy/Sell

decisions for the testing data.

Consensus:

Combine the predictions from the LSTM and Decision Tree

models. A simple approach might be averaging the

predictions.

Blockchain Integration:

Initialize a blockchain object.

For each data point’s consensus prediction:

Determine the final decision (Buy/Sell) based on the

consensus prediction.

Create a transaction data containing a timestamp and the

decision.

Add the transaction to the blockchain.

Display Blockchain or Perform Transactions:

Display the final blockchain with all the transactions,

showing the decision and timestamp for each.

Algorithm 1. Overall Algorithm of DeepResTrade.

Simulations and results

Using a data set of 70,084 data points, this study created a P2P
trading system based on LSTM-based price forecasting. Market pricing,
maximum power, minimum power, and renewable generation statistics

were all included in the data collection (Sousa et al., 2018). The system
was tested in three communities: producers and consumers, as well as
renewable energy resources. The goal was to evaluate the LSTMmodel’s
feasibility and performance in projecting prices for decentralized energy
markets. The export price has a mean of 64.8414629, reflecting an
average pricing level, with a variation of 356.3355371, indicating price
swings and maximum power has a mean of 2.823350202,
demonstrating an average maximum power capacity, with a variance
of 1.663913629. The minimal power required to expose the range of
variance within the data signifies the average and spread of the
minimum power values. The dataset has a mean of
8.519853642 and a variation of 33.29234955 in terms of renewable
generation, demonstrating typical renewable energy generation levels
and the degree of variability within the dataset. Moving on to the
electrical network’s characteristics, the line resistance has a mean of
0.061634 and a variance of 0.003562208, reflecting the network’s
average resistance level and fluctuation. The line inductance has a
mean of 0.2013415 and a variance of 0.011695435, reflecting the
network’s average inductance and degree of fluctuation. The chain
parameter also has a mean of 0.01136 and a variance of 0.01136,
showing the average value and range of shifts. Finally, the average line
capacitance is 41.2, with a variance of 596.06, providing insight into the
average capacitance level and its variability. Also, the detailed
information of the utilized data is available in Table 2.

To test the performance and efficiency of the built P2P trading system,
simulations were run using the DeepResTrade framework. The integrated
LSTM-based price prediction model in the DeepResTrade framework
employed a data set of 70,084 data points. This data collection contains
information on market pricing, peak capacity, minimum capacity, and
renewable generation. The system was put to the test in three
communities: producers, consumers, and renewable energy.
DeepResTrade simulation findings were quite encouraging. The LSTM
model displayed amazing accuracy in capturing dynamic market pricing,
peak efficiency, minimum efficiency, and renewable generation while
workingwithin the system. Parameters such as line resistance, line current,
series parameter, and line capacitance might all be taken into account by
the system. These simulations’ average and exchange values gave a greater
comprehension of network activity and its implications on decentralized
energy markets DeepResTrade simulations proved the efficiency and
efficacy of the P2P trading system. In the process, the LSTM model
enabled accurate price forecasting through efficient and consistent trade
among local players. Research on power grid characteristics has improved
our understanding of system performance and its implications for
decentralized energy markets. Market price and renewable production
are conceptualized in Figures 6, 7, respectively.

Figures 6, 7 show that both market pricing and renewable
generation have a considerable impact on decision-making. The
market price is an important aspect that influences trading decisions
inside the system. Using historical market pricing data,
DeepResTrade’s LSTM-DT-based model predictions future price
trends. These projections influence the business decisions made by
P2P market participants. If the LSTM-DT model predicts an
increase in market price, for example, participants may place
purchase orders in anticipation of a profitable transaction. If the
model predicts a reduction in market price, sell orders may be
supported in order to avoid further losses. The LSTM-DT model’s
price prediction accuracy has a direct influence on the profitability
and success of business decisions made inside the P2P system. In
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addition, DeepResTrade P2P trading outcomes in three
communities are expected in Figure 8.

Based on Figure 8, DeepResTrade achieved significant success in
implementing a peer-to-peer trading system in three different
communities. This system effectively managed the sharing of energy
resources, allowing producers to securely offer extra renewable energy to
consumers. To improve the trading process, DeepResTrade used an
advanced price prediction model called LSTM. This model accurately
forecasted prices, helping participantsmake smarter trading choices based
on expected price trends. These precise predictions decreased risks and
led to more profitable transactions.

DeepResTrade has also incorporated blockchain technology.
Blockchain’s immutable records provide a trusted system,
reducing fraud risks and improving market integrity. In addition
to economic benefits, DeepResTrade had significant environmental
benefits. By promoting the exchange of renewable energy, the system
contributes to a sustainable energy future. Participants were
encouraged to adopt green energy options, thereby reducing their
carbon footprint and supporting sustainable practices.
DeepResTrade’s results highlight its potential to transform
decentralized energy markets and shape the future of P2P energy
trading.

The capacity of the framework to maximize resource
utilization, give accurate price estimates, improve trade
potential, provide transparency and security, and encourage
sustainable energy practices highlights its significance in the
renewable energy industry. Future studies should concentrate
on assessing the framework’s scalability, real-world application,
and performance in various market scenarios to fully realize its
promise in the energy business. Blockchain technology
improves the business process in the system illustration
(Figure 8). Blockchain is made up of blocks that include
information like timestamps, business decisions, and hash
values. The following blocks are concatenated with decisions
and previous hash values, beginning with a genesis block. The
integrity of a blockchain is determined by whether the hash of
each block matches the hash of the preceding block.

Trading choices in simulations are based on LSTM model
predictions. Each purchase or sale decision is recorded as a new
block on the blockchain. Blockchain records transaction history
transparently and securely. The legitimacy of the blockchain is

determined by confirming that all blocks’ hashes and preceding
hash values match. Furthermore, as illustrated in Figure 9,
trading choices saved in the blockchain may be evaluated by
looking at the frequency of buying and selling decisions,
providing trading patterns, and the efficacy of the LSTM
model in generating lucrative decisions.

To evaluate the performance of DeepResTrade, multiple KPIs were
considered and performance evaluation results were determined.

Mean absolute percentage error (MAPE)

The average percentage difference between expected and actual
values is measured by MAPE. It is determined by taking the average
of the absolute differences between the expected and actual values
and multiplying it by 100.

MAPE %( ) � 1
n
∑n
i�1

Λi,actual − Λi,predicted

Λi,actual

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (52)

Rootmean square percentage error (RMSPE)

RMSPE is a measure of the root mean square percentage
difference between anticipated and actual values, comparable
to MAPE. It is determined by dividing the anticipated and
actual values by the square root of the average of the squared
discrepancies, multiplied by 100.

RMSPE %( ) �

��������������������∑n
i�1

Λi,actual − Λi,predicted( )2
n × Λi,actual

√√
(53)

RMSE (root mean square error)

In regression settings, the root mean square error (RMSE) is a
statistic that is frequently used to assess the average magnitude of the
mistakes between the predicted and actual values. It is calculated
using the square root of the average of the squared discrepancies
between the expected and actual values. The root mean square error
(RMSE) is a metric that assesses how well a regression model fits the
data, with lower values indicating better performance. The RMSE
value is expressed in the same units as the target variable. RMSE is
formulated as:

RMSE �
����������������������
1
n
∑ ΛObserved − ΛPr edicted( )2

√
(54)

Where n is the number of data, and ΛObserved, with ΛPr edicted are
the observed, and predicted values of grid community, respectively.

MAE (mean absolute error)

Another statistic used to assess the performance of regression
models is MAE. The average absolute difference between anticipated
and actual values is calculated. MAE, unlike RMSE, does not punish big

TABLE 2 Information on the dataset used.

Dataset parameter Mean Variance

Market Price 64.8414629 356.3355371

Maximum Power 2.823350202 1.663913629

Minimum Power 1.624951713 1.159537727

Renewable Production 8.519853642 33.29234955

Line Resistance 0.061634 0.003562208

Line Inductance 0.2013415 0.011695435

Chain Parameter 0.01136 0.01136

Line Capacitance 41.2 596.06

Total Amount of Data 70,084
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mistakes excessively since it only examines absolute differences. MAE is
calculated using the same units as the target variable, as follows:

MAE � 1
n
∑ ΛObserved − ΛPr edicted( )| | (55)

Precision

Accuracy is a statistic used in binary classification to calculate
the proportion of genuine positive predictions (properly predicted

FIGURE 6
Market price.

FIGURE 7
Renewable production.
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positive cases) vs. total predicted positive instances. Accuracy is
concerned with the accuracy of optimistic forecasts. It is determined
by dividing the total number of true positives by the total number of
false positives, symbolized below:

Precision � ΛTP

ΛTP + ΛFP
(56)

That, ΛTP, and ΛTN are the correctly predicted positive and
negative instances, respectively. Also, the incorrectly predicted
positive and negative instances are symbolized by ΛFP, and ΛFN.

Recall

Recall, also known as sensitivity or true positive rate, is a
binary classification statistic that measures the proportion of
true positive predictions out of all true positive cases. The
capacity of a model to locate all positive occurrences is the
focus of recall. It is determined by dividing the total number of
true positives by the total number of false negatives. Recall is
calculated as:

Recall � ΛTP

ΛTP + ΛFN
(57)

F1 score

The F1 score is a single-value statistic that combines
accuracy and recall. It is a balanced measure of a model’s
performance since it is the harmonic mean of accuracy and
recall. The F1 score is a number between 0 and 1, with 1 being
the greatest possible performance. When the class distribution
is imbalanced and a single measure is required to evaluate the
model:

FIGURE 8
P2P market price-based strategy prediction in (A) community 1, (B) community 2, (C) community 3, and (D) voltage of all 14 buses in normal status.

FIGURE 9
Blockchain buy/sell decisions of prosumers.
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F1 � 2
Precision × Recall

Precision + Recall
(58)

, mean, and variance of the community data are calculated as
follows:

�Λ � ∑Λi

n
(59)

S2Λ � ∑ Λi − �Λ( )2
n − 1

(60)

Where n is the number of data, Λ, �Λ, and S2Λ are the community
data, mean of community data, and their variance, respectively.

In terms of forecast values, the DeepResTrade model
outperformed the other models, with a MAPE of 0.999987% and
aMAPE of 0.000975%. These measures are highly accurate, with just
minor discrepancies between anticipated and actual values and root
mean square percentage differences. The model’s correctness was
confirmed by its RMSE of 0.016079 and MAE of 0.009125,
indicating that there were only minor variations between
predicted and actual data. The model explained the variation in
the original data, with an R2 score of 0.999998 indicating an
excellent match. An F1 score of [1, 1, 1] indicates that the
anticipated values are accurate and reliable. The model also has a
high recall of [1, 1, 1], which detects positive conditions correctly. As
well, this model obtained a high degree of accuracy in its predictions,
with an amount of 1, as presented in Figure 10.

MAPE %( )
RMSPE %( )

RMSE
MAE

Accuracy
Recall
F1
R2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0.0014865073363712563 0.0010647504765152348 0.0006365308042612344
0.0009752033970143988 0.001086961262806888 0.017378038198179374
0.03449543558161013 0.01607904605926803 0.08978600587928463
0.011131318931742844 0.009125763632771632 0.011314100103609573

1 1 1
1 1 1
1 1 1

0.70.9999878756565488 0.9999988178724151 0.999847222335651

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(61)

Overall, these impressive performance metrics highlight the
effectiveness and accuracy of the DeepResTrade model in
predicting the values.

Comparison

In this section, a comprehensive comparison is presented
between DeepResTrade and other intelligent models in the scope
of P2P electrical energy trading. The comparison is based on several
KPIs including RMSE, MAE, MAPE, and R2. These metrics are
utilized as critical benchmarks to evaluate the predictive accuracy
and effectiveness of the different systems. The comparison is
available in Table 3 and Figure 11.

DeepResTrade has shown impressive results, exceeding
other efforts in the field of peer-to-peer energy trading. The
system displayed high forecasting accuracy in anticipating
energy costs, with a low RMSE of 0.01607904605926803 and
an MAE of 0.009125763632771632. DeepResTrade, for instance,
got an considerable low MAPE of 0.999987875656548%,
suggesting great prediction accuracy. Furthermore, the system
had a high R2 value of 0.9999988178724151, indicating a robust
fit of the model to the data. Aside from predictive capabilities,
DeepResTrade’s use of blockchain technology ensures
transparency in trading transactions, resulting in a
dependable and efficient energy trading environment. These

accomplishments demonstrate DeepResTrade’s potential to
reimagine renewable energy markets and promote sustainable
energy behaviors.

Future works

Several topics require additional investigation to better
enhance and expand the DeepResTrade system’s capabilities.
First, precise prediction models must be developed. While
LSTM-DT forecasters have shown efficacy, more sophisticated
techniques, such as deep learning architectures or ensemble
algorithms, may produce even more accurate and robust price
projections. Incorporating external elements like as weather
patterns, market demand-supply dynamics, and regulatory
changes can also give a more complete knowledge of the
renewable energy industry and increase prediction accuracy.
Second, optimizing trading methods inside the DeepResTrade
framework opens up new opportunities. Integrating advanced
optimization algorithms can enable the discovery of optimal
business decisions that take into account aspects such as energy
prices, grid restrictions, and renewable energy availability. These
approaches, by optimizing economic rewards and operational
efficiency, can contribute to the overall success and acceptance
of P2P energy trading. Furthermore, investigating the integration
of smart grid technology and demand response mechanisms might
improve the flexibility and adaptability of corporate strategies,
resulting in more efficient energy resource allocation.

Third, scalability and interoperability are critical considerations. As
the DeepResTrade system grows to support bigger renewable energy
communities, scalability and interoperability become increasingly
important. Future studies may concentrate on building protocols
and processes that allow for the smooth integration of various
communities, allowing for inter-community energy trade.
Interoperability with current energy market infrastructure and
regulatory frameworks will be key for P2P energy trading system
adoption. Incorporation of developing technology and concepts
should also be explored. Quantum technology has sparked interest
due to its potential to transform industries such as optimization and
data processing. Integrating quantum technologies, quantum neural
networks, and quantum LSTM models into the DeepResTrade system
might give considerable benefits.

FIGURE 10
KPI results derived by DeepReaTrade.
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Conclusion

DeepResTrade, presented in this paper, has demonstrated
considerable performance for the decentralized renewable energy
market. DeepResTrade employs developed predictive models and
blockchain technology to be tested in the challenges of price
volatility, uncertainty, and trust in P2P energy trading. In this work,
which employed a dataset of 70,084 data points, significant KPIs
amounts resulted. The system’s MAPE was 0.999987%, while its
RMSPE was with a value of 0.000975%, repsectively. These metrics
represent the system’s capacity to estimate energy prices properly,
allowing market participants to make informed decisions and enhance
their trading tactics. DeepResTrade similarly got an RMSE of 0.016079
and an MAE of 0.009125, indicating that the predicted and actual
values deviated barely, and the difference is so low. The R2 score of
0.999998 indicates that themodel can explain 99.99% of the variation in
true data, with a considerable fit. As well, an F1 score of [1, 1, 1], a recall

value of [1, 1, 1], and an overall accuracy of 1 illustrate the system’s
capacity to forecast proper trading decisions in the P2P energy market.
Excellent KPI results demonstrate DeepResTrade’s effectiveness and
accuracy in forecasting energy prices and facilitating transparent and
secure energy trading. By giving precise pricing projections, the
technology enables market participants to optimize their energy
business strategies, maximize economic benefits, and promote the
usage of renewable energy sources. DeepResTrade highlights the
system’s precision, effectiveness, and ability to enhance the
renewable energy business, encourage sustainable energy habits, and
contribute to a cleaner, more efficient energy environment.
DeepResTrade lays the framework for P2P energy trading,
empowering communities, encouraging renewable energy adoption,
and hastening the transition to a greener future.
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TABLE 3 The comparison of DeepResTrade and other works.

Model MAPE MAE R2 RMSE

XGB ∞ 0.026391 0.999992 0.053938

LGBM ∞ 0.131895 0.998096 0.82267

GBR ∞ 0.09008 0.999939 0.146806

DR 0.008445 0.003594 0.999997 0.030523

RF 0.010545 0.003694 0.999996 0.036862

KNN 0.028704 0.007541 0.999985 0.072944

LSTM 1740624 1.248328 0.950015 4.214879

DeepResTrade 0.0006365 0.0091258 0.9999879 0.0344954

FIGURE 11
The KPI comparison of different models.
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Nomenclature

AI Artificial Intelligence

DL Deep Learning

NN Neural Network

PV Photovoltaic

P2P Peer-to-Peer

ANN Artificial Neural Network

QNN Quantum Neural Networks

AMI Advanced Metering Infrastructure

RES Renewable Energy Sources

EMS Energy Management System

MAE Mean Absolute Error

LSTM Long/Short-Term Memory

MAPE Mean Absolute Percentage Error

RMSE Root Mean Square Error

RMSPE Root Mean Square Percentage Error

QLSTM Quantum Long/Short-Term Memory

Parameters

Businitial Initial bus

Busfinal Final bus

RGrid [p.u] Grid resistance

XGrid [p.u] Grid inductance

BGrid [p.u] Grid transmission parameter

CGrid Grid line capacitance

T.RGrid Grid tap ration

γj,t [$/MWh] P2P trading of prosumer j at time t

γup,t [$/MWh] The import price of prosumer j at time t

γLow,t [$/MWh] export price of prosumer j at time t

γ Price update parameter

Rj,t Revenue function

Uj,t Utility function

PP2P
j,t P2P trading power of prosumer j at time t

Pgrid,buy
j,t

Imported power from the utility of prosumer j at time t

Pgrid,sell
j,t

Exported power to the grid of prosumer j at time t

PLoad
j,t

Load consumption of prosumer j at time t

Pgen
j,t Generated power of prosumer j at time t

Pch
j,t

ESS charging power of prosumer j at time t

Pdch
j,t

ESS discharging power of prosumer j at time t

Preq
j,t Required Value of prosumer j at time t

SOCj,t Final SOC level of prosumer j

SOCj,t−1 Initial SOC level of prosumer j

ηcha ESS charging efficiency of prosumer j

ηdch discharging efficiency of prosumer j

Erate
j The ESS-rated capacity of prosumer j

tstep Time step

Prate
j ESS-rated power of prosumer j

uchaj,t Charge state variable of prosumer j at time t

udchj,t Discharge state variable of prosumer j at time t

ugrid,buyj,t
Buy state variable of prosumer j at time t

ugrid,sellj,t
Sell state variable of prosumer j at time t

SOCj
min Minimum SOC of prosumer j

SOCj
max Maximum SOC of prosumer j

Pj Preference of prosumer j

it Input Gate

f t Forget Gate

Ot Output Gate

~Ct Memory Cell Candidate

Ct Memory Cell

Wt LSTM Weights

bt LSTM Bias

Ut LSTM Control Signal

ht Hidden Gate

Hf LSTM Forward Hidden State

Cf LSTM Forward Cell State

ZCon Concatenated State

Zd Dense Layer Representation

σd Dense Activation Function

Wd Dense Wight Matrices

bd Dense Bias Vector

Wout Output Weight Matrices

bout Output Bias Vector

v
d
j

Output of decision tree

Xi Input variable

d Number of iterations

a Sampling ratio of large gradient data

b Sampling ratio of small gradient data

gi Vector set of gains

i Index

j Index

f i Improves our model
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Ω Penalizes the complexity of the model

L Differentiable convex loss function

ŷ Prediction

yi Target variable

gi First order gradient statistics on the loss function

hi Second order gradient statistics on the loss function

E(S) Entropy

P Probability distribution

Pi Probability that a point is in the subset ?? of a dataset ?

S Subset of the training example

E(Y|X) Entropy of the dataset given some feature

σ Selection operator from relational algebra

Ij(X) Indicator function

Q Probability distribution

φ Convex function

E Expectation

v
(d)
j

Output of decision tree

Xi Input variable

d Number of iterations

a Sampling ratio of large gradient data

b Sampling ratio of small gradient data

gi Vector set of gains

i Index

j Index

f i Improves our model

Ω Penalizes the complexity of the model

L Differentiable convex loss function

ŷ Prediction

yi Target variable

gi First order gradient statistics on the loss function

hi Second order gradient statistics on the loss function

E(S) Entropy

P Probability distribution

Pi Probability that a point is in the subset ?? of a dataset ?

S Subset of the training example

E(Y|X) Entropy of the dataset given some feature

σ Selection operator from relational algebra

Ij(X) Indicator function

Q Probability distribution

φ Convex function

E Expectation

ΛTP Truly Positive Predicted Value

ΛTN Truly Negative Predicted Value

ΛFP Falsely Positive Predicted Value

ΛFN Falsely Negative Predicted Value

n Number of Data

F1 F1 Score

R2 Coefficient of Determination

σ Sigmoid function

�Λ Mean of data

Λi data

S2Λ Variance of data
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