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Background: The ability to maintain attention is crucial for achieving success

in various aspects of life, including academic pursuits, career advancement,

and social interactions. Attention deficit disorder (ADD) is a common symptom

associated with autism spectrum disorder (ASD), which can pose challenges for

individuals a�ected by it, impacting their social interactions and learning abilities.

To address this issue, virtual reality (VR) has emerged as a promising tool for

attention training with the ability to create personalized virtual worlds, providing a

conducive platform for attention-focused interventions. Furthermore, leveraging

physiological data can be instrumental in the development and enhancement of

attention-training techniques for individuals.

Methods: In our preliminary study, a functional prototype for attention therapy

systems was developed. In the current phase, the objective is to create a

framework called VR-PDA (Virtual Reality Physiological Data Analysis) that utilizes

physiological data for tracking and improving attention in individuals. Four distinct

training strategies such as noise, score, object opacity, and red vignette are

implemented in this framework. The primary goal is to leverage virtual reality

technology and physiological data analysis to enhance attentional capabilities.

Results: Our data analysis results revealed that reinforcement training strategies

are crucial for improving attention in individuals with ASD, while they are

not significant for non-autistic individuals. Among all the di�erent strategies

employed, the noise strategy demonstrates superior e�cacy in training attention

among individuals with ASD. On the other hand, for Non-ASD individuals, no

specific training proves to be e�ective in enhancing attention. The total gazing

time feature exhibited benefits for participants with and without ASD.

Discussion: The results consistently demonstrated favorable outcomes for both

groups, indicating an enhanced level of attentiveness. These findings provide

valuable insights into the e�ectiveness of di�erent strategies for attention training

and emphasize the potential of virtual reality (VR) and physiological data in

attention training programs for individuals with ASD. The results of this study open

up new avenues for further research and inspire future developments.
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1. Introduction

Autism spectrum disorder (ASD), a group of

neurodevelopmental conditions, is defined by difficulties in

social interaction and communication (Hodges et al., 2020).

Although attention issues are frequently observed in ASD patients,

they are not considered to be one of the primary diagnostic

criteria for the condition. Notably, tactile activities like finger

painting, arts and crafts, etc. (Hatch-Rasmussen, 2022) make

people with ASD more susceptible to visual distractions (Poole

et al., 2018). These distractions may impair their ability to

concentrate and engage in such tasks, which may decrease their

engagement and overall experience. After extensive research, it is

revealed that a substantial number of studies have concentrated

on attention improvement in individuals with attention deficit

hyperactivity disorder (ADHD) and traumatic brain Injury

(TBI). Figure 1 illustrates the distribution of studies that have

concentrated on enhancing attention across different disorders,

represented as a percentage. However, the pie chart also shows

that attention improvement in individuals with ASD requires

further investigation and development. While there are certain

medications like selective serotonin reuptake inhibitors (SSRIs)

and treatments like behavioral management therapy, cognitive

behavior therapy, etc. are available for ASD. Their effectiveness

varies from person to person since people with ASD possess

distinctive strengths and face unique challenges (CDC, 2022).

It is crucial to recognize that these approaches may not provide

benefits to all autistic people and may even have negative effects. In

order to effectively handle the various difficulties caused by ASD,

a tailored and thorough approach has to be considered by taking

behavioral treatments which focus on shaping behavior using

positive reinforcement, therapeutic supports that aim to improve

communication skills, and educational initiatives which provide

specialized instructions. Thus, opening the door to emerging

technologies like virtual reality (VR) which has the potential to

help autistic people with their attention disabilities.

Through the use of visual and auditory stimuli, VR

environments can be designed to capture and maintain the

attention of individuals with ASD (Tarng et al., 2022), promoting

engagement and facilitating learning. Moreover, it is worth noting

that physiological data, such as heart rate (HR), electrodermal

activity (EDA) (Thomas et al., 2011), and eye data (Arslanyilmaz

and Sullins, 2021) demonstrate a significant connection with

attention processes. These physiological parameters serve

as measurable indicators of a person’s level of arousal and

engagement. By incorporating physiological monitoring

techniques into VR interventions for individuals with ASD,

valuable insights will be gained in the area of attention.

Based on our understanding, previous studies primarily

focused on examining the effectiveness of VR training in behavior

and cognitive function improvement (Shema-Shiratzky et al.,

2018). However, there is a limited amount of research that

explored the application of VR-based attention training coupled

with physiological data specifically for individuals with Autism.

The objective of the research is to establish and evaluate a VR-

PDA (Virtual Reality Physiological Data Analysis) framework that

intends to improve attentional skills in individuals with ASD. This

framework is developed based on the preliminary phase of the

study involved developing a methodology (Zhang et al., 2020) and

FIGURE 1

The percentage of studies that focused on enhancing attention in

various disorders.

creating a functional prototype. Additionally, an adaptive virtual

environments therapy system (AVET) was already developed

(Li et al., 2023), leveraging eye-gazing methodology as part of

the intervention.

In this study, three key interventions are implemented

to examine their effects on attentional states in individuals

with ASD and NONASD. (1) we analyzed and compared the

physiological data, to identify the patterns or correlations that

indicate an individual’s increased or decreased attention, (2) we

further investigated whether there may be a connection between

physiological data and attentional states in individuals with ASD

and NONASD, (3) we examined whether the physiological data

gathered during attention training utilizing VR simulations can be

the potential biomarkers for assessing changes in attention levels.

The findings from the study reveal that the implementation of

the noise strategy is particularly effective in enhancing attention

among individuals with ASD. Conversely, for individuals without

ASD (NONASD), the absence of specific training appears to yield

more beneficial outcomes. These results hold significant potential

in utilizing physiological markers as indicators to assess attentional

improvements or deficits not only in individuals with ASD but also

in other populations. Such insights contribute to a comprehensive

understanding of attention dynamics within these distinct groups,

aiding in the advancement of knowledge in this field.

This paper provides a clear understanding of the materials and

methods in Section 2. The experimental results obtained from the

study are presented and analyzed in Section 3. The discussion of the

research is summarized in Section 4.

2. Materials and methods

2.1. Participants

The study involved a total of 25 participants, ranging in age

from 17 to 24 years. The participants were divided into two

groups: the ASD group, consisting of students from Cumberland
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FIGURE 2

Participants recruited for the experiment.

University, and the NONASD group, consisting of students

from Kennesaw University. To recruit ASD students, assistance

was sought from Cumberland professors, while NONASD

students were recruited through daily newsletters and pinboards.

Participants received compensation in the form of coupons for their

involvement in the study. Prior to their inclusion, all participants

provided written informed consent, and the study obtained

approval from both the University of Kennesaw Committee and the

Cumberland Committee. Figure 2 visually presents the recruited

participants, providing a clear overview of the distribution.

Each group comprised 25 participants, further divided into five

subgroups. Each subgroup within the ASD and NONASD groups

was assigned a specific training strategy, while one subgroup in

each group served as the control group without any training.

The collected data from all recruited students in both groups,

including heart rate, electrodermal activity (EDA), and eye data,

were analyzed. However, due to unreliable eye data obtained from

ASD children, only 16 participants from the ASD group were

considered for eye data analysis.

2.2. Equipment

The complete set-up includes an Alienware desktop, HTC

VIVE PRO (Wolfartsberger, 2019) with a head-mounted device

(HMD) that represents realistic visual images (Iwamoto et al., 1994)

with eye tracking capability accurate to 0.5◦–1.1◦ and a trackable

field of view for 110◦, steam VR software, and an E4 Empatica

wristband (McCarthy et al., 2016) having sampling rate as 64 Hz

(64 times per second) for heart rate and 1 Hz (one data point

per second) for EDA. The participant will be seated comfortably

in a chair while wearing the VR headset that is connected to an

Alienware workstation for the purpose of the experiment. The

HMD included with VIVE is useful for capturing behavioral eye

data (Lohr et al., 2019), such as information on the pupil and the

direction of sight, etc. The sensors of the wristband, which will be

on the participant’s wrist area, capture and record the heart rate

and EDA in real time. Now that the room is set up and Steam VR

is running, we’ll enable SRAnipal (Adhanom et al., 2020) before

launching the VR classroom. The data will be gathered after the

experiment is completed and analyzed later. Figure 3 gives a clear

picture of the whole experimental setup.

2.3. Virtual-reality classroom design

With VR, it is possible to engage and immerse oneself in a

computer-created environment that aims to be realistic and give

the user a sense of presence (Rohani and Puthusserypady, 2015).

Our VR classroom is set up to look like an actual classroom,

complete with student desks, a map, a clock, a teacher’s desk,

a virtual teacher, a chalkboard, a sizable window overlooking a

playground, and trees visible from the windows. The Unity Game

Engine 2021.3.2f1 software is used to produce VR animations

(Hellum et al., 2023). The classes delivered in VR consist primarily

of TEDx talks, focusing on personal life incidents. These talks

have a duration of 15 min each. There are three sessions in

the classroom: Session 1, Session 2, and Session 3. The first one

serves as a baseline session, the second session for reinforcement,

and the last one serves as a performance session. In session 2

of the reinforcement training, we used four distinct strategies,

including score, red vignette, noise, and object opacity, as positive

reinforcement, negative reinforcement, positive punishment, and

negative punishment, respectively. To ensure that each participant

is at ease throughout the study, themaximum audio volume and the

red vignette’s opacity are adjusted. The HMD and wristband will

begin collecting the participant’s real-time eye behavior and heart

rate data, and electrodermal activity respectively as soon as the VR

class begins and they are listening to the lecture.

2.4. Strategies

As previously discussed, the training session incorporates four

distinct strategies: score, red vignette, noise, and object opacity,

which are implemented within the VR user interface. The VR user

interface displays these strategies as audio and visual cues whenever

the participant is not engaged in active listening during the class.

• Scoring: The scoring strategy serves as a positive

reinforcement mechanism, whereby the participant’s

score increases when actively listening to the class, remaining

unchanged otherwise.

• Vignette: The red vignette strategy operates as a negative

reinforcement approach, gradually increasing the opacity of

the vignette when the participant is not attentive, providing

a visual indication of their disengagement. Conversely,

when the participant listens attentively, the vignette opacity

gradually decreases.

• Noise: The noise strategy acts as a positive punishment

technique, triggering an increase in auditory noise when

the participant becomes distracted from the class, which

progressively diminishes as they refocus their attention.
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FIGURE 3

The experimental setup.

FIGURE 4

Training the participant to be attentive through red vignette strategy.

• Opacity: The object opacity strategy functions as a negative

punishment mechanism, causing objects of distraction, other

than the teacher, to gradually disappear or reduce in opacity

when the participant fixates their gaze on them.

Figure 4 gives a clear idea of the red vignette strategy and how

it guides the participant to be attentive. Throughout the study,

careful consideration is given to maintain optimal user comfort

while implementing the strategies.

2.5. Procedure

All participants will receive a clear and comprehensive

explanation of the experiment, along with detailed instructions.

Subsequently, participants will complete a pre-questionnaire

containing basic demographic information. The E4 wristband,

equipped with sensors, will be securely attached to each

participant’s hand. Next, participants will engage in the VR

classroom while listening to the instructions. The training session

will last approximately 15 min. Upon completion, participants will

be provided with a post-questionnaire to gather their feedback on

the game and overall experience.

2.6. Data collection

Participants were administered questionnaires at both the

beginning and end of the experiment to gather their responses

and assess their experiences. The pre-questionnaire data for

NONASD participants is presented in Figures 5A, B, as shown

in Figure 5. For ASD participants, the pre-questionnaire data is

visualized in Figures 6A, B, as shown in Figure 6. Similarly, the

post-questionnaire data for NONASD participants is described

in Figures 5C, D, and for ASD participants, it is depicted in

Figures 6C, D. From the pre-questionnaire data of both participant

groups, it is evident that individuals with autism experience more

distractions (20 out of 25 participants get distracted very often)

in the classroom compared to non-autistic students (8 out of 25

participants are easily distracted), highlighting the importance of
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FIGURE 5

Pre and post questionnaire data collected from NONASD

participants. (A) Participants feel distracted in the class. (B)

Participate who used VR before. (C) Participants emotions while

listening to VR classroom. (D) Participants level of understanding the

VR classroom.

FIGURE 6

Pre and post questionnaire data collected from ASD participants. (A)

Participants feel distracted in the class. (B) Participate who used VR

before. (C) Participants emotions while listening to VR classroom.

(D) Participants level of understanding the VR classroom.

attention in autistic participants also autistic children have a higher

level of familiarity with VR (16 participants are familiar with VR

usage), indicating some prior experience with VR usage. From the

post-questionnaire data, When listening to the class, non-autistic

participants reported feeling interested and excited, with only 1

participant feeling bored. However, among ASD participants, 14

felt bored, 9 felt interested, and 5 felt excited. Understanding the

VR classroom was reported as easy for all non-autistic participants,

while 5 out of 25 ASD participants found it difficult. The feedback

is gathered from participants regarding the modifications they

TABLE 1 Modifications suggested by participants for better game

experience.

Domain Area Explanation

Environment More people I would prefer more people in the

classroom to made more realistic.

Glicthing The window part is glitching.

Virtual teacher Change teacher for

every class

I would have the model change

every time there was a new speaker.

Giving some

movements to the

teacher

Making the story person more

interacting and moving instead of

taking statements.

Too much talking Reduce the talking and at least ask

a question.

Make interactable

teacher

Match the lip sink, some

movement during the class.

Costume Costume of the teacher is

unprofessional.

suggested for improving their gaming experience. These changes

were documented in Table 1.

2.7. Data preprocessing

The retrieved data corresponds to a 15-min trial, which we

divided into three sessions, each lasting 5 min. For the analysis,

session 1 and session 3 data for each participant are considered,

applying eye data, heart rate, and skin conductance features. To

facilitate comparison, eye data, heart rate, and skin conductance

data are visualized using a bar plot, where session 1 is shown in

red and session 3 in blue. This analysis was performed for both

ASD and NONASD participants. Later, data cleaning is applied to

the physiological data. During the data cleaning process, various

steps are addressed to ensure data cleanliness. These steps involve

identifying and handling outliers, which are data points that deviate

significantly from the majority of the dataset. Figure 7 explains that

themajority of the skin data points of a participant are concentrated

within the range of 1.2 to 1.9. The presence of outliers, indicated

by values of 4 at the upper end and 0 to 0.5 at the lower end,

suggests the existence of a few data points that significantly deviate

from the majority of the dataset. These outliers fall outside the

range represented by the box plot, signifying their extreme nature

compared to the remaining data points. The removal of outliers is

undertaken with the objective of obtaining a more refined dataset

that better represents the overall distribution of the data. This

process enablesmore precise analysis and interpretation of the data,

leading to more accurate conclusions and insights.

2.8. Extracted features

Following the trial, the physiological data will be obtained from

the Empatica wristband and Head-mounted device application.

The photoplethysmograph is used to extract the heart rate, which

is measured in Hz, while the electrodermal activity is measured in

micro Siemens (µs).
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2.8.1. Eye data features
From the eye data, the average pupil size is derived using

Equation (1), the standard deviation of pupil size is calculated

using Equation (2), the pupil dilation rate is determined using

Equation (3), the pupil asymmetry is computed using Equation (4),

the average eye openness is obtained using Equation (5), and the

standard deviation of eye openness is calculated using Equation

(6) for both the left and right eyes, total gazing time on objects

following the Equation (7). These features are interconnected and

hold significance in attentional states (Pomplun and Sunkara, 2003;

Laeng et al., 2010; Binda et al., 2013) providing valuable insights

into an individual’s attentional focus and cognitive engagement.

Refer to Table 2 for a brief explanation of each feature.

• Average Pupil Size (APS):

APS =

∑

Pupil Sizes

Number of Measurements
(1)

• Standard Deviation of Pupil Size (SDPS):

SDPS =
√

(

1
Number of Measurements−1

)

∑
(

(Pupil Size− APS)2
)

(2)

• Pupil Dilation Rate (PDR):

PDR =
Max Pupil Size−Min Pupil Size

Duration
(3)

• Pupil Asymmetry (PA):

PA =
∣

∣Left Pupil Size− Right Pupil Size
∣

∣ (4)

• Average Eye Openness (AEO):

AEO =

∑

Eye Openness

Number of Measurements
(5)

• Standard Deviation of Eye Openness (SDEO):

SDEO =
√

(

1
Number of Measurements−1

)

∑
(

(Eye Openness− AEO)2
)

(6)

• Total Gazing Time on Objects (TGT):

TGT =

n
∑

i=1

gazing_timei (7)

2.8.2. Time-domain features
From the heart rate data, we derived time-domain features,

namely SDNN (Standard Deviation of NN Intervals) using

Equation (8), RMSSD (Root Mean Square of Successive

Differences) using Equation (9), SDSD (Standard Deviation

FIGURE 7

Outliers in skin data are visualized.

TABLE 2 Summarized explanation of eye data features.

Features Units Description

Average pupil size Pixels Represents the average diameter of

the pupil.

SD of pupil size Pixels Quantifies the variability or spread

of pupil size measurements around

the average.

Pupil dilation rate Millimeters

per second

(mm/s)

Refers to the rate at which the pupil

size changes over time.

Pupil asymmetry Pixels Measures the difference in pupil

size between the left and right eye.

Average eye openness % (percentage) Refers to the average extent of eye

aperture or eyelid position,

typically expressed as a percentage.

SD of eye openness % percentage Quantifies the variability or

fluctuations in eye aperture

measurements around the average.

Total gazing time Seconds Distracting objects associated with

the longest continuous gazing time

on them are recorded.

of Successive Differences) using Equation (10), PNN50 (Percentage

of successive NN intervals that differ by more than 50 ms)

using Equation (11), NN50 (number of successive NN intervals

that differ by more than 50 ms) using Equation (12), SDNNI

(Standard Deviation of Normal-to-Normal Intervals) using

Equation (13), and SDANN (Standard Deviation of Average

NN Intervals) using Equation (14)that provide valuable insights

into the characteristics of the heart rate signal. These features

capture important information about the temporal aspects of

heart rate fluctuations and are widely used in research and

clinical applications. The increase in values of time-domain

features suggests an enhancement in attentional abilities (Hansen

et al., 2003; Forte et al., 2019; Pelaez et al., 2019; Tung, 2019).

By analyzing the time-domain features, we can gain a better

understanding of the overall variability, regularity, and patterns
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TABLE 3 Brief explanation of time-domain features.

Features Units Description

SDNN ms (milliseconds) Measures the total variability of the

NN intervals, which represent the

time intervals between consecutive

R peaks in an electrocardiogram

(ECG) signal.

RMSSD ms (milliseconds) Calculates the square root of the

mean of the squared differences

between successive NN intervals,

representing the beat-to-beat

changes in heart rate.

SDSD ms (milliseconds) Quantifies the variability between

successive NN intervals,

representing the beat-to-beat

changes in heart rate.

PNN50 % (percentage) Quantifies the proportion of

consecutive NN intervals that

differ by more than 50 milliseconds

NN50 % (percentage) Refers to the number of pairs of

subsequent NN intervals that differ

by more than 50 milliseconds.

SDNNI ms (milliseconds) Represents the standard deviation

of the differences between adjacent

NN intervals.

SDANN ms (milliseconds) Represents the standard deviation

of the average NN intervals

calculated over short-term

segments.

of the heart rate signal. Table 3 provides a concise explanation of

each time-domain feature. Below are the mathematical formulas

used in calculating the features where “N” means the total number

of NN intervals and “M” represents the total number of average

NN intervals.

• SDNN (Standard Deviation of NN Intervals):

SDNN =

√

√

√

√

1

N − 1

N
∑

i=1

(NNi − N̄N)2 (8)

• RMSSD (Root Mean Square of Successive Differences):

RMSSD =

√

√

√

√

1

N − 1

N−1
∑

i=1

(NNi+1 − NNi)2 (9)

• SDSD (Standard Deviation of Successive Differences):

SDSD =

√

√

√

√

1

N − 2

N−2
∑

i=1

(NNi+2 − NNi)2 (10)

• PNN50 (Percentage of successive NN intervals that differ by

more than 50 ms):

PNN50 =
NNN50

N
× 100% (11)

TABLE 4 Brief explanation of frequency-domain features.

Features Units Description

PF Hz (Hertz) Refers to the frequency at which

the highest power or amplitude is

observed within a given signal or

spectrum.

LFP Hz (Hertz) Frequency at which the power or

amplitude is highest in the

low-frequency band (typically

around 0.04–0.15 Hz).

HFP Hz (Hertz) Refers to the frequency range

associated with respiratory sinus

arrhythmia, typically centered

around 0.15–0.4 Hz.

• NN50 (Number of successive NN intervals that differ by

more than 50 ms):

NN50 =

N−1
∑

i=1

δNN50i (12)

• SDNNI (Standard Deviation of Normal-to-Normal

Intervals):

SDNNI =

√

√

√

√

1

M − 1

M
∑

i=1

(NNi − N̄N)2 (13)

• SDANN (Standard Deviation of Average NN Intervals):

SDANN =

√

√

√

√

1

M − 1

M
∑

i=1

(N̄Ni −
¯̄NN)2 (14)

2.8.3. Frequency-domain features
Frequency-domain features are also examined from the heart

rate data which also offer valuable insights into the spectral

characteristics of the heart rate signal. The derived features

include Peak Frequency (PF) calculated using Equation (15),

Low-Frequency Power (LFP) obtained using Equation (16), and

High-Frequency Power (HFP) calculated using Equation (17).

These features allow us to analyze the distribution of power

across different frequency bands, providing information about the

autonomic control of the heart rate. An increase in the value of

these features results in Li and Sullivan (2016) and Lansbergen

et al. (2011) attention increase. Table 4 provides a succinct and

informative overview of each frequency-domain feature.

• Peak Frequency (PF):

PF = argmax(f ) (15)

• Low-Frequency Power (LFP):

LFP =

∫ fmid

flow

P(f ) df (16)

• High-Frequency Power (HFP):

HFP =

∫ fhigh

fmid

P(f ) df (17)
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TABLE 5 Brief explanation of EDA features.

Features Units Description

SCL µs (microsiemens) Psychophysiological measure that

indicates the electrical conductance

of the skin.

SCR µs (microsiemens) Refers to the transient changes in

skin conductance that occur in

response to stimuli or event.

RHRT BPM (beats per

minute)

Examines the temporal

relationship between respiration

and heart rate.

2.8.4. Electrodermal activity features
EDA features capture physiological changes in the electrical

conductance of the skin, primarily influenced by the activity of

sweat glands. These features provide insights into the autonomic

nervous system’s response to emotional and cognitive stimuli.

Common EDA features encompass various measurements. The

skin conductance level (SCL) is quantified using Equation (18),

providing information about the baseline electrical conductance

of the skin. The skin conductance response (SCR) is determined

using Equation (19), capturing transient changes in conductance

in response to stimuli. Additionally, the Rise Time of the Skin

Conductance Response (RHRT) is assessed through Equation (20),

offering insights into the time it takes for the skin conductance

response to increase from the baseline level after the onset of a

stimulus. An increase in these values is associated with an increase

in attention (Frith, 1983; Barry et al., 2009). Table 5 presents a

concise description of each EDA feature.

• Skin Conductance Level (SCL):

SCL =

∑

G

N
(18)

• Skin Conductance Response (SCR):

SCR = max(G)−min(G) (19)

• Recovery Half-Recovery Time (RHRT):

RHRT = thalf − trecovery (20)

3. Results

In this study, we analyzed the features derived from the data

collected for all participants during session 1 and session 3. These

features were calculated to assess the changes in participants’

attention before and after the reinforcement training provided in

the second session. To visually represent the impact of the training

on attention, we utilized bar graphs. These graphs provide a clear

indication of the extent to which participants’ attention increased

or decreased following the reinforcement training.

3.1. Analyzing heart rate and electrodermal
activity data

A total of 13 features were derived from the heart and EDA

data. These features were analyzed for each participant, considering

the data from session 1 and session 3. The purpose of this analysis

was to assess the changes in the feature values before and after

the reinforcement session. Figure 8 illustrates the calculation of the

PNN50 feature for all ASD and NONASD participants, with the

x-axis representing the 25 participants and the y-axis representing

the PNN50 feature values. The first session values are represented

in red, while the third session values are shown in blue. The

allocation of groups to specific strategies is clearly visualized in

Figure 8, indicating which group of people participated in each

training strategy. The first five participants were presented to the

noise strategy, the next five participants to object opacity, the

subsequent five participants to the scoring strategy, the following

five participants to the red vignette strategy, and the last five

participants were part of the control group with no specific training.

Similarly, the attention changes in all other features were also

compared for both ASD and NONASD groups, comprising a total

of thirteen features.

The accompanying Tables 6, 7 provide a clear overview of the

features that demonstrated increased attention for NONASD and

ASD participants respectively. The representation of a strategy

on a particular feature is positive for increased attention, while

a negative indicates decreased attention. For all the participants

in each strategy, if more than half of them hold session 3

values greater than session 1, turn up to be positive in attention

improvement. Considering the PNN50 feature from Table 6, there

is no improvement in the session 3 values for more than half of the

participants in the noise strategy. Hence it is considered negative.

Similarly for the object opacity strategy. More than half of the

participants showed better values in session 3 for the score (four

participants), red vignette (three participants), and No training

(three participants). Hence it is considered positive. The attention

improvement for all other features in different strategies was listed

in a similar manner.

The analysis of all features in each strategy is represented

as a pie chart, which indicates the number of participants who

showed positive and negative results in attention improvement. If

all five participants exhibited a positive effect, the representation is

blue. If four participants showed a positive effect, it is represented

as orange. For three participants, the representation is gray, and

yellow denotes a negative outcome. Figures 9, 10 represent the

effect of each strategy in a pie chart. For example, in Figure 9A,

all five participants in the noise strategy exhibited a positive

effect for 6 features (SDNN, RMSSD, SDSD, SDNNI, SDANN,

SCR). Furthermore, four participants showed a positive effect for

an additional feature (RHRT). However, no positive effect was

observed for the remaining 6 features (PNN50, NN50, PF, LFP,

HFP, SCL). The results clearly indicate that the noise strategy yields

the most notable enhancement in attention for individuals with

ASD. It is closely followed by the scoring strategy, which also

exhibits positive effects. Conversely, for individuals without ASD,

the no-training strategy emerges as the most effective approach for

improving attention.
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FIGURE 8

PNN50 feature comparison for ASD and NONASD participants between baseline session and performance session to evaluate the reinforcement

e�ect in the second session. (A) PNN50 feature comparison for ASD participants. (B) PNN50 feature comparison for NONASD participants.

TABLE 6 Strategies which a�ected positively and negatively for respective feature for ASD participants.

Features Noise Score Red vignette Object opacity No training

SDNN Positive (5/5) Negative Negative Negative Negative

RMSSD Positive (5/5) Negative Positive (4/5) Negative Negative

SDSD Positive (5/5) Negative Positive (4/5) Negative Negative

PNN50 Negative Positive (4/5) Positive (3/5) Negative Positive (3/5)

NN50 Negative Positive (4/5) Negative Positive (5/5) Negative

SDNNI Positive (5/5) Negative Positive (4/5) Negative Negative

SDANN Positive (5/5) Negative Positive (4/5) Negative Negative

PF Negative Positive (3/5) Positive (3/5) Positive (4/5) Negative

LFP Negative Positive (3/5) Negative Positive (5/5) Positive (3/5)

HFP Negative Positive (3/5) Negative Positive (5/5) Positive (3/5)

SCL Negative Positive (5/5) Positive (4/5) Positive (4/5) Negative

SCR Positive (5/5) Positive (4/5) positive (4/5) Positive (4/5) Negative

RHRT Positive (4/5) Positive (5/5) Negative Negative Positive (4/5)

3.2. Analyzing eye data

In Section 2.1, it is stated that a total of 16 participants

from the ASD group and 25 participants from the NONASD

group are included for eye data analysis. To effectively analyze

attention patterns in the study, we created bar graphs to visualize

all 13 eye data features, including data from both the left and

right eyes. Figure 11 displays the bar graph of the “left average

pupil size” feature for ASD and NONASD participants. On the

x-axis, we have the participants, and the y-axis represents the

feature values. In Figure 11A, the first five bars correspond to

participants who underwent the noise strategy. The next three bars

represent participants who experienced the object opacity strategy,

followed by four bars for the scoring strategy participants. Three

bars are dedicated to the red vignette strategy participants, and

finally, one bar represents the no-training group. In Figure 11B,

each set of five bars represents noise, object opacity, score, red

vignette, and no training, respectively. Additionally, the red bars

represent data recorded during session 1, while the blue bars

represent session 3. This provides a clear and understandable
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TABLE 7 Strategies which a�ected positively and negatively for the respective feature for NONASD participants.

Features Noise Score Red vignette Object opacity No training

SDNN Positive (5/5) Negative Negative Negative Negative

RMSSD Negative Negative Negative Negative Positive (4/5)

SDSD Negative Negative Negative Negative Positive (4/5)

PNN50 Negative Negative Positive (3/5) Negative Negative

NN50 Positive (4/5) Negative Negative Negative Negative

SDNNI Negative Negative Negative Negative Positive (3/5)

SDAN Negative Negative Negative Negative Positive (4/5)

PF Negative Positive (3/5) Positive (3/5) Negative Positive (5/5)

LFP Negative Negative Positive (3/5) Negative Positive (5/5)

HFP Negative Negative Positive (3/5) Negative Positive (5/5)

SCL Negative Positive (4/5) Negative Negative Positive (4/5)

SCR Negative Positive (5/5) Negative Negative Positive (4/5)

RHRT Negative Negative Negative Negative Negative

FIGURE 9

ASD Participants showed improved attention and reduced attention in each strategy analyzed from heart rate and skin data. (A) Noise, (B) Object

opacity, (C) Score, (D) Red vignette, and (E) No training.

representation of attention changes across all participants in

each group.

The values from the bar graphs are analyzed and compared. The

analyzed data is presented in Table 8 for NONASD participants and

Table 9 for ASD participants. It is to be noted that, even though

the number of participants varies for each strategy in Table 9, the

method used in heart rate and EDA data can be applied here

as well, considering more than half of the participants showing

improved attention as positive. To enhance the understanding and

facilitate easy interpretation of these results, we have represented

them visually using pie charts. Figures 12, 13 illustrate the visual

representations for ASD and NONASD participants, respectively.

The pie charts display the number of participants exhibiting

positive results using blue, orange, and gray colors, while the
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FIGURE 10

NONASD Participants showed improved attention and reduced attention in each strategy analyzed from heart rate and skin data. (A) Noise, (B)

Object opacity, (C) Score, (D) Red vignette, and (E) No training.

FIGURE 11

Left Average Pupil Size feature comparison for ASD and NONASD participants between baseline session and performance session to evaluate the

reinforcement e�ect in the second session. (A) Left Average Pupil Size feature comparison for ASD participants. (B) Left Average Pupil Size feature

comparison for NONASD participants.
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TABLE 8 Strategies which a�ected positively and negatively for respective eye feature for NONASD participants.

Features Noise Score Red vignette Object opacity No training

Left average pupil size Negative Negative Negative Negative Negative

Left SD of pupil size Negative Positive (4/5) Negative Negative Negative

Left pupil dilation rate Negative Negative Positive (3/5) Positive (4/5) Negative

Left pupil asymmetry Negative Negative Positive (3/5) Positive (4/5) Negative

Right average pupil size Negative Negative Negative Positive(3/5) Negative

Right SD of pupil size Positive (4/5) Positive (4/5) Negative Positive (3/5) Negative

Right pupil dilation rate Positive (3/5) Positive (4/5) Negative Negative Positive (3/5)

Right pupil asymmetry Positive (3/5) Positive (4/5) Positive (3/5) Negative Positive (3/5)

Left average eye openness Positive (3/5) Positive (4/5) Negative Positive (3/5) Positive (3/5)

Left SD of Eye openness Negative Negative Positive (4/5) Negative Positive (4/5)

Right average eye openness Negative Positive (3/5) Negative Negative Positive (3/5)

Right SD of eye openness Positive (3/5) Negative Positive (3/5) Negative Negative

Total gazing time Positive (3/5) Positive (3/5) Positive (3/5) Positive (4/5) Positive (3/5)

TABLE 9 Strategies which a�ected positively and negatively for respective eye feature for ASD participants.

Features Noise Score Red vignette Object opacity No training

Left average pupil size Positive (4/5) Negative Negative Negative Negative

Left SD of pupil size Negative Positive (3/3) Positive(4/4) Negative Positive (1/1)

Left pupil dilation rate Positive (3/5) Negative Negative Negative Negative

Left pupil asymmetry Positive (4/5) Negative Negative Negative Negative

Right average pupil size Positive (3/5) Negative Negative Negative Negative

Right SD of pupil size Positive (4/5) Positive (2/3) Positive (4/4) Negative Negative

Right pupil dilation rate Negative Positive (2/3) Positive (3/4) Positive (2/3) Positive (1/1)

Right pupil asymmetry Negative Negative Positive (3/4) Positive (2/3) Positive (1/1)

Left average eye openness Positive (4/5) Negative Negative Negative Positive (1/1)

Left SD of eye openness Negative Postive(2/3) Negative Positive(3/3) Negative

Right average eye openness Positive(4/5) Positive (2/3) Negative Positive(2/3) Positive (1/1)

Right SD of eye openness Negative Negative Negative Positve (2/3) Negative

Total gazing time Positive (5/5) Positive (3/3) Positive (3/4) Positive (3/3) Positive (1/1)

participants showing negative effects are represented by the

yellow color.

Upon observing Figure 12, it becomes apparent that the

noise strategy yielded the most favorable outcomes for training

attention in ASD participants. This strategy exhibited positive

effects indicating its effectiveness. The object opacity strategy and

red vignette strategy followed suit, showing some positive results.

However, it is important to note that the attention training results

for ASD participants are not so promising as compared to the

heart and EDA data study. It is hoped that by including five

participants for each strategy, more positive results can be achieved.

A positive observation was made regarding the total gazing time

on object features for participants with ASD and non-ASD. It

was found that this feature consistently yielded positive results

for both groups, indicating an improvement in attention. On the

other hand, Figure 13 depicts the results for NONASD participants,

and unfortunately, there are no instances of increased attention

observed in any strategy. In conclusion, while the noise strategy

demonstrated a positive effect for individuals with ASD, it is

important to note that the inclusion of an irregular number of

participants in the evaluation of other strategies requires further

consideration before finalizing any definitive conclusions. Careful

assessment and analysis of the data will be necessary to ensure

accurate and reliable findings for the remaining strategies. The total

gazing time individuals with and without ASD spent looking at

object features was shown to be beneficial. This characteristic was

discovered to consistently produce favorable outcomes for both

groups, demonstrating an enhancement in attention.
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FIGURE 12

ASD Participants showed improved attention and reduced attention in each strategy analyzed from eye data. (A) Noise, (B) Object opacity, (C) Score,

(D) Red vignette, and (E) No training.

FIGURE 13

NONASD Participants showed improved attention and reduced attention in each strategy analyzed from eye data. (A) Noise, (B) Object opacity, (C)

Score, (D) Red vignette, and (E) No training.

4. Discussion

Attention development falls within the neuro-physiological

domain (Lindsay, 2020). Supporting attention in autistic

individuals is a complex task, but it is not impossible (Khosla,

2017). To enhance attention in ASD there are a few skills and

strategies employed like selecting engaging activities, modeling

tasks, and facilitating smooth transitions. Several activities like

finger painting, animal walking, and mirror play have also shown

promise in promoting attention development (Vishnu Priya, 2020).

Additionally, factors like eye contact and sensory integration

play a significant role in enhancing attention (Karim and

Mohammed, 2015). Although autistic people may benefit from the

aforementioned techniques, they need a lot of family work and
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time investment. The limitations of these traditional approaches

have led to the emergence of new innovative technological tools in

the neuro-physiological research area.

Neurophysiological research has seen remarkable

advancements in the exploration of human cognition and

brain functioning. In conjunction with these advancements, the

combination of non-invasive mobile EEG registration, and signal

processing devices has further enriched the understanding of

human cognitive processes (Pei et al., 2022; Vortmann et al., 2022).

Non-invasive mobile EEG has proven to be a valuable tool in

brain research, offering real-time brain activity, and monitoring

in a relatively inexpensive, portable, and user-friendly manner

(Lau-Zhu et al., 2019). This approach allows researchers to record

brain signals outside the lab, enabling studies in naturalistic

environments and promoting inclusivity in research participation

(Yang et al., 2020). Coupled with sophisticated signal processing

devices, researchers can extract meaningful information from EEG

data, enhancing data quality and facilitating offline analysis (Jebelli

et al., 2018).

Non-invasive mobile EEG is considered better than traditional

EEG due to its relatively inexpensive, portable, and user-friendly

nature offering real-time brain activity monitoring (Lau-Zhu et al.,

2019). These methods have evolved as a preferred approach in

research, prioritizing safety, comfort, ethics, and accessibility for

participants. This shift from traditional invasive techniques to non-

invasive alternatives ensures participant wellbeing while gathering

valuable data. In various fields, including VR research, non-invasive

methods have become instrumental, allowing for the collection

of reliable and meaningful data without physical intrusion (Yang

et al., 2020). By considering the participants’ safety, comfort, and

ethical considerations, these methods have significantly advanced

our understanding of human behavior and physiological responses,

while also fostering inclusivity and broader participation in

research studies. These methods have provided novel insights into

cognitive processes, including attention training, memory, and

learning, thus opening new avenues for brain-computer interface

(BCI) applications.

BCI is utilized for attention training, demonstrating its

efficacy in enhancing human attention and cognitive processes

(deBettencourt et al., 2015; Thibault et al., 2016). It plays a

significant role in the investigation of human attention (Katona,

2014), memory, and, indirectly, the learning process, offering

assistance and forecasting abilities to improve the effectiveness

of human learning (Katona and Kővári, 2018a,b). A study by

Jiang et al. (2011) demonstrated the use of a cost-effective

BCI to translate attention states into game control, offering

promising implications for training individuals affected by ADHD.

Significant effects of music are revealed on children’s attention

by investigating the impact of three types of background music

on attention in regular and ADHD subjects using EEG brain

signals during a Tetris game (Kiran, 2020). To overcome the

limitations of traditional cognitive training fMRI is used and

developed a brain-wave-based neurofeedback BCI system for

attention training (Abiri et al., 2018), although a drawback is

that participants must remain motionless inside the MRI scanner

during brain training sessions. The integration of BCI and eye-

tracking technology can be used to study information processing

and even examine complex cognitive processes (Cipresso et al.,

2011) like programming. Eye tracking reveals cognitive insights

like visual attention, gaze patterns, and mental workload (Katona

et al., 2020; Katona, 2021, 2022). Insightful information can be

acquired from the eye movement parameters. These parameters

allow researchers to identify situations where the utilization of

Language-Integrated-Query (LINQ) query syntax reduces mental

strain (Katona et al., 2020; Katona, 2021). Also, tools for more

developer-friendly algorithm descriptions can be found (Katona,

2022). Furthermore, readability and source code quality can be

measured objectively (Katona, 2021). Though EEG signals are

efficient for analyzing neurological data they are cost-effective

(Patel et al., 2023). In addition, Virtual reality (VR), augmented

reality (AR), and mixed reality (MR) technologies are also valuable

tools to enhance attention.

These technological tools have been shown to enhance creative

thinking, communication, problem-solving ability, and immersive

three-dimensional spatial experiences, fostering novel approaches

to human-computer interaction (Papanastasiou et al., 2018). An

overview (Goharinejad et al., 2022) assessed the studies exploring

the applications of VR, AR, and MR technologies for children

with ADHD, suggesting their promising potential in enhancing

the diagnosis and management of ADHD in this group. A study

by Fridhi et al. (2018) reviewed the applications of VR and AR

in psychiatry, neurophysiology, communication disability, and

neurodevelopmental disorders (Bailey et al., 2021), with a particular

focus on ASD (Erb, 2023) and related studies. In a proposal by

Sarker et al. (2021), an interactive multi-staged game module was

proposed utilizing AR and VR technologies that aim to improve

joint attention in autistic children. Embracing a learning process

and gaining a deeper understanding of individual needs is crucial.

While there is no one-size-fits-all method, emerging technologies

such as VR in combination with physiological data (Tan et al.,

2019; Kim et al., 2021) have shown promising results in enhancing

attention and engagement in autistic children.

Immersive VR applications have shown promising potential

in the development of vision screening approaches. Conducting

functional vision screenings to assess eye coordination is time-

consuming and resource-intensive (Beauchamp et al., 2010).

Nevertheless, the initial utilization of VR to better understand

vision poses challenges for several research teams (Lambooij

et al., 2009; Bennett et al., 2019; Grassini and Laumann, 2021).

However, studies explored that ET-based immersive VR software

can complement current vision screening methods and offer

potential solutions (Wijkmark et al., 2021). According to studies by

Smith et al. (2020), VR-based therapies improved attention and task

performance more than conventional activities. In addition to the

initial VR studies (Lopez et al., 2016), a comparison of traditional

tools for assessing divided attention was also conducted. The virtual

environments lab at the University of Southern California (USC)

has launched a research program (Rizzo et al., 2000) with the aim

of developing VR applications for the investigation, evaluation, and

rehabilitation of cognitive/functional processes. The review came to

the conclusion that VR looks to be a useful tool in this field when

used in conjunction with more conventional tests.

Research has demonstrated the positive impact of VR

technology on attentional development in children with autism.
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Considering emerging evidence, VR experiences have been shown

to be more engaging compared to traditional 2D computer

monitors (Li et al., 2020). The immersive and interactive nature of

VR provides a controlled and engaging environment for children,

facilitating their focus and active participation (Araiza-Alba et al.,

2021). Given the recognized significance of VR in attention

training, numerous studies have been undertaken to explore

its efficacy in enhancing attentional abilities among individuals

with diverse disorders. A study by Cho developed an attention

enhancement system (AES) that possesses the ability to improve the

attention span of children and adolescents with ADHD (Cho et al.,

2002). One drawback is that the approach was primarily created for

persons who are impulsive and inattentive because the recruited

participants were not officially diagnosed with ADHD. Another

study aimed at improving joint attention skills in children with

autism by utilizing an interactive VR system specifically designed

to facilitate practice in gaze sharing and gaze following (Amat et al.,

2021). The findings revealed positive impacts on the targeted skills

with few limitations like a small sample size and no control group.

Although a number of studies have shown substantial interest

in the application of VR driving simulations for attention

training, there is a lack of research focusing specifically on

improving attention in individuals with autism through the

integration of physiological data. In light of this gap, our

laboratory has conducted exploratory research with the goal

of designing and developing a unique attention training

system specifically for Autistic individuals. To improve

training and learning outcomes, this system blends VR with

reinforcement training and includes four different feedback

techniques. Notably, the system uses auditory and visual

cues as rewards and penalties, and VR scenarios are made

to incorporate tracking and dynamic adaption throughout

training sessions.

In this study, we reported the entire statistical analysis

and comparison of physiological data between ASD and

NONASD participants on four strategies namely score, noise,

red vignette, and object opacity which are part of virtual

classroom reinforcement training. From the reports, we state

the findings on how the VR-PDA help ASD children in

improving their attention. This project aims to provide an

innovative and adaptive way to solve attention-related issues

in the ASD population by leveraging the potential of VR and

physiological data.

In summary, this paper provides a comprehensive evaluation

of the VR-PDA framework, examining the relationship between

physiological data and attention in individuals. The study

included 25 participants, both with and without ASD, who

were assigned to different training strategies or a no-training

group. The results obtained from heart rate and electrodermal

activity measurements indicate that reinforcement strategies are

effective in enhancing attention among individuals with ASD.

The most successful strategy for improving attention in ASD

participants was found to be the score. Conversely, the no-

training approach did not yield any noticeable improvement

in attention for ASD participants. Regarding eye data analysis,

the findings do provide evidence of improvements in attention,

although not as strong as the findings from heart rate and EDA

data. Both ASD and NONASD participants did not demonstrate

significant attention enhancement either through the strategies

or the no-training condition. In conclusion, the reinforcement

training strategies employed in this study successfully redirected

the attention of participants with ASD back to the classroom

when they were distracted. Conversely, NONASD participants

exhibited consistent attention levels without the need for

specific strategies.

This study has enormous potential to help people with

autism, especially by enhancing their attention. An innovative

and adaptable method of treating ADD related to ASD is to

employ VR as a tool for attention training. VR has the ability

to alter virtual settings and enables individualized attention-

focused interventions, which can have major effects on a

variety of spheres of life, including success in academics, in

social, and in the workplace. The impact of this research

goes beyond the domain of autism and attention training.

The results obtained from this study can be applied to other

engineering domains, where VR and physiological data analysis

can be instrumental in developing and enhancing training

techniques. The insights from this research can lead to the

creation of attention-training systems tailored to specific tasks and

environments in fields such as aviation (Ziv, 2016), engineering

(Naveh and Erez, 2004), and sports (Memmert, 2007; Memmert

et al., 2009), where sustained attention is crucial for optimal

performance. Moreover, these systems can influence a person’s

self-confidence and self-efficacy. Previous studies have shown

that interventions, such as software development courses for

programming, can positively impact self-efficacy (Kovari and

Katona, 2023). Similarly, by using VR technology in attention

training, individuals may experience a sense of empowerment

and increased confidence in their abilities to focus and perform

tasks effectively. This aspect can be a critical component in the

overall success of attention training programs, as improved self-

confidence can have far-reaching effects on various aspects of an

individual’s life.

In future work, the inclusion of all participants for ASD

in eye data analysis will be done. The study will also take

into account participants’ feedback from the post-questionnaire

to enhance the gaming experience. Additionally, future research

will explore the integration of personalized VR-based attention

training programs, leveraging transfer learning techniques with

pre-trained CNNs, and incorporating a real-time feedback system.

These advancements aim to further enhance attention abilities in

individuals with ASD. Also, the study offers insightful information

on the efficacy of various attention-training techniques and

creates fresh research and development opportunities in attention

training, and its applications in many fields. The effects of this

discovery could go beyond autism, benefiting millions of people

by enhancing their attention, self-confidence, and overall quality

of life.
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