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Irrigated crops have experienced a significant global expansion. The biophysical

response of climate change to irrigated crop expansion in different regions,

particularly in terms of monitoring the influence mechanism of nighttime land

surface temperature (LST) change, however, remains insufficiently explored.

Taking the three northeastern provinces of China as our study area, we apply

window analysis, partial correlation analysis, and geographical detector to

quantitatively characterize the spatial and temporal distribution pattern of

daytime and nighttime LST (diurnal LST) and biophysical parameters, and the

main driving mechanism of diurnal LST change. The results showed that irrigated

crop expansion led to asymmetric changes in daytime (−2.11 ± 0.2°C, 97.4%) and

nighttime (0.64 ± 0.2°C, 79.9%) LST. DLSTDT had a negative correlation with DLE
(63%), but a positive correlation with DSSR and DH (91% and 77%). This revealed

that the cooling effect caused by the superposition of the output latent heat flux

and the absorbed solar shortwave radiation was greater than its heating effect.

DLSTNT and DLE had a positive connection across 69% of the region. DLSTNT

demonstrated a negative correlation with DSSR and DH in 82% and 75% of the

regions, respectively. At this time, the superposition of latent heat flux and

heating potential term produces a greater heating effect. The explanatory

power of the single factor (the mean of q<0.50) of biophysical parameters for

diurnal LST variation was significantly smaller than that of the interaction factor

(the mean of q>0.50, p<0.01). This study shows more detailed dynamic

information of diurnal LST and biophysical parameters from 8day scale. The

findings highlighted the critical role of asymmetric changes in the diurnal surface

thermal environment caused by irrigated crop expansion in the global climate

from a land surface hydrothermal energy balance perspective.

KEYWORDS

biophysical parameters, water thermal energy balance, regional climate change, land
use and cover, geo-detector model
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1 Introduction

By 2050, the world population is expected to reach 9.2 billion,

increasing the food demand by 70–110% (Bajželj et al., 2014; van

Dijk et al., 2021). To ensure an adequate food supply in the future,

intensive irrigated agriculture has been developing rapidly. The

Food and Agriculture Organization of the United Nations (FAO)

reports that as of 2017, there are approximately 167 million hectares

of irrigated crops globally, of which more than 90% are located in

Northeast Asia (Delzeit et al., 2017; FAO, 2018). The expansion of

irrigated crops fundamentally alters the biogeochemical and

biophysical (albedo, sensible heat flux, and latent heat flux)

processes between the atmosphere and the land surface. It

indirectly alters the seasonal cycle of carbon–water–energy of the

land–atmosphere interface and plays a critical role in regulating the

regional and global climate (Feddema et al., 2005; Windisch et al.,

2021). Among these changes, the influence of biophysical processes

on climate is more prominent at regional and short-time series

scales (Arora and Montenegro, 2011; Zhang et al., 2014a), and these

persistent changes in regional climates will threaten future grain

yield (Liang et al., 2018; Gaupp et al., 2020). Therefore,

understanding the regional climate effects of irrigated crop

expansion from a mechanism perspective will provide a scientific

basis for sustainable regional agriculture and food development.

Currently, observation data and model simulation are used

mainly to study the influence of irrigated crop expansion on

climate (Zhao et al., 2012; Zhu et al., 2012). Observational data,

the most reliable in situ measurement method, are used to quantify

the climate’s response to irrigated crop expansion by comparing

temperature differences between irrigated and rainfed crops or the

differences before and after the conversion of rainfed crops to

irrigated crops. However, the data essentially provide point

information (Christy et al., 2006). Because of the complex land

surface coverage conditions and significant terrain differences, point

information cannot fully represent the large-scale situation of a

region. In addition, the background information (e.g., the

characteristics of the surrounding features) of irrigated crops of

different sites is different. Therefore, it is difficult to distinguish

temperature differences caused by a combination of irrigated crop

expansion and other surrounding instabilities. Model research has

compared the differences between the simulation results of different

models (coupled or uncoupled) and the results of control

experiments (Huang et al., 2009; Wei et al., 2016). Therefore,

accurately simulating each sector of irrigation experiments is a

crucial step toward achieving effective results. For example, the use

of a climate-coupled model to simulate the response of temperature

to global irrigation indicated that the intensity of irrigation cooling

varied considerably regionally, which may have been caused by

factors such as irrigation range and irrigation amount (Lobell et al.,

2009). However, the quantitative description of the location, time,

method, and number of irrigated crops remains uncertain.

Therefore, we used the window-searching strategy proposed by

previous studies to eliminate issues like inconsistent background

information of climate observation data and uncertainties in the

attribution of temperature changes caused by model simulations (Li

et al., 2016). Within the same moving window, pairs can be used to
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calculate differences in land surface parameters between the study

object and its surrounding land cover types. It is possible to ensure

the consistency of climate background, environment, and

topography of different land use and cover types within the

window by setting up appropriately sized moving windows

(Malyshev et al., 2015; Schultz et al., 2016; Winckler et al., 2017).

This method, as a complementary method for investigating

temperature change, is used to identify the effects of irrigated

crop expansion on local land surface temperature (LST).

Previous studies have simulated the effect of irrigated crop

expansion on contemporary climate using models and have

concluded that the effect of irrigated crop expansion is negligible

on a global average scale (Sacks et al., 2009). However, the effect of

irrigated crop expansion has been significant on a regional scale,

with varying results. In the humid tropics, for example, the

expansion of irrigated crops has caused thermal effects both

during the day and at night, whereas it is a source of cold during

the day and a source of warmth during the night in arid and semi-

arid areas, especially during the dry season (Adegoke et al., 2003;

Yang et al., 2020). However, the relative magnitude of daytime

cooling and nighttime warming varies by region(Zhu et al., 2011).

In the North China Plain, the nighttime warming effect of irrigated

crops is greater than the daytime cooling effect, which has increase

the regional temperature (Chen and Jeong, 2018). Conversely, in

Northeast China, the expansion of irrigated crops has led to more

significant daytime cooling effect than the nighttime warming effect

during the growing season, resulting in a cooler local region (Liu

et al., 2018; Yu and Liu, 2019).

Current research focuses on the influence mechanism of LST

change from two aspects: biogeochemical processes and biophysical

parameters (Bonan et al., 1992). The former emits or absorbs

greenhouse gases, such as carbon dioxide, methane, and nitrous

oxide, directly affecting carbon emissions and sequestration in the

atmosphere (Pongratz et al., 2010). Studies have revealed that the

expansion of irrigated crops has increased greenhouse gas

concentrations in the atmosphere, eventually leading to a rise in the

average temperature during the growing season (Chen et al., 2013; Sun

et al., 2017). The latter directly disturbs the surface energy and water

balance by changing the surface albedo, evapotranspiration, roughness,

and specific emissivity (Moon et al., 2020). The study of the response of

biophysical parameters to irrigated crop expansion, however, remains

limited, which is reflected mainly in the trade-off effect between the

degree of influence of radiative and nonradiative processes during

different growing seasons. It is generally accepted that albedo, latent

heat flux, and sensible heat flux are the dominant factors of LST

variation (Du et al., 2017; He et al., 2020). Daytime LST decreases

during the early growing season (May–June), and this is mainly

because the cooling effect of latent heat flux is greater than the

warming effect of albedo. Daytime LST variation in July–September

is influenced by the synergistic effect of albedo and latent heat flux (Liu

et al., 2018; Liu et al., 2019b; Pan et al., 2020; Liu et al., 2022). Through

temperature response models, it has been found that local nonradiative

processes (i.e., evapotranspiration and sensible heat) dominate the

daytime cooling of irrigated crops and that radiation processes (i.e.,

albedo) play a secondary role (Zhang et al., 2022). The contribution of

nonradiative processes to the daytime LST variation had seasonal
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characteristics. However, previous studies have only made a qualitative

comparison of the relative contributions of radiative and nonradiative

mechanisms to LST changes and the seasonal response of LST changes

to energy factors remains controversial (Xin et al., 2020). Meanwhile,

these studies have ignored the influence of superposition of energy

factors (e.g., latent heat flux, solar incident shortwave radiation) on

LST. Furthermore, the influence mechanism of nighttime LST change

is more complex (Chen et al., 2022; Lian et al., 2022), and it has not

been thoroughly discussed in prior research. We assessed the potential

influencing factors of nighttime LST increase in terms of thermal

inertia generated by net surface energy during the day and atmospheric

inverse radiation at night caused by latent heat flux in this study.

The three eastern provinces of China are located in the

hinterland of Northeast Asia, characterized by flat topography

and abundant water and soil resources. Since the economic

reforms in 1978, a large area of wetlands has been reclaimed to

ensure the supply of national food production and to meet the

demands of local economic development (Dong et al., 2016). A

combination of these factors provided a natural experimental site

for studying the mechanisms of climate change caused by the

expansion of irrigated crops. In this study, we used the window-

searching strategy to calculate the differences in surface parameters

between irrigated crop and non irrigated crop to remove the

influence of climatic background and topographic factors on LST

changes. Then, we portrayed the spatial–temporal responses of

daytime and nighttime land surface temperature (diurnal LST)
Frontiers in Ecology and Evolution 03
changes to surface radiant energy (e.g., incident radiant energy,

outgoing radiant energy, and net effect) quantitatively and

comprehensively, from the perspective of surface energy

superposition. This information has enriched the research system

on the mechanism of the climate impact of irrigated crop

expansion. Specifically, we examined the following: (1) How do

latent heat flux, solar shortwave radiation energy, and heating

potential term lead to the decrease of average daytime LST during

the growing season? (2) What are the main controlling factors of the

increase in nighttime LST? Are they direct effects on the nighttime

LST increase? (3) On the spatial scale, which of the interaction

effects of single-energy factor (first order) and double-energy factor

(second order) has a higher degree of explanation for LST changes?
2 Materials and methods

2.1 Study area

The study area is located in high-latitudes of Northeast Asia,

which cover Heilongjiang, Jilin, and Liaoning provinces (38.7–53.5°N,

121.1–123.6°E) (Figures 1A, B), with a total area of about 7.9×105 km2.

This region is at the junction of the cold temperate zone, mid-

temperate zone, humid and semi-humid climate. This area is cold-

dry in winter and warm-humid in summer. The annual average

temperature is −3–10°C. The maximum temperature decreases each
A

B

C

D

FIGURE 1

(A, B) Geographic location and elevation of Northeast China. (C) Climate situation of Northeast China since 2001. (D) Spatial distribution map of
Irrigated crops expansion from 2015 to 2020.
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year, while the minimum temperature increases during the period

2000–2020 (Figure 1C). The annual precipitation ranges between 400

and 1100 mm, with the majority falling between July and September.

Its vast plains, fertile soil and sufficient water-heat state provide

excellent natural conditions for the growth of single-season rice.

The expansion rate of rice area during 2015–2020 is as high as

1.76×103 km2/a (Figure 1D). The rapid development of intensive

irrigated agriculture has made it an important commercial grain base

in China.
2.2 Data and data processing

Land surface temperature (LST) data from the 8-day 1-km

Terra/MODIS products (MOD11A2). As Terra/MODIS overpasses

at around 10:30 and 22:30, which are close to the time of daily

maximum and minimum air temperatures, so MOD11A2 LSTs at

10:30 and 22:30 were defined daytime LST (LSTDT) and nighttime

LST (LSTNT), accordingly (Wan et al., 2015).

Latent heat flux (LE) is the flux of heat from the Earth’s surface

to the atmosphere that is associated with evaporation of water at the

surface, and is estimated by Terra/MODIS Evapotranspiration/

Latent Heat Flux product (MOD16A2) that includes 500 m 8-day

Evapotranspiration (ET), Latent Heat Flux (LE), Potential ET (PET)

and Potential LE (PLE). MOD16A2 calculates global LE based on

the Penman-Monteith (PM) equation, and its mean absolute bias is

within 0.31–0.33 mm day−1 (Mu et al., 2011).

Albedo data are derived from 500 m daily albedo Model dataset

(MCD43A3). The data include white-sky (directional hemispherical

reflectance) and black-sky (dual hemispherical reflectance) albedos

for seven MODIS individual bands and three broad bands (0.3–

0.7 mm, 0.7–5.0 mm, and 0.3–5.0 mm) (Schaaf et al., 2002). As black-

sky and white-sky albedo are highly correlated and have small

difference, this study simply chooses white-sky albedo for 0.3–

5.0 mm to indicate the total energy reflected by the earth surface.

Downward Shortwave Radiation (DSR) from Global Land

Surface Satellite (GLASS), which is the world’s first high spatial-

temporal resolution radiation product (daily, 0.05°). It mainly uses

multiple polar orbits and geostationary satellite data to establish
Frontiers in Ecology and Evolution 04
cloudy and cloudless radiative transfer models based on the look-up

table algorithm. Using MODIS band data and cloud products, the

inversion results of two MODIS observation sensors are combined.

The measured coefficient is good 0.83 and the root mean square

error is 115.0 W m−2 (Zhang et al., 2014b).

The land use/cover data from 2015 to 2020 are derived from the

China Cropping Pattern Map. This data is based on GlobeLand30

global cultivated land data, which use mapping algorithm of

phenological and threshold of pixel purity, the first planting map

of three major crops (rice, maize and wheat) in China based on 500

m MODIS was obtained. The overall classification accuracy was

89%, the kappa coefficient was 0.85, the rice producer accuracy was

93%, and the dryland was 83%–90% (Qiu et al., 2022). We mainly

selected irrigated and rainfed crops by the following criteria, as

described in the literature (Abera et al., 2019). Assuming six layers

for 2015–2020, the dominant land cover type was assigned to each

pixel through an automatic selection method, i.e., the ones in the six

500 m pixels should all belong to the same category, or else removed

from our analysis. Ultimately, pixels with rice in all six layers for

2015–2020 were defined as irrigated crops, and pixels with corn in a

single pixel in all six layers, wheat, or a pixel with both corn and

wheat were defined as rainfed crops. Eventually, all products’

temporal and spatial resolutions were unified to 1 km and 8-day

scales, respectively. Additionally, the projection was unified to

match the original projection of MODIS data to facilitate the

calculation between products. See Table 1 for details of

data products.
2.3 Methodology

This paper is mostly based on data from multiple remote

sensing sources. Window-searching strategy is used to find

irrigated crops and rainfed crops that have the same climate

setting. On the basis of this, the spatial and temporal

characteristics of diurnal land surface temperature and land

surface biophysical parameters of rainfed crops and irrigated

crops are examined. Lastly, by combining the pearson partial

correlation analysis and the geo-detector model, the main
TABLE 1 Datasets summery and quality control.

Datasets Description Quality control Resolution Time

MOD11A2
Land surface temperature (LST at 10:30 and

22:30 local time)

Mandatory QA = 0, indicating good quality;
Emiserror = 0, indicating average

emissivity error ≤ 0.01;
LST error=0, indicating average LST error ≤1K

1 km, 8-day 2015–2020

MOD16A2 Evapotranspiration (ET) Quality control = 0, indicating good quality 500 m, 8-day 2015–2020

MCD43A1 Shortwave white sky Albedo
Mandatory QA = 0, indicating good quality with full

BRDF inversions
500 m, Daily 2015–2020

GLASS DSR
Overall coefficient of determination = 0.83
Bias = −6.5W m−2, RMSE = 115.0W m−2 0.05°, Daily 2015–2020

Maps of cropping patterns
in China

Land use and cover
Overall accuracy = 89%

Accuracy of paddy field = 93%
Accuracy of rainfed crops = 83%–90%

500 m, year 2015–2020
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biophysical mechanisms that cause the diurnal land surface

temperature to change were studied on both the spatial and

temporal scales. The exact process is shown in Figure 2.
2.3.1 Quantization impacts of irrigated crop
expansion on land surface parameters

Land surface temperature: We assessed the biophysical impact

on LST changes through hypothetical irrigated crop expansion,

which does not happen in reality. This methodology was developed

by evaluating the temperature change induced by afforestation and

deforestation (Li et al., 2015). The potential impact of irrigated

crops on LST was expressed as the LST difference between irrigated

crops and nearby rainfed crops in 2015–2020:

DLSTi = LSTIC − LSTRC (1)

DLSTi = LSTIC − LSTRC (2)

dLST = DLSTIC − DLSTRC (3)

where i represents daytime (DT) or nighttime (NT); DLSTi  

(DLSTi) represents DLSTDT (DLSTDT ) or DLSTNT (DLSTNT ); LSTIC

and LSTRC represent average daytime and nighttime LSTs in
Frontiers in Ecology and Evolution 05
2015–2020 for irrigated crops and rainfed crops, respectively

(8 days in growing season); LSTIC and LSTRC represent monthly

average (mean of DLSTi from May to October) daytime and

nighttime LST in 2015–2020, respectively, and DLSTIC and DLS
TRC represent the diurnal LST difference in irrigated crops and

the diurnal LST difference in rainfed crops, respectively.

Negative DLSTi (DLSTi) indicated the cooling effect of irrigated

crops; otherwise, it indicated a warming effect. A negative dLST
suggested that the diurnal LST difference was smaller in the

irrigated crops compared to non-irrigated crops, and vice versa.

Intrinsic biophysical mechanics: We calculated the biophysical

differences in solar shortwave radiation (SSR), latent heat flux (LE),

and heating potential term (DH) between irrigated crops and nearby

non-irrigated crops in the same way as the previous calculation. To

directly compare the relative effects of surface radiant energy changes

on DLSTi, which were caused by the difference between albedo and

latent heat flux, we introduced the downward shortwave radiation

(DSR). The solar shortwave radiation energy SSR (SSR = DSR

(1-Albedo)), which was absorbed by the land surface, was calculated

by DSR and albedo (Schultz et al., 2017).We refer to (Li et al., 2015) for

the definition of a heating potential term as the difference in absorbed

solar shortwave radiation and latent heat fluxes between irrigated crops

and nearby non-irrigated crops in 2015–2020 is given by
FIGURE 2

Flowchart of this study. IC, irrigated crops; RC, rainfed crops; LE, latent heat flux; SSR, solar shortwave radiation; H, heating potential term.
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DH = DSSR − DLE (4)

DH = DSSR − DLE (5)

where DSSR and DLE represent the difference in solar shortwave

radiation energy and latent heat flux on the 8-day scale for irrigated

crops and rainfed crops in 2015–2020, respectively; DSSR and DLE
represent the monthly average (mean of DSSR and DLE fromMay to

October) solar shortwave radiation energy and latent heat flux for

irrigated crops and rainfed crops in 2015–2020, respectively.

Negative DH (DH) indicated that the heating potential term

absorbed and released by the irrigated crops was greater than that

of the surrounding non-irrigated crops, and vice versa.
2.3.2 Window-searching strategy
Because the 1-km spatial resolution of MODIS products is

relatively coarse, it might cause “mixed pixels” and add

uncertainties of land surface parameters. To extract relatively

pure MODIS pixels, we aggregated the 500-m land use and cover

data with the 1-km MODIS LST resolution by calculating the area

percentage of irrigated crops and rainfed crops within 1 km × 1 km

grids and chose “pure” grids with an area percentage of 100% for

irrigated crops (46,163 grids) and rainfed crops (34,797 grids).

We used the “window-searching strategy” to identify the

relationship between surface energy parameters of irrigated crops

and rainfed crops over a valid geospatial space range (Li et al., 2016;

Shen et al., 2019). We defined a 10 km × 10 km moving window

covering 100 1 km × 1 km pixels. If both the paddy field and rainfed

crop pixels were located within one moving window, this was

defined as a valid comparison sample, within which we could

calculate the average DLSTDT , DLSTNT , DLE, DSSR, and DH.

For the potential impact of irrigated crop expansion, the total

number of valid windows was 802 (Figure 1C). The window-

searching strategy guaranteed that irrigated crop and rainfed crop

pixels within the surrounding neighborhood were under similar

climate forcing and minimized the uncertainties of local

environment backgrounds (e.g., terrain, elevation wind, MODIS

viewing zenith angle).

2.3.3 Spatio-temporal correlation analysis
Pearson partial correlation analysis: The variation of land surface

biophysical parameters was the main factor affecting the variation of

diurnal LST at the local scale. We used the Pearson partial correlation

analysis method to explore the individual effects of latent heat flux,

solar shortwave radiation energy, and heating potential term changes
Frontiers in Ecology and Evolution 06
on diurnal LST changes on the temporal scale during the growing

season. These results revealed the essential characteristics of diurnal

LST warming and cooling changes (Umair et al., 2020).

Geo-detector model: Geo-detector is a statistical method used to

reveal the driving factors behind by spatial heterogeneity. In this

study, our core idea was that the spatial distribution of the two

factors with correlation would be similar and mainly runs the model

in R studio environment. We used the factor detector and the

interactive detector to judge the spatial effect of the change of a

single-surface energy factor and the interaction of the change of

two-surface energy factors on the diurnal LST changes (Zhu et al.,

2020). This degree of explanation is measured by the q-value, and

the statistical model is as follows:

q = 1 −om
n=1Nns

2
n=om

n=1Nns
2
n , (6)

where n = 1, …, m indicates the subregions (irrigated crops

(46163 grids) and rainfed crops (34797 grids)) of variable DLSTDT

 (DLSTNT ) or DLE (DSSR and DH); Nnwas the number of moving

windows for the entire region (802);  s2
n and  s2 indicate the

variances of n of subregions and the whole area, respectively.

Larger q-values indicate a stronger explanatory power of driver

variation on diurnal LST variations, while the opposite indicates

that the explanatory power is weaker; q = 1 indicates that the change

of driving factors completely controls the spatial distribution of

diurnal LST variations, and the explanatory power reaches 100%.

The factor detector determined the main controlling factor of

LST changes mainly by judging the relative magnitude of q-values of

multiple single factors. The interaction detector compared the relative

magnitudes of q-values of two single factors (e.g., DLE, DSSR) and
two single-factor interactions (e.g., DLE∩DSSR) to determine the type

of interaction (divided into five categories) Table 2.
3 Results

3.1 Temporal response of LST and
biophysical parameters to irrigation
crop expansion

We identified the differences between irrigated crops and rainfed

crops in the process when the underlying surface releases latent heat

flux and absorbs solar shortwave radiation energy. To reflect the

change in the surface energy signal of the prospective growth of

irrigated crops, we quantitatively assessed the differences in diurnal

LST, latent heat flux, net solar shortwave radiation energy, and
TABLE 2 Interaction detector classifications.

q Value comparison Interaction Defined of interaction

q(X1∩X2) <Min(q(X1), (X2)) Non-linear weakening NLW

Min(q(X1), (X2)) <q(X1∩X2) <Max(q(X1), (X2)) Single-factor nonlinear attenuation SFNA

Max(q(X1), (X2)) <q(X1∩X2) Two-factor enhancement TFE

q(X1∩X2) =q(X1) + (X2) Independent IE

q(X1) + (X2) <q(X1∩X2) Non-linear enhancement NIE
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heating potential term of irrigated crops and rainfed crops in 2015–

2020. During the growing season, the daytime (10:30) and nighttime

(22:30) LST differences showed asymmetry (Figures 3A, B). Among

these differences, the daytime LST average decreased by 2.11 ±

0.21°C, whereas it increased by 0.64 ± 0.19°C at nighttime, and the

daytime cooling range was significantly bigger than the nightly

warming range (1.47°C). The order of DLSTDT was as follows: the

early growing season (−3.56 ± 0.27°C) > the mid-growing season

(−1.35 ± 0.21°C) > the late-growing season (−1.34 ± 0.16°C). The

temporal variation characteristics of DLSTNTwere consistent with

those of DLSTDT , which reached the maximum value (1.98 ± 0.25°C)

in the early growing season and the minimum value (−0.76 ± 0.15°C)

in the late-growing season. The average values of DLSTIC and DLSTRC

were 9.03°C and 11.78°C, respectively, and the average value of d LST
was −2.75 ± 0.23°C. The main reason for the decrease in DLSTIC was

that irrigated crops were subjected to both daytime cooling and

nighttime warming (Figure 3C).
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The average difference of latent heat fluxes was 4.05 ±

1.01 W m−2 (Figure 3D). This reached its maximum during the

mid-growing season (10.35 ± 1.02 W m−2), and the sign of

average values of the early growing season (6.01 ± 0.78W m−2)

and late-growing season (−3.50 ± 0.92 W m−2) were opposite. The

average difference of solar shortwave radiation energy was 2.49 ±

3.12 W m−2. The maximum difference (11.23 ± 3.44 W m−2) in the

early growing season was significantly larger than the average value

of the entire growing season, whereas the average difference in other

months was −2.18 ± 3.02 W m−2. The mean value of the difference

of SSR during the whole growing season was greater than zero

(Figure 3E). The average difference in heating potential term for

DOY = 121–177, was 5.22 ± 2.17 W m−2. The difference of surface

heating potential term was the smallest in the late-growing season

(0.01 ± 2.94 W m−2; Figure 3F), because the absorbed solar

shortwave radiation and the latent heat flux that was released by

the surface were similar.
A B

D

E F

C

FIGURE 3

Mean 8-day cycle of land surface parameters of irrigated crops and the adjacent rainfed crops, and their differences during the growing season of
2015–2020. (A) Daytime LST, (B) nighttime LST, (C) diurnal LST, (D) latent heat flux (LE), (E) solar shortwave radiation (SSR), (F) heating potential term
(H). Grey shadows represent standard deviation.
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3.2 Spatial response of LST and biophysical
parameters to irrigation crop expansion

We observed significant spatial differences in multiyear mean

daytime and nighttime LST of irrigated and rainfed crops in 2015–

2020. DLSTDT showed an overall high in the west and low in the east

(Figure 4A), with a mean value of −2.11°C, which was concentrated

in the range of −3°C to 1°C (Figure 4B). In more than 62% of the

regions, the DLSTDTwas between −2°C and −5°C. Compared with

low latitudes, the daytime LST of irrigated crops decreased

significantly at high latitudes. The DLSTNT in the eastern region

was slightly lower than that in the western region (Figure 4C), with

a mean value of 0.64°C, which was concentrated in the range of

−2°C to 2°C. In more than 77% of the regions, the DLSTNT was

between 0°C and 1°C (Figure 4D). Similarly, DLSTNTwas bigger in

the high latitudes than that in the low latitudes, which mainly

showed a warming effect. Because of the low temperature at high

latitudes, the non-irrigated crops entered the growing season late.
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Low latitudes, on the other hand, are close to the ocean, and heavy

rainfall during the growing season reduces the surface heat

difference between paddy fields and drylands.

From May to October, the DLSTDT showed a gradual decrease

(Table 3), with a maximum difference (−3.7±0.3) in May (the early

irrigation period) and a minimum difference (−0.9±0.3) in August

(the vegetation bloom period). The DLSTNT trended upward and

then downward, with the greatest difference in June and the smallest

difference in September.

We also observed differences in the spatial distribution of DLE ,

DSSR, and D �H of irrigated crops and rainfed crops in 2015–2020

(Figures 5A, C, E). The change patterns of DLE, DSSR and D �H were

similar, and all showed a weak decreasing trend with an increase in

latitude. DLE was more than zero in 70.2% of the locations, and

DSSR was more than zero in 80.6% of the areas. During the entire

growing season, irrigated crops released and absorbed less heating

potential term than rainfed crops, and the percentage of heating

potential term reduction regions was 53.2% (Figures 5B, D, F).
A B

DC

FIGURE 4

The land surface temperature differences of spatial patterns, latitudinal distributions, and frequency histograms of irrigated crops and the adjacent

rainfed crops during the growing season of 2015–2020. (A, B) The spatial distribution map and the histogram of DLSTDT . (C, D) The spatial

distribution map and the histogram of DLSTNT . Grids with crosses indicate that the differences are significant at 95% by t-test, grey shadows
represent standard deviation.
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The extreme values of DLE and DSSR appeared in opposite

months (Table 4). DLE reached the maximum in July (12.7±

0.9 W m−2) and the minimum in October (0.2±0.9 W m−2). The

value of DSSR reached its highest point in June (11.4±4.2 W m−2)

and its lowest point in July (−1±2.4 W m−2). The heating potential

term difference was determined by a combination of latent heat flux

and solar shortwave radiation energy.
3.3 Biophysical spatiotemporal driving
mechanism of diurnal LST change

3.3.1 Temporal effect of biophysical changes on
diurnal LST change

We used latent heat flux and solar shortwave radiation energy

and their summation to directly determine the change

characteristics of LST. On the seasonal scale, DLE was negatively

correlated with DLSTDT , which accounted for 63% of the area

(Figure 6A); furthermore, 15% of the regions had highly significant

negative correlation. This research demonstrated that when DLE
between irrigated and rainfed crops grew, so did DLSTDT . In May–

August, the latent heat flux released by irrigated crops was much

greater than that released by rainfed crops (DLE> 0), resulting in a

cool effect, while DLE< 0 from September to October. Finally, the

average daytime LST of irrigated crops was lower than that of

rainfed crops during the growing season. Thus, it indicates that the

strong cooling effect of latent heat flux in May–August offsets the

weak heating effect in September–October. We observed a positive

correlation between DSSR and DLSTDT , which accounted for 91% of

the area (Figure 6B), and indicated that the greater the difference in

solar shortwave radiation energy, the greater the difference in

daytime LST. Compared with rainfed crops, irrigated crops

absorbed more solar shortwave radiation energy in May–June,

and less in July–October. However, the DLSTDT was still less than

zero, indicating that the cooling effect of high latent heat flux offset

the weak warming effect of low solar shortwave radiant energy. DH
was positively correlated with DLSTDT (Figure 6C), which accounted

for 77% of the area. The DH  < 0 in entire growing season,

eventually produced a cooling effect. This finding revealed that

there was a lag effect in the impact of land surface energy.

On the seasonal scale, DLE was positively correlated with DLS
TNT , and its area accounted for 69% of the total (Figure 6D). Highly

significant positive correlation and substantial positive correlation

accounted for 44.6% and 24.4% of the total. This result indicated

that with an increase in DLE, its DLSTNT gradually increased. DSSR
and DLSTNT were inversely associated, as were DH and DLSTNT ,

and their regions accounted for 82% and 75%, respectively

(Figures 6E, F). Thus, as DSSR and DH increased, the DLSTNT  

decreased steadily. From May to October, irrigated crops had a
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higher average latent heat flux and a lower average cumulative

heating potential term throughout the day than rainfed crops.

Finally, irrigated crops provided nighttime warmth. This result

showed that the warming effect of latent heat flux was greater

than the cooling effect of daytime-accumulated heating potential

term. Therefore, the asymmetry of daytime and nighttime LST

variation was caused mainly by the different controlling factors of

land surface energy.

3.3.2 Spatial effect of biophysical changes on
diurnal LST change

The physical energy of surface components and surrounding

ground types underwent lateral exchange. Changes in latent heat

flux, solar shortwave radiant energy, and heating potential term

factor and their interactions on spatial scales directly determined

the spatial distribution patterns of daytime LST changes. As shown

in Table 5, the single-factor DLE and DSSR had the strongest

explanatory power for the spatial distribution of DLSTDT in

September (q=0.57, p<0.01) and October (q=0.43, p<0.01),

respectively, whereas DH had significant explanatory power in all

of May–October; the mean of the q-value was 0.45.

The latent heat flux, solar shortwave radiant energy, and heating

potential term were superimposed, and their interaction also

determined DLSTDT . The effect of interaction factors was

significantly greater than the single factor effect (Table 5,

Figure 7A), and their q-values were all greater than 0.5. Overall,

DLE∩DH had a more significant effect on DLSTDT than DLE∩DSSR,
whereas DSSR∩DH had the slightest impact. The trends of the

monthly variation of the explanatory power of interaction factors

on DLSTDT were consistent, and all of them peaked in August

(q=0.92, 0.85, and 0.84). Among these factors, DLE∩DSSR had non-

linear enhancement throughout the growing season, whereas both

DLE∩DH and DSSR∩DH had two-factor and non-linear

enhancements over the growing season (Figure 7B).

Corresponding to the time scale, at the spatial scale, changes in

the land surface energy factor affected the DLSTNT to a lesser extent

than the DLSTDT , due to the cumulative transfer in time weakened

the effects of land surface energy factor. The explanatory power of

the single components DLE, DSSR, and DH for the nighttime LST

rise was best in August (q = 0.39, 0.3, and 0.56) and poorest in

September, all with a q-value of 0.1. (Table 6). The DH at the surface

was also the primary determining element for nighttime irrigated

crop warming.

The explanatory power of the interaction factor on the DLSTNT

was significantly greater than the single-factor effect (Table 6,

Figure 8A). Consistent with the influence mechanism of the DLS
TDT , DLE∩DH had a greater degree of action on DLSTNT than DLE
∩ DSSR. The explanatory power of the interaction factors was the

strongest in August (q=0.71, 0.82, and 0.80) and the weakest in June
TABLE 3 The monthly average of DLSTDT and DLSTNT (±SD°C).

May June July August September October

DLSTDT −3.7±0.3 −3.4±0.3 −1.8±0.1 −0.9±0.3 −1.2±0.2 −1.5±0.1

DLSTNT 2.1±0.3 1.9±0.2 0.9±0.1 0.1±0.3 −0.9±0.2 −0.6±0.1
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FIGURE 5

The land surface radiation energy differences of spatial patterns, latitudinal distributions, and frequency histograms of irrigated crops and the

adjacent rainfed crops during the growing season of 2015–2020. (A, B) The spatial distribution map and the histogram of DLE. (C, D) The spatial

distribution map and the histogram of DSSR. (E, F) The spatial distribution map and the histogram of D�H. Grids with crosses indicate that the
differences are significant at 95% by t-test, grey shadows represent standard deviation.
TABLE 4 The monthly average of DLE, DSSR and DH (±SD W m−2).

May June July August September October

DLE 5.2 ±0.9 6.8 ±1.0 12.7 ±0.9 3.2 ±1.1 −4.7 ±0.9 0.2 ±0.9

DSSR 11.1 ±2.7 11.4 ±4.2 −1 ±2.4 −2.6 ±4.3 −3.5 ±3.0 −1.4 ±2.3

DH 5.9 ±2.8 4.6 ±3.7 −13.7 ±2.9 −5.8 ±2.3 1.2 ±3.2 −1.6 ±2.6
F
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FIGURE 6

Spatial distribution of time scale correlation and their frequency histograms between diurnal LST change and biophysical parameters change during
growing seasons. (A–C) Correlation between DLSTDT and DLE, DSSR, DH. (D–F) Correlation between DLSTNT and DLE, DSSR, DH.
TABLE 5 The q-value of the single effects for different driving mechanism on DLSTDT, *representing p<0.05, **representing p<0.01.

May June July August September October

DLEvs. DLSTDT 0.18 0.10 0.48** 0.24 0.57** 0.10

DSSRvs. DLSTDT 0.25* 0.17 0.1 0.38* 0.10 0.43*

DHvs. DLSTDT 0.29* 0.22* 0.47** 0.41* 0.81** 0.51**
F
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FIGURE 7

The spatial correlation between DLE (DSSR and DH) and DLSTDT from May to October. (A) Interaction detection results (q-value). (B) Interaction
detector classifications. *representing p<0.05, **representing p<0.01.
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(q<0.5). The interaction effects of DLE∩DH and DSSR∩DH were

non-linear enhancements, except for August (two-factor

enhancement), but DLE∩DSSR was all non-linear enhancements

throughout the growing season (Figure 8B).
4 Discussion

4.1 Analysis of the time variation of LST
and biophysical parameters

The effect of the expansion of irrigated crops on land surface

temperature in cold regions China has attracted widespread

attention. It is generally believed that during the growing season,

the change range of LST is between 1.3°C and 2.0°C during daytime

and between 0.8°C and 1.1°C during nighttime (Liu et al., 2018; Liu

et al., 2019a; Yu and Liu, 2019; Liu et al., 2022). Previous researches

have explored the state of surface temperature variation on a

seasonal or interannual scale. This work, we gathered more

detailed dynamic information through a fine time scale in 8 day

(Figures 9A, B). In addition, we averaged the time series

information over nearly 5 years to prevent extreme climate

disturbances, such as extreme heat, heat waves, and droughts.

Previous studies analyzing the response mechanisms of land

surface temperature changes have divided the growing season

into different stages (e.g., early growing season, late-growing

season) on a monthly scale, and thus, the details of LST time

series changes were weakened. Because of the high sensitivity of

land surface temperature, the inconsistency of surrounding features

(urban, farmland) and climatic conditions (wind speed, wind

direction) significantly affected the regional scale LST (Li et al.,

2013; Ma et al., 2022). Therefore, when exploring the influence

mechanism of LST changes in different process frameworks as well

as different research areas, the growing season should be accurately
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divided according to the crop farming time in the study area. To

effectively capture the response mechanism’s temporal dynamic

characteristics (Figures 9C–F).
4.2 Analysis of the spatial variation of LST
and biophysical parameters

We found significant spatial heterogeneity in the diurnal LST

differences from May to October. Among these distinctions was the

irrigation time for paddy fields in early May, when the water

content of the subsurface was much higher than that of non-

irrigated crops (Figures 10A, 11B). During the day, irrigation

crops had a high evapotranspiration capacity, but at night, the

specific heat capacity of water was greater than that of bare soil,

which played a role in heat preservation (Jin et al., 2016). The paddy

fields were tillered in mid-June, when the surrounding crops were

cultivated, and the difference in surface water-heat energy between

low vegetation and bare soil was large (Figures 10B, 11B), which

eventually led to a significant variation in LST between the irrigated

and non-irrigated crops (Dong et al., 2014). July–August was the

booting period of irrigated crops, when the land surfaces of irrigated

and non-irrigated crops were covered with a large amount of

vegetation at the same time. The land surface evapotranspiration

capacity, water consumption-renewal capacity, and solar shortwave

radiation absorption capacity of irrigated crops were comparable to

non-irrigated crops (Figures 10C, D, 11C, D) (Gorguner and

Kavvas, 2020; Jiang et al., 2021). September–October was the crop

harvesting period, when bare soil was the major land surface cover

type and the soil moisture content of irrigated and non-irrigated

crops was similar (Cierniewski and Ceglarek, 2018; Rojas et al.,

2020), and eventually, the difference in harvesting time-points led to

heterogeneity in their diurnal LST differences on a spatial scale

(Figures 10E, F, 11E, F). Moreover, the cold regions of China had a
TABLE 6 The q-value of the single effects for different driving mechanism on DLSTNT. *representing p<0.05, **representing p<0.01.

May June July August September October

DLEvs DLSTNT 0.27 0.15 0.28 0.39* 0.1 0.23

DSSRvs DLSTNT 0.16 0.1 0.1 0.3 0.10 0.12

DHvs DLSTNT 0.29 0.12 0.18 0.65** 0.1 0.1
A B

FIGURE 8

The spatial correlation between DLE (DSSR and DH) and DLSTNT from May to October. (A) Interaction detection results (q-value). (B) Interaction
detector classifications. *representing p<0.05, **representing p<0.01.
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vast north–south span, and the distribution of solar shortwave

radiation varied substantially across latitudes, resulting in a climate

with significant latitudinal zonality. As a result, the study area is

spatially split based on crop harvest time points and climate

variances to investigate the interpretation of surface water-heat

energy balance to surface temperature changes in different regions

and at different harvesting time points.
4.3 Exploring the effect mechanism of
diurnal LST change

Numerous studies have found that irrigation crop expansion

influence the spatial–temporal distribution of regional and even

global climate primarily through biogeochemical processes and

biophysical parameters. Among them, biophysical parameters play

a larger role at regional scales than biogeochemical processes, such as

the high latitudes of the Northern Hemisphere (Brovkin et al., 2006;
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Alkama and Cescatti, 2016). Many studies have investigated the

effects of land use/cover changes (wetland to cropland or dryland

to artificial wetland) on LST in the high-latitude regions, and most of

them have explored the main influencing mechanisms of daytime on

irrigated farmland changes from the perspectives of non-radiative

mechanisms (evapotranspiration) and radiative mechanisms (albedo)

(Liu et al., 2018; Liu et al., 2019a; Yu and Liu, 2019). In contrast, our

study focuses on analyzing how the heating potential term responds

to diurnal LST variations and finds that the LST variations are mainly

due to the relative magnitudes of the surface energy income term

(solar incident shortwave radiation), and the surface energy

expenditure term (latent heat flux). Among them, irrigated crops

ultimately lead to a decrease in the heating potential term during the

growing season due to more latent heat flux exported from the

surface and less solar shortwave radiation absorbed, which is

consistent with the findings of the existing studies that there is a

cooling effect on irrigated crops (Zhu et al., 2011; Yang et al., 2020;

Zhang et al., 2022).
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FIGURE 9

Temporal variation of land surface parameters of irrigated crops and the adjacent rainfed crops, and their differences from 2015 to 2020
(DOY=121–297). (A) Daytime LST, (B) nighttime LST, (C) diurnal LST, (D) latent heat flux, (E) solar shortwave radiation, (F) heating potential term.
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FIGURE 10

Monthly spatial variation of mean daytime land surface temperature from 2015 to 2020. (A) Daytime LST in May, (B) daytime LST in June, (C) daytime
LST in July, (D) daytime LST in August, (E) daytime LST in September, (F) daytime LST in October.
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FIGURE 11

Monthly spatial variation of mean daytime land surface temperature from 2015 to 2020. (A) Nighttime LST in May, (B) nighttime LST in June,
(C) nighttime LST in July, (D) nighttime LST in August, (E) nighttime LST in September, (F) nighttime LST in October.
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As the influencing factors of nighttime LST were complex, the

results of current studies on the influencing mechanism of

nighttime LST change have not been fully proved (Yuan et al.,

2022). Therefore, it remains challenging to explore the main

influencing mechanism of nighttime LST, which is an issue for

both afforestation and deforestation. (Peng et al., 2014; Li et al.,

2016; Shen et al., 2019; Yuan et al., 2022). Existing studies have

found that land use/cover changes in northeastern China enhance

atmospheric water vapor mainly through evapotranspiration, which

enhances downward atmospheric longwave radiation and

strengthens the nighttime greenhouse warming effect through

measured data (Li et al., 2017). We focused on the effect of the

interaction between nighttime atmospheric inverse radiation as well

as daytime thermal inertia on nighttime LST changes. However, it

has also been suggested that the magnitude of the specific heat

capacity of surface components is also a major mechanism

influencing the nighttime LST, especially between regions with

large differences in surface water content (Cao et al., 2019; Shen

et al., 2022). Therefore, to accurately evaluate the main controlling

factors of nighttime LST warming, we should comprehensively

analyze the potential impact mechanism of warming from the

multifactor perspective.
4.4 Uncertainties and future work

In this work, we assumed that irrigated crop expansion

occurred in the region during 2015–2020. We emphasized the

biophysical effects of “potential” changes in irrigated crops

(paired comparison with surrounding non-irrigated crops) on

diurnal LST change to accurately obtain more valid window

samples and remove the climate background differences caused

by long time series and large spans. Another concept that

corresponds to “potential” change, namely the application of

“actual” change, was reflected in a typical land use and cover

changes (afforestation or deforestation.) study. They found that

the effects of “potential” and “actual” changes in deforestation

(afforestation) on diurnal LST were similar in most regions. So

whether the impacts of potential and actual changes in irrigated

crops on diurnal LST are consistent. We also wondered how the

biophysical mechanisms affected the diurnal LST in the actual

changes of irrigated crops. This study showed that the expansion

of irrigated crops produced a cooling effect during the daytime and

whether its effect could offset global warming caused by long-term

human activities. In addition, the cooling effect of irrigated crops

with different planting patterns was different, which raised the

question of whether or not the cooling effect of high-density

irrigated crops lasted longer than low-density. These issues

require further exploration.

Because the input parameters of the observed MODIS LST

products were not refined between irrigated and non-irrigated

crops, they did not consider the species specificity between

different crops. As a result, the differences in LST between crops
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were underestimated. Furthermore, the current thermal infrared

remote-sensing satellites are characterized by mutually exclusive

spatial–temporal resolutions, and it is difficult for a single remote-

sensing sensor to obtain LST data with high spatial–temporal

resolutions. Following that, we used a multisource data fusion

approach to obtain an all-weather, high-spatial-resolution LST

dataset to meet the needs for fine monitoring of LST.
5 Conclusions

The expansion of irrigated crops in the Northeast China

significantly altered regional climate, as revealed by our synergetic

investigation based on multi-source remote sensing satellite data

and the pairwise comparison method. We found an asymmetric

variation in diurnal LST, with daytime LST varying more than

nighttime LST. The daytime cooling and nighttime warming effects

were mainly due to the fact that latent heat fluxes released from

irrigated crops is greater than the solar shortwave radiation

absorbed, resulting in less heating potential term. The variation in

the average land surface parameters had spatial heterogeneity

during the growing season. The diurnal LST variation was

affected by different energy factors, and its response to land

surface energy was accompanied by a lag effect. DLSTDT followed

a decreasing trend as DLE increased, but it followed an increasing

trend as DSSR and DH increased. This result indicated that the

decrease in LSTDT was mainly due to the cooling effect of thermal

energy of output and input of irrigated crops to offset the warming

effect. DLSTNT showed an increasing trend with increasing DLE
and a decreasing trend with increasing DSSR and DH. This result

demonstrated that the increase in the LSTNT was due to the fact that

the latent heat flux of irrigated crops and the accumulated daytime

heating potential term had a greater warming effect than the cooling

effect at night from May to October. The degree of influence of the

interaction factor on the difference of diurnal LST was significantly

greater than the single factor effect. Our study provided a new

perspective for comprehending how human activities have an

impact on regional, and even global climate change by revealing

the spatiotemporal pattern of the biophysical effects of irrigated

crop expansion.
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