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Accumulating evidence suggests that in various systems, not all bidirectional 
microbiota–host interactions involve direct cell contact. Bacterial extracellular 
vesicles (BEVs) may be  key participants in this interkingdom crosstalk. BEVs 
mediate microbiota functions by delivering effector molecules that modulate 
host signaling pathways, thereby facilitating host–microbe interactions. BEV 
production during infections by both pathogens and probiotics has been observed 
in various host tissues. Therefore, these vesicles released by microbiota may have 
the ability to drive or inhibit disease pathogenesis in different systems within the 
host. Here, we review the current knowledge of BEVs and particularly emphasize 
their interactions with the host and the pathogenesis of systemic diseases.
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1. Introduction

Bacterial extracellular vesicles (BEVs) are nanosized lipid vesicles with a particle size of 
20–250 nm that are secreted by bacteria during growth. In 1963, the presence of BEVs was first 
observed in the cell wall of gram-negative bacteria by electron microscopy, and initial research 
primarily focused on BEV functions. Initially, they were viewed as cellular debris that occurred 
after dead cells degraded (Bishop and Work, 1965). Nonetheless, due to cargo analysis of BEVs 
and the discovery of their biogenesis mechanism, they are now regarded as contributors to 
physiological and pathological processes that lead to the occurrence and development of 
systemic diseases.

Although gram-negative and gram-positive bacteria have different vesicle secretory 
pathways due to different cell wall structures, as vectors of diverse bioactive compounds, BEVs 
participate in bacterial intraspecific and interspecific communication and interactions with 
hosts, including horizontal gene transfer, the killing of competing bacteria, phage neutralization 
and the delivery of virulence factors to host cells (Tzipilevich et al., 2017; Wei et al., 2022). In 
addition, components such as lipopolysaccharides (LPS) and peptidoglycan carried by vesicles 
are naturally immunogenic and can be recognized by host cell pathogen-recognition receptors 
(PRRs) to activate signaling pathways, induce cytokine production, and play physiological and 
pathological roles similar to those of parent bacteria (Dauros-Singorenko et al., 2020). Emerging 
studies have revealed that BEVs are involved in diseases of various systems of the human body, 
promoting bacterial infections and pro−/anti-inflammatory responses to drive the onset and 
progression of systemic diseases, such as autoimmune diseases, inflammatory bowel disease 
(IBD), liver diseases, allergic diseases, and metabolic syndromes such as diabetes.
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In this review, we discuss the key functions of BEVs. Furthermore, 
we summarize the pathways of BEV synthesis and the mechanisms 
through which BEVs released by commensal and pathogenic bacteria 
are recognized by host PRRs to initiate inflammatory responses or 
mediate immunomodulation. Moreover, we highlight their biological 
role in microbiota-host interactions, in addition to their role in the 
pathogenesis of diseases of specific systems, namely, the nervous, 
digestive, circulatory, respiratory and motor systems.

2. Contents and biogenesis of 
bacterial extracellular vesicles

The structures of gram-positive bacteria and gram-negative 
bacteria have obvious differences, as do their released vesicles 
(Figure 1). Currently, there are different opinions on the mechanism 
of BEV biosynthesis; however, a consistent conclusion is that the 
formation and release of BEVs is not a random act but an ordered 
regulatory process (Schwechheimer and Kuehn, 2015).

2.1. Contents and biogenesis of 
gram-negative bacterial outer membrane 
vesicles

The cell wall of gram-negative bacteria consists of an outer 
membrane, an inner membrane, and a peptidoglycan layer 
between them. Gram-negative bacteria release the outer 
membrane and cytoplasmic contents through the formation of a 

nanosized spherical structure with diameters in the range of 
10–300 nm, whose composition is analogous to the outer 
membrane, so they are called outer membrane vesicles (OMVs). 
OMVs basically consist of proteins, virulence factors, lipids, and 
peptidoglycan (Santos et al., 2018; Toyofuku et al., 2019). Most of 
the proteins in OMVs are virulence-related proteins, and the 
lipids of OMVs are primarily LPS and phospholipids (Liu 
et al., 2019).

Gram-negative bacteria produce OMVs mainly in two ways: (1) 
through an imbalance in biosynthetic peptidoglycan or when 
hydrophobic molecules are embedded in the outer membrane, 
thereby causing cell membrane destabilization, which ultimately 
leads to the vesiculation of the outer membrane: the reduction of 
crosslink between peptidoglycan and the outer membrane induces 
the expansion of the outer membrane; the accumulation of bacterial 
cell wall peptidoglycan fragments increases peripheral pressure so 
that the outer membrane is bent to generate OMVs; and the 
accumulation of molecules that increase membrane curvature such 
as LPS can trigger membrane swelling (Arunmanee et  al., 2016; 
Avila-Calderón et al., 2021); and (2) the generation of explosive outer 
membrane vesicles (EOMVs) and outer-inner membrane vesicles 
(OIMVs) can occur via cell lysis (Toyofuku et al., 2019). In recent 
years, a general mechanism has emerged that can explain how OMVs 
form in different environments, and the destruction of the highly 
conserved VacJ/Yrb ABC transport system may be a core mechanism 
involved in this process (Roier et al., 2016). These mechanisms are 
based on the common hypothesis that vesicles bulge from the outer 
membrane, and the destruction of the crosslink between 
peptidoglycan and the outer membrane or the increased extrusion 

FIGURE 1

Structure and content of bacterial extracellular vesicles. (1) Gram-positive bacteria produce vesicles that carry bacterial cargo including transmembrane 
proteins, enzymes, toxins, peptidoglycan, lipoproteins, lipoteichoic acids and nucleic acids. (2) Outer membrane vesicles secreted by gram-negative 
bacteria also contain cargo composed of the parental bacterial components within a lipid membrane, such as proteins, lipids, peptidoglycan, and 
nucleic acids.
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pressure causes the outer membrane to separate from the 
peptidoglycan layer and release in the form of OMVs (Toyofuku 
et al., 2017).

2.2. Contents and biogenesis of 
gram-positive bacterial membrane vesicles

Gram-positive bacteria are a class of bacteria surrounded by a 
plasma membrane and a thick peptidoglycan layer. Due to the lack of 
an outer membrane and a thick cell wall, they were initially thought 
to be unable to produce and secrete EVs. In 2007, researchers isolated 
vesicles from mycobacteria and conducted extensive proteomic 
studies of their components, confirming that gram-positive bacteria 
also release EVs (Lee et al., 2009). Researchers then found that the 
vesicles of gram-positive bacteria are produced from the inner 
membrane and secreted through the peptidoglycan layer to the 
surrounding environment; therefore, these vesicles are usually called 
cytoplasmic membrane vesicles (CMVs) or membrane vesicles (MVs) 
(Brown et al., 2015). MVs contain cell membrane and cytoplasmic 
components, and periplasmic components are unique to MVs and not 
to OMVs (Toyofuku et al., 2017). MVs are approximately 20 ~ 400 nm 
in diameter and consist of membrane-associated proteins, cytoplasmic 
proteins, peptidoglycan, and lipoteichoic acid (Brown et al., 2015; 
Kopparapu et al., 2021).

The pathway by which gram-positive bacteria form MVs is 
primarily through endolysin-triggered death lysis, which is called 
bubbling cell death (Toyofuku et al., 2019). Studies have revealed that 
endolysin expressed by pro bacteriophages creates pores in the 
peptidoglycan layer of the cell wall; therefore, the material in the 
cytoplasm bulges outward and is released in the form of MVs; 
meanwhile, a few of them are secreted via encapsulation from the 
remaining peptidoglycan layer (Toyofuku et al., 2017; Jeong et al., 2022). 
Explosive cell lysis is another form of MV biogenesis (Jeong et al., 2022). 
Regarding the special type of EVs found in recent years, namely, the 
tubular membrane structure, local lysis of the cell wall may lead to 
blistering of the cytoplasmic membrane, which forms a nanotube 
structure as a bridge for material exchange between bacteria (Baidya 
et al., 2018). Although there is currently a lack of definitive evidence 
regarding how gram-positive bacteria bypass the thick cell wall to 

produce MVs, some underlying mechanisms can be investigated based 
on studies of vesicle composition, morphology, etc. (Kalra et al., 2016).

2.3. Conclusions on BEV biogenesis

Although the generation of BEVs is an energy-consuming process, 
this secretory mode has irreplaceable advantages in protecting cargo 
from degradation by extracellular proteases and triggering receptor-
mediated signal transcriptional induction in host cells (Kaparakis-
Liaskos and Ferrero, 2015). The biogenesis and composition of BEVs is 
dependent on the milieu to which the bacterium is exposed, and how 
vesicle formation and content shift in response to varying biological 
environments needs to be investigated to identify their specific functions.

3. The interaction between BEVs and 
host cells

BEVs can be released at all stages during bacterial growth as a 
secretory system that influences the communication and interaction 
between hosts and bacteria. Pathogen-associated molecular pattern 
(PAMP) contents of BEVs enable them to bind to PRRs on the 
membrane surface and in the cytoplasm of immune cells and 
nonimmune cells, thereby activating downstream inflammatory 
signaling pathways (Alvarez et al., 2016; Table 1). After BEVs enter 
host cells, they can transmit immunogenic protein components, DNA, 
and sRNAs into recipient cells to prime the host immune responses 
(Bitto et al., 2021; Figure 2).

3.1. The entry of BEVs into mammalian host 
cells

3.1.1. The entry modes of BEVs into host cells
The entry of gram-negative bacterial OMVs into host cells via 

multiple pathways has been demonstrated, allowing their cargo to 
be detected by PRRs, and subsequently activating a series of signaling 
pathways. In phagocytic cells, phagocytosis is the major route to 
internalize OMVs (O'Donoghue and Krachler, 2016). In 

TABLE 1 Pathogenic PAMPs, host cell PRRs, and relevant signaling pathways.

PAMPs Class of PRR PRR location Signaling pathway

Lipopolysaccharide (LPS) TLR4, NLRP3 Cell membrane surface/cytoplasmic NF-κB signaling, NLRP inflammasome, TRIF signaling

Outer membrane protein (Omp) TLRs Cell membrane surface NF-κB signaling

Porin TLRs Cell membrane surface NF-κB signaling

Lipoteichoic acid (LTA) TLRs Cell membrane surface NF-κB signaling

Peptidoglycan TLRs, NLRs NLRPs Cell membrane surface/cytoplasmic NF-κB signaling, NLRP inflammasome

Flagellin TLR5, NLRC4 Cell membrane surface/cytoplasmic NF-κB signaling

Nucleic acid TLRs, NLRs, NLRPs, AIM2, 

STING

Cell membrane surface/cytoplasmic NF-κB signaling, IRF3 signaling, NLRP inflammasome, 

AIM inflammasome, IRF3 signaling

Protein TLRs, NLRs, NLRPs Cell membrane surface/cytoplasmic NF-κB signaling, MAPK signaling, IRF signaling, NLRP 

inflammasome

TLR, toll-like receptor; NLR, nucleotide-binding oligomerization domain-like receptor; NLRP, NLR thermal protein domain associated protein; AIM, absent in melanoma; STING, stimulator 
of interferon genes.
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nonphagocytic cells, other endocytic routes affect the entry of OMVs, 
namely, clathrin-, caveolin-and lipid raft-mediated endocytosis and 
macropinocytosis, direct membrane fusion, and receptor-mediated 
uptake (O'Donoghue and Krachler, 2016). The biophysical properties 
inherent to OMVs including the surface lipid phase and membrane 
curvature might enable them to enter or fuse with early endosomes 
and then disintegrate and release their contents into the cytoplasm 
(Mulcahy et al., 2014; Behrens et al., 2021). Instead, early endosomes 
can transform into late endosomes and fuse with lysosomes, causing 
degradation of BEVs (Mulcahy et  al., 2014). Subsequently, BEV 
contents released into the cytosolic space can activate signaling 
pathways and induce pro−/anti-inflammatory responses 
(O'Donoghue and Krachler, 2016).

There are relatively few studies on the internalization pathways of 
MVs derived from gram-positive bacteria. Recent studies have found 
that MVs enter host cells mainly via clathrin-dependent endocytosis, 
dynamin-dependent endocytosis, and membrane fusion (Bajic et al., 
2020; Wang et al., 2020).

3.1.2. Factors that influence BEV uptake
Several factors seem to influence the mode and rate of BEV 

uptake, such as the size and composition of BEVs. For instance, 

smaller BEVs (20–100 nm) preferentially enter recipient cells via 
caveolin-mediated endocytosis, clathrin-mediated endocytosis can 
be utilized by BEVs with diameters ranging from 20 to 250 nm, and 
macropinocytosis appears to be effective for larger BEVs (90–450 nm). 
Clathrin-mediated endocytosis can be utilized by BEVs with diameters 
ranging from 20 to 250 nm (Weiner et al., 2016; Zhang et al., 2019). 
Toxins can serve as BEV adhesins and allow their internalization via 
ligand-receptor interactions. Additionally, BEVs could utilize 
complementary mechanisms to promote their entry. For example, the 
uptake of OMVs with O antigen is lipid raft-dependent, while OMVs 
lacking O antigen alternatively select clathrin-mediated endocytosis 
(O'Donoghue et al., 2017).

3.1.3. BEV uptake conclusion
Bacterial extracellular vesicles enter host cells with multiple 

uptake mechanisms among vesicles from different species of bacteria 
and even among that from the same bacterium. The quantifiable and 
dynamical assay of uptake pathways will be  important in the 
illustration of bioprocesses that underlie the bacteria-host interactions, 
but also in the design of BEV-engineered delivery vectors and 
improvement of their treatment efficiency based on their entry into 
target cells.

FIGURE 2

Interactions of BEVs with epithelial and innate immune cells. BEVs can directly interact with epithelial cells or PRRs to promote the production of IL-1β, 
IL-6, IL-8, and AMPs. Cargo delivered by BEVs is detected by intracellular NLRs and then activates signal transduction pathways. The interaction 
between BEVs and epithelial cells can damage tight junctions, facilitating the delivery of BEVs and the release of cargo components into the 
submucosa, where they can directly interact with immune cells. Macrophages produce inflammatory cytokines primarily in response to the activation 
of TLR2 and TLR4. Dendritic cells, upon stimulation by BEVs, enhance the release of IL-10, IFN-γ, and TNF-α. Neutrophils secrete proinflammatory 
cytokines such as IL-1β, MIP-1α, and MIP-1β. BEVs also promote pyroptosis and inhibit the chemotaxis and phagocytosis of immune cells. AMP, 
antimicrobial peptide; HBD, human β-defensin; MIP, macrophage inflammatory protein; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; NF-κB, 
nuclear factor-κB; TNF, tumor necrosis factor.
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3.2. Inflammatory responses triggered by 
BEVs

3.2.1. BEVs are sensed by PRRs on the cell 
membrane

PRRs present on the surface of immune cells can sense microbial-
associated molecular patterns (MAMPs)/PAMPs carried by BEVs, 
activate signaling pathways, promote the release of proinflammatory 
cytokines, and trigger inflammatory responses (Cecil et al., 2017). For 
instance, Toll-like receptors (TLRs) of microglia and macrophages can 
recognize LPS, lipoproteins, flagellin and DNA carried by OMVs to 
release cytokines such as TNF-α and IL-10 (Balhuizen et al., 2022; Liu 
et al., 2022). BEVs can also be sensed by nonimmune cells. LPS carried 
by Pseudomonas aeruginosa OMVs triggers the immune response in 
epithelial cells through the MyD88-dependent TLR4 signaling 
pathway and promotes the expression of IL-8 in lung epithelial cells 
(Vitse and Devreese, 2020). DNA, RNA and peptidoglycan cargo in 
Staphylococcus aureus MVs activated several TLRs and nucleotide-
binding oligomerization domain (NOD) 2 signaling and promoted 
cytokine and chemokine release by epithelial cells (Bitto et al., 2021). 
Upon stimulation by BEVs, cell surface PRRs also modulate 
antimicrobial peptide secretion, as evidenced by vesicles derived from 
Helicobacter pylori, P. aeruginosa, Neisseria gonorrhoeae and C. jejuni 
that induced the production of human β-defensins (hBD2, hBD3) and 
LL-37 by human gastric epithelial cells (Elmi et al., 2012). These in 
vitro studies revealed some of the mechanisms underlying bacteria-
host interactions, whereas in the context of in vivo infections, we need 
to further clarify the mechanisms by which host cells detect BEVs to 
trigger immune responses.

3.2.2. BEVs are sensed by PRRs in the cytoplasm
Although most studies have reported that BEVs activate PRRs on 

the cell surface, PAMPs carried by BEVs can also be perceived and 
recognized by PRRs in the cytoplasm of host cells, thereby activating 
intracellular innate immunity and promoting the assemble assembly 
of inflammasomes (Vanaja et al., 2016).

3.2.2.1. Canonical inflammasome activation
Currently, four types of inflammasomes have been reported, 

namely, NLRP1, NLRP3, NLRC4, and AIM2, which eventually 
activate caspase-1 and induce the production of proinflammatory 
cytokines (Elizagaray et al., 2020; Johnston et al., 2021). The caspase-
1-dependent process is called canonical inflammasome activation. 
Studies have shown that microbial DNA and flagellin carried by 
OMVs can activate inflammasome signaling in macrophages, as well 
as in in vivo models, inducing caspase-1-mediated pyroptosis and 
TNF-α, IL-1β, and IL-18 secretion (Elizagaray et al., 2020; Yang et al., 
2020). Likewise, MVs produced by gram-positive bacteria delivering 
nucleic acids and peptidoglycan to epithelial cells can activate the 
NLRP3 inflammasome and caspase-1 and induce IL-1β and IL-18 
production in macrophages (Wang et al., 2020).

3.2.2.2. Noncanonical inflammasome activation
The activation of the noncanonical inflammasome depends on 

caspase-11 (mice) or caspase 4/5 (human) (Elizagaray et al., 2020). 
OMVs transport LPS into host cells and activate caspase-11 via 
guanylate-binding proteins (Santos et al., 2018). Active caspase-11 
enhances gasdermin D pore formation in the cell membrane of 

macrophages, causing NLRP3 inflammasome-mediated pyroptosis 
(Kayagaki et  al., 2015; Vanaja et  al., 2016). In human monocytes, 
P. aeruginosa OMVs activated noncanonical inflammasomes in a 
caspase-5-dependent manner (Bitto et al., 2018).

3.2.3. Conclusions on BEV PRRs
Bacterial extracellular vesicles are potent activators of PRRs in 

charge of regulating inflammatory responses that are correlated 
with pathogenesis in systemic diseases (Tiku and Tan, 2021). 
Additionally, pathogens release vesicles during infections to deliver 
virulence factors and evade immune defenses, whereas EVs from 
probiotics may exert a protective effect on LPS-mediated 
inflammation in the host (Hu et  al., 2021). Thus, the balance 
between proinflammatory and anti-inflammatory signaling 
generated by PRRs upon BEV activation is crucial to understanding 
host–microbe interactions. Moreover, the functions of PRRs in 
complex disease conditions deserve in-depth studies to facilitate the 
design of PRR antagonists to restrict BEV-mediated inflammation 
in systemic diseases.

4. Physiological and pathological roles 
of BEVs in specific systems and 
diseases

In contrast to their parent bacteria, BEVs carry a higher 
concentration of virulence factors and insulate them during delivery 
to different organs and vascular-based tissue targets. These properties 
allow BEVs to travel long distances and access tissues that their parent 
bacteria cannot reach, strengthening the pathogenic functions of 
bacteria in both the local microenvironment and distant parts of the 
body and leading to the occurrence of Alzheimer’s disease (AD), 
metabolic diseases, cardiovascular disease (CVD), osteoporosis, etc.

4.1. Nervous system

4.1.1. BEV-related neurologic disorders
Recent research have revealed the role of microbiome on 

neuropsychiatric disorders (Jiang et al., 2015). Individuals suffering 
from stress response and depressive disorder tend to have lower 
abundance of beneficial intestinal bacteria with their functional 
impairment (Aizawa et al., 2016). EVs derived from microbiome cargo 
a range of bioactive compounds from bacteria to affect the central 
nervous system function. BEVs can enter the bloodstream and 
permeate the blood–brain barrier (BBB) to reach the brain, 
subsequently affecting the regulation of various signal transduction 
pathways and resulting in neurologic abnormalities (e.g., dementia, 
AD) (Han et al., 2019; Bittel et al., 2021; Xie et al., 2023; Figure 3). 
BEVs can compromise the integrity of tight junctions, the disruption 
of which facilitates the paracellular and/or transcellular pathways of 
endothelial cells and promotes the delivery of BEV contents to the 
circulation, as well as the vagus nerve (Stentz et al., 2018; Lee et al., 
2020). Campylobacter jejuni OMVs have been reported to cleave 
occludin and E-cadherin, promoting intestinal penetrability and 
paracellular pathways (Elmi et  al., 2016). Likewise, periodontal 
pathogen-derived EVs enriched in gingipains, LPS and small 
extracellular RNAs (exRNAs) can disrupt the tight junction zona 
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occludens protein (ZO-1) in human brain microvascular endothelial 
cells and cross the BBB (Han et al., 2019; Pritchard et al., 2022).

When BEVs access the central nervous system, they not only 
affect the reactivity of glial cells to facilitate neuroinflammation, 
but also exacerbate neuronal dysfunction and tau 
hyperphosphorylation, accelerating cognitive decline (Cheon and 
Lee, 2021; Park and Tsunoda, 2022). Gingipain-positive P. gingivalis 
OMVs can reach the cerebral ventricle, promote intracerebral 
inflammation via complement activation, trigger the NLRP3 
inflammasome, and increase the expression of amyloid beta (Aβ) 
and neurofibrillary tangles (Han et al., 2019; Gong et al., 2022; 
Yoshida et al., 2022). Likewise, H. pylori OMVs led to the activation 
and migration of microglia and astrocytes, which induced 
neuronal damage via complement component 3 (C3)-C3a receptor 
(C3aR) signaling, ultimately leading to aggravated Aβ pathology 
(Park and Tsunoda, 2022; Xie et al., 2023). In vitro experiments 
have shown that exRNAs delivered via BEVs increased the 
expression of IL-6 in brain monocytes/microglia by activating the 
NF-κB pathway (Han et al., 2019; Ha et al., 2020). BEVs are also 
able to transport their cargo such as neurotransmitters [e.g., 
histamine and gamma-amino-butyric acid (GABA)], from the gut 
to the brain, suggesting their potential effects on brain functions 
(Zakharzhevskaya et al., 2017; Bittel et al., 2021). Furthermore, 

oral gavage of EVs derived from Paenalcaligenes hominis reduced 
brain-derived neurotrophic factor (BDNF) expression in 
hippocampal neurons while increasing IL-1β expression in the 
blood (Lee et al., 2020).

Therefore, it could be speculated that the export of BEVs to the 
brain may contribute to infection at any place in the body, which could 
result in immune responses in the brain and related 
neurological disorders.

4.1.2. BEVs and psychiatric disease therapy
Emerging evidence confirms that pathogenic BEVs exert harmful 

effects on the brain function, whereas probiotic BEVs show beneficial 
effects on peripheral tissues. After the induction of depression 
symptoms by glucocorticoid (GC) treatment, Lactobacillus plantarum-
derived EVs enhanced the expression of BDNF in the hippocampus 
and exerted antidepressive-like effects (Choi et al., 2019). In chronic 
restraint stress (CRS)-treated mice, parenterally injected EVs from 
L. plantarum, Bacillus subtilis, and A. muciniphila exhibited 
antidepressant-like effects and reversed stress-induced decreases in 
the expression of Bdnf, Nt3, and/or Nt4/5 in HT22 cells and in the 
hippocampus (Choi et  al., 2022). Moreover, A. muciniphila EVs 
increased 5-HT synthesis by increasing Tph2 expression in the brain 
and produced a stronger effect than the parent bacterium on the 

FIGURE 3

BEVs released under microecology dysbiosis could result in brain disorders. The intestinal epithelium is destroyed by both bacterial activity and the 
host immune response, which facilitates the penetrability and delivery of BEV cargo (e.g., LPS, gingipains, histamine and peptidoglycan) from the gut 
lumen to the circulation. When BEVs access the central nervous system, they potentially activate immune cells such as astrocytes and microglia 
through PRRs, thereby promoting proinflammatory cytokine secretion and neuronal damage and leading to neurological disorders.
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reuptake and clearance of serotonin (Yaghoubfar et al., 2020). These 
results indicate that EVs derived from probiotics may act on neuronal 
cells, promote the transcription of neurotrophic factors, and produce 
antidepressant-like effects, which have the potential to be applied to 
the design of neuropsychiatric treatment such as drug delivery 
vehicles and vaccines.

4.2. Digestive system

4.2.1. Oral cavity

4.2.1.1. Streptococcus mutans MVs and caries
Since S. mutans MVs can disseminate over long distances, 

their local exploitation of nutrient substances such as sucrose to 
produce extracellular polysaccharides (EPS) on the hydroxyapatite 
surface could facilitate bacterial colonization and biofilm 
formation associated with cariogenicity (Nakamura et al., 2020). 
S. mutans MVs have been found to package metabolic enzymes 
associated with carbohydrate metabolism, such as 
glucosyltransferase (Gtf), glucan-binding proteins and dextranase 
(DexA) (Cao et al., 2020). Moreover, S. mutans MVs containing 
Gtfs increase EPS formation in C. albicans biofilms, and genes of 
C. albicans related to mannan and glucan synthesis increased upon 
exposure to S. mutans MVs, indicating that S. mutans MVs 
facilitate cariogenic bacterial carbohydrate metabolism (Wu 
et al., 2020).

MVs also promote the cariogenic ability of bacteria even at low 
pH values. Intriguingly, the initial pH value affects various 
characteristics of S. mutans MVs, including biofilm quantity 
(Nakamura et  al., 2020; Iwabuchi et  al., 2021). Under low pH 
conditions, S. mutans released more MVs to deliver proteins related 
to cariogenesis, and several important enzymes carried by MVs, 
such as the shock heat proteins, lactate dehydrogenase, DexA and 
Gtfs, still possessed enzyme activity (Cao et al., 2020). These may 
be new mechanisms of MV biogenesis and could underlie the acid 
resistance of S. mutans; furthermore, these data are helpful to 
develop biofilm formation inhibitors targeting BEVs to prevent 
dental caries.

4.2.1.2. Periodontitis
Once released, periodontopathogen-derived EVs, enriched in 

virulence factors such as muramic acid, LPS, fimbriae, dentilisin, 
outer membrane proteins and gingipains, may act as representatives 
of parent bacteria to communicate with other oral bacteria and host 
cells and adhere to the tooth surface (Inagaki et  al., 2006). For 
instance, P. gingivalis EVs alone can promote the aggregation of a 
broad range of Streptococcus spp., Fusobacterium nucleatum, 
Treponema denticola, Actinomyces viscosus, Actinomyces naeslundii, 
and Lachnoanaerobaculum saburreum in oral biofilms (Hiratsuka 
et al., 1992; Kamaguchi et al., 2003; Inagaki et al., 2006; Grenier, 
2013). P. gingivalis EVs aggregate other oral bacteria primarily 
depending on OMV-related gingipain proteases (Ito et al., 2010). 
Additionally, other species present in oral biofilms, such as 
T. forsythia, can also release OMVs related to biofilm formation 
(Friedrich et al., 2015). BEVs also protect other organisms from 
complement activities to accelerate the progression of periodontitis. 
Consistent with this, Actinobacillus actinomycetes EVs can serve as 

decoys to activate complement in an LPS-dependent manner and 
deplete complement to defend against serum-susceptible bacteria 
(Lindholm et  al., 2020). Moreover, P. gingivalis OMVs induced 
selective TNF deficiency that suppressed microbial recognition by 
macrophages/monocytes (Waller et al., 2016). Apart from escaping 
the surveillance of innate immune cells, BEVs also evade adaptive 
immune cells. For instance, small RNAs carried by OMVs derived 
from A. actinomycetemcomitans, P. gingivalis, and T. denticola 
inhibited the release of IL-13 and IL-5 by Jurkat T cells (Choi et al., 
2017). This evidence indicates the contribution of periodontal 
pathogenic EVs to bacterial survival and aggregation, favoring the 
pathogenic process of periodontitis.

Bacterial extracellular vesicles can activate the first guard against 
bacterial infections, the oral mucosal epithelium, in multiple ways. 
P. gingivalis EVs can be internalized into epithelial and endothelial 
cells via lipid raft-mediated endocytosis and facilitate the invasion of 
other pathogens, such as Tannerella forsythia (Furuta et al., 2009). 
After invasion, BEVs inhibit oral epithelial migration and proliferation, 
leading to cell dysfunction in periodontal tissues (Furuta et al., 2009). 
For example, P. gingivalis OMVs lead to apoptosis after their uptake 
by human periodontal ligament cells and cause pyroptosis by 
activating inflammasomes both in vitro and in vivo (Cecil et al., 2017; 
Fan et al., 2023).

After their evasion of the oral epithelial barrier, BEVs enter 
submucosal tissues, where they interact directly with host innate or 
adaptive immune cells. OMVs released from P. gingivalis, T. forsythia 
and T. denticola, activate PRRs on macrophages and monocytes, and 
increase the production of TNF-α, IL-1β, and IL-8 (Cecil et al., 2016). 
Similarly, OMVs from A. actinomycetemcomitans activated NOD1-
dependent nuclear factor kappa-B (NF-κB) in monocytes (Thay et al., 
2014). OMVs from F. nucleatum also facilitated the differentiation of 
macrophages toward the proinflammatory phenotype (Chen et al., 
2022). Moreover, OMVs may be  a second route through which 
neutrophils in the oral cavity may encounter bacterial virulence 
factors and hinder neutrophil chemotaxis and phagocytosis (Jones 
et al., 2019). It is possible that the inflammatory milieu induced by 
BEVs can further exacerbate their toxicity to gingival fibroblasts and 
periodontal tissue destruction.

Bacterial extracellular vesicles can deliver toxic payloads to 
susceptible cells in the periodontium and aggravate alveolar bone loss, 
thereby causing periodontal tissue destruction. 
A. actinomycetemcomitans OMVs were found to promote damage in 
the sulcular/junctional epithelium via the delivery of cytolethal 
distending toxin into human gingival fibroblasts (Rompikuntal et al., 
2012). A recent study reported that EVs from both oral commensal 
bacteria and periodontal pathogens can provoke osteoclastogenic 
activity through TLR2 activation (Kim et  al., 2022). Intracellular 
delivery of prostaglandin (PG) via A. actinomycetemcomitans OMVs 
could directly trigger alveolar bone loss (Jiao et al., 2013). Likewise, 
F. nucleatum BEVs increased osteoclast numbers, and inflammatory 
factor (IL-1β, IL-6, and TNF-α) production, and accelerated 
periodontal bone loss in a periodontitis mouse model (Chen 
et al., 2022).

In conclusion, periodontopathogen-derived vesicles can activate 
or degrade bioactive substances in host cells, hinder cell proliferation, 
facilitate cell death, and induce inflammatory cytokine release, thereby 
promoting the establishment of an inflammatory microenvironment 
in periodontal tissues and subsequent alveolar bone destruction.
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4.2.2. Liver

4.2.2.1. BEVs and diabetes mellitus
Bacterial extracellular vesicles have been recently considered a 

critical mediator facilitating the pathogenic process of the endocrine 
system disease type 2 diabetes mellitus (T2DM), and they can also 
be  applied to the diagnosis and treatment of T2DM and its 
complications (Figure  4). A significantly higher concentration of 
BEVs was observed in patients with T2DM than in the healthy 
population among stool, serum, and urine (Nah et  al., 2019). In 
diabetes animal model, intestinal microbiota-derived OMVs are also 
increased (Chen et al., 2023). Furthermore, gut microbe-derived EVs 
were reported to permeate the intestinal barrier and enter the 
bloodstream followed by distribution to distant metabolic organs (e.g., 
adipose tissue, liver, and skeletal muscle), where they trigger insulin 
resistance and damage glucose metabolism (Choi et al., 2015; Nah 
et al., 2019; Bittel et al., 2021). For instance, P. panacis OMVs can 
block insulin signaling in adipose and skeletal tissue, and induce a 
diabetic phenotype in mice (Choi et al., 2015). Gingipain-positive 
cells were found in the liver sinuses of mice injected with P. gingivalis 
OMVs, suggesting that the hepatic cells were exposed to gingipains 
delivered by OMVs (Seyama et al., 2020). In these mice, gingipains in 
P. gingivalis OMVs weakened glycogen synthesis and insulin 
sensitivity through the activated protein kinase B (Akt)/glycogen 
synthase kinase-3 beta (GSK-3β) signaling pathways (Nakayama et al., 

2015; Seyama et  al., 2020). Moreover, obese BEVs enriched in 
microbial DNA notably lowered the number of liver CRIg+ and islet 
Vsig4+ macrophages, causing the dissemination of BEVs to insulin-
responsive tissues and subsequently aggravating the inflammation and 
insulin resistance of hepatocytes through the activation of cGAS/
STING signaling (Luo et al., 2021; Gao et al., 2022). These studies 
emphasized that BEVs either from the oral or intestinal microbiota, 
as participants in insulin resistance, are correlated with obesity and an 
increased incidence of T2DM.

4.2.2.2. Probiotic-derived EVs improve metabolic function
Detrimental BEV characteristics are counterbalanced with their 

beneficial characteristics under physiological and pathological 
circumstances given that probiotic-derived EVs prevent adverse 
processes that induce obesity-related diseases. For instance, 
Akkermansia muciniphila-derived EVs enhanced the expression of 
tight junction proteins in Caco-2 cells and eventually increased gut 
barrier integrity in an HFD-induced diabetic model through AMPK 
activation (Ashrafian et  al., 2021). Treatment with A. muciniphila 
OMVs markedly ameliorated lipid metabolism and reduced 
inflammatory cytokine release in adipose tissues (Ashrafian et al., 
2019). A. muciniphila and its OMVs could also regulate energy 
balance and improve blood parameters, such as lipid profiles and 
glucose levels (Ashrafian et  al., 2019). The aforementioned data 
indicate that probiotic-derived EVs can potentially be used to improve 

FIGURE 4

BEVs participate in insulin resistance and result in T2DM. EVs from periodontal biofilms and dysfunctional intestinal microbiota deliver toxins such as 
gingipains and LPS to the liver through the circulation. When they access the liver, BEVs induce insulin resistance in hepatic stellate cells and 
hepatocytes by inhibiting AKT/GSK-3β signaling, decreasing hepatic glycogen synthesis, and ultimately increasing the level of blood glucose.
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intestinal penetrability and metabolic functions such as glucose and 
lipid metabolism, while more investigation related to the underlying 
mechanism is needed to treat obesity-related diseases.

4.2.2.3. BEVs and nonalcoholic fatty liver disease
BEVs may be involved in several mechanisms, such as intestinal 

barrier disruption and systemic inflammation, associated with the 
onset and progression toward nonalcoholic fatty liver disease 
(NAFLD) or nonalcoholic steatohepatitis (NASH)-related liver 
abnormalities. Intragastrically administered feces-derived EVs (fEVs) 
entered the liver and increased proinflammatory cytokines and 
chemokines from hepatic sinusoidal endothelial cells via TLR4 action 
through LPS and activated profibrotic and proinflammatory protein 
production in hepatic stellate cells (Fizanne et al., 2023). Likewise, 
LPS-positive P. gingivalis EVs provoked Kupffer cell (KC) activation 
through TLR4 and subsequent liver inflammation, glycogen synthesis 
reduction and progression toward steatohepatitis (Miura et al., 2010). 
H. pylori OMVs increased the level of liver fibrosis markers in 
hepatocytes, and exosomes derived from OMV-treated cells activated 
hepatic stellate cells (HSCs) and induced liver fibrosis (Zahmatkesh 
et al., 2022). Furthermore, the accumulation of microbial DNA may 
be  a mechanism involved in NAFLD progression. Intestinal BEV 
translocation promoted bacterial DNA accumulation in HSCs and 
hepatocytes, which induced hepatocyte inflammation and HSC 
fibrosis via the activation of cGAS/STING (Luo et  al., 2022). 
Collectively, BEVs may be a critical moiety in the pathogenesis of 
NAFLD by facilitating liver inflammation and hepatic steatosis and 
fibrosis by delivering toxic payloads into liver cells.

4.2.2.4. The antifibrotic effects of BEVs
Probiotic-derived vesicles exhibit beneficial effects on the 

prevention of liver inflammation and liver fibrosis. Research has 
shown that A. muciniphila EVs could efficiently enhance the regression 
of activated HSCs (Keshavarz Azizi Raftar et al., 2021). In the HFD/
carbon tetrachloride-induced liver injury model, A. muciniphila OMV 
treatment substantially attenuated fibrosis and inflammatory 
biomarkers and ameliorated liver and colon damage (Keshavarz Azizi 
Raftar et al., 2021). Therefore, EVs from probiotics may have anti-
inflammatory and antifibrotic effects and protect against liver injury.

4.2.3. Gut

4.2.3.1. BEVs and inflammatory bowel disease
Bacterial extracellular vesicles exhibit regulatory effects on 

intestinal immunity and homeostasis, as evidenced by stool BEVs 
from an IBD mouse model showing severe dysbiosis compared to that 
of the normal controls (Kang et al., 2013). BEVs were also implicated 
in barrier damage in IBD, HIV and cancer therapy-induced intestinal 
mucositis, leading to an intestinal and systemic inflammatory 
environment in these diseases (Liu et al., 2021).

Bacterial extracellular vesicles released into the intestinal lumen 
can pass through the mucus layer and interact with intestinal epithelial 
cells and immune cells, regulating immunomodulation and 
corresponding signaling pathways in the pathogenesis of IBD (Gul 
et al., 2022). In colonic epithelial cells and human colonoid (organoid) 
monolayers, F. nucleatum-derived OMVs activate TLR4, leading to 
inflammatory cytokine release (Engevik et  al., 2021). Studies that 
focused on the effects of BEVs on the mucosal immune system showed 

that the uptake of B. fragilis OMVs by dendritic cells (DCs) induced 
regulatory T cells (Tregs), and Bacteroides thetaiotaomicron OMVs 
also exerted an effect on T-cell functions (Chu et  al., 2016; 
Wegorzewska et al., 2019). Likewise, OMVs from specific strains of 
E. coli activated DCs and derived CD4+ T-cell responses (Diaz-
Garrido et al., 2022). In patients with UC and CD, a lack of regulatory 
IL-10 response by DCs to B. thetaiotaomicron OMVs was observed 
(Durant et  al., 2020). Efficient BEV internalization by mucosal 
phagocytic cells both in vitro and in vivo occurred and pronounced 
BEV-induced inflammatory responses in these macrophages were 
observed (Bittel et al., 2021). The regulation of immunomodulatory 
miRNAs by BEVs may partly underlie several specific effects (Díaz-
Garrido et al., 2020). For instance, B. thetaiotaomicron EVs have been 
found to harbor microbial helicases specifically targeting the human 
polymerase protein PAPD5, a negative regulator of miR-21, the targets 
of which are genes that participate in immune responses and the 
pathogenesis of IBD (Gul et al., 2022).

In general, these studies illustrate that gut microbe-derived EVs 
distributed in serum or other tissues could be an effective marker for 
intestinal integrity and could promote inflammation in the gut and 
even in distant organs through the leaky intestinal barrier (Nah et al., 
2019). Further research is needed to elucidate the systemic functions 
of circulating BEVs and to determine and associate their taxonomy 
with the metabolic activity of the gut microbiota.

4.2.3.2. BEVs and intestinal viral infection
The significance of BEVs is further consolidated by the capability 

of enteric viruses to utilize these vesicles to facilitate viral infection. 
EVs from commensal Enterobacter cloacae, B. thetaiotaomicron, and 
Lactobacillus acidophilus cross the intestinal epithelium and enter the 
lamina propria in which the prime targets of acute norovirus infection, 
namely, immune cells, reside (Mosby et al., 2022, 2023). Similarly, 
P. gingivalis OMVs promoted HIV translocation from mucosal 
surfaces to subcutaneous tissues and reached HIV permissive cells, 
such as DCs and T cells, and nonpermissive cells, such as human oral 
keratinocytes; this may also serve as a mechanism for cell-free HIV 
transcytosis through the intestine (Dong et al., 2018). Moreover, virus 
interaction with commensal bacteria changes the size, yield, cargo and 
content of BEVs, suggesting that viral binding may alter the 
mechanism of BEV biogenesis (Mosby et al., 2022, 2023). Therefore, 
BEVs potentially offer a mechanistic basis for the bacterial promotion 
of viral infection by facilitating virus entry into target cells and 
regulating host immune responses; meanwhile, the relevant 
mechanism deserves further exploration for a better understanding of 
bacteria-virus infections and to develop beneficial 
therapeutic strategies.

4.2.3.3. BEVs and cancer development
Several studies have demonstrated that BEVs can penetrate the 

intestinal epithelial barrier, selectively accumulate near intestinal 
tumor cells, change the tumor microenvironment (TME), and 
participate in the progression of gastrointestinal cancer. H. pylori-
derived OMVs were upregulated in the gastric juice of gastric cancer 
patients compared to healthy controls, and could penetrate and 
remain in the mouse stomach for an extended period of time (Choi 
et  al., 2017). Intravenous injection of E. coli OMVs specifically 
accumulated near the tumor tissues of BALB/c mice with CT26 
tumors (Kim et al., 2017). These vesicles attract T cells and natural 
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killer cells, and induce the production of TNF-α, IL-6, and IL-1β by 
macrophages and IL-8 by gastric epithelial cells (Choi et al., 2017; Kim 
et al., 2017). EVs from E. coli could be internalized into the Caco-2 cell 
line and promote carcinogenesis in intestinal epithelial cells (Tyrer 
et al., 2014). Likewise, OMVs from E. coli and Vibrio cholerae were 
involved in enhancing cell differentiation in colon cancer cells 
(Vdovikova et al., 2018). H. pylori OMVs were found to contain CagA 
and VacA proteins, which were correlated with the induction of 
apoptosis in the adenocarcinoma gastric cell line (AGS) and an 
increase in ATP affinity to H1 histone proteins in chromosomes 
(Turkina et al., 2015). Moreover, BEVs can increase the release of 
proinflammatory cytokines and activate a series of abnormal signaling 
pathways, leading to the occurrence of cancer (Choi et al., 2017). 
Therefore, BEVs can not only access the TME efficiently but also alter 
the TME by producing or inducing the release of oncogenic 
metabolites. Furthermore, the composition of intestinal microbe-
derived EVs in colorectal cancer exhibited discrepancies compared to 
that of healthy controls, indicating that BEVs may be harnessed as a 
marker for detecting cancer and predicting cancer prognosis (Park 
et al., 2021).

4.2.3.4. BEVs help maintain intestinal homeostasis
Bacterial extracellular vesicles released by probiotic and 

commensal bacteria have been indicated to activate the immune 
system and maintain gut homeostasis in multiple ways (Table 2). BEVs 
can regulate the interaction with host cells by regulating PRRs. For 
instance, OMVs derived from B. fragilis modified the gene expression 
of TLR2 and TLR4 in epithelial cells and increased the secretion of 
IL-10 by CD4+ T cells (Ahmadi Badi et  al., 2019). DCs sense 
OMV-associated polysaccharides through TLR2, resulting in an 
increase in Tregs and anti-inflammatory cytokine production (Shen 
et al., 2012). Furthermore, epithelial cells could sense OMVs derived 
from commensal E. coli strains ECOR12 and Nissle 1917 in a NOD1-
dependent manner and regulate cytokine production (Cañas 
et al., 2018).

In mouse models, EVs from Bifidobacterium longum and 
Bifidobacterium bifidum dampened allergy-related diarrhea by 
inducing mast cell apoptosis and Treg production, respectively (López 
et al., 2012; Kim et al., 2016). Additionally, oral treatment with MVs 
from Lactobacillus rhamnosus promoted the expression of IL-10 and 
heme oxygenase-1 in bone marrow-derived DCs and then triggered 
Tregs in Peyer’s patches and mouse mesenteric lymph nodes 
(Al-Nedawi et  al., 2015). Likewise, B. thetaiotaomicron OMVs 
mediated monocyte activation and IL-10 production through TLR2 
activation and alleviated acute intestinal inflammation in dextran 
sodium sulfate (DSS)-treated mice (Fonseca et al., 2022). Bacteroides 
vulgatus and B. fragilis OMVs have also been reported to elicit a 
tolerogenic phenotype in DCs and enhance Treg production, 
respectively (Shen et  al., 2012; Maerz et  al., 2018). These studies 
indicate the potential utilization of BEVs to reinduce tolerance and 
rebuild immune homeostasis in IBD.

Regarding the protective effects on restoring the integrity of the 
physicochemical barrier, OMVs released by E. coli Nissle 1917 could 
reduce inflammation in DSS-treated mice and increase IL-22  in 
colonic explants (Alvarez et  al., 2016; Fábrega et  al., 2017). 
A. muciniphila OMVs also decreased inflammatory cell recruitment 
to the colon wall in DSS-induced colitis and restored epithelial 
stability by promoting the expression of tight junctions and mucus in 

epithelial cells (Kang et  al., 2013; Wang et  al., 2023). In 
2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced IBD, MVs from 
several Lactobacillus species, namely, kefir, kefirgranum, and 
kefiranofaceins, were demonstrated to reduce the release of 
proinflammatory cytokines (Seo et al., 2018). A. muciniphila OMVs 
also suppressed HFD-induced colonic inflammation, increased 
AMPK phosphorylation and prevented LPS-induced intestinal barrier 
damage (Chelakkot et al., 2018; Ashrafian et al., 2021). Moreover, MVs 
from Lactobacillus sakei and A. muciniphila promoted the production 
of IgA in the intestine and improved epithelial barrier function 
(Yamasaki-Yashiki et  al., 2019; Wang et  al., 2023). Furthermore, 
BEV-mediated modulation of the intestinal microbiota might involve 
selective cross-talk with specific commensal species, as indicated by 
A. muciniphila OMV-mediated increase in the abundance of beneficial 
commensal Firmicutes and Bacteroidetes and decrease in the 
abundance of potentially pathogenic taxa in the phylum Proteobacteria 
(Wang et al., 2023).

Collectively, the multifunctional role of BEVs in modulating 
intestinal homeostasis may occur through reciprocal and 
complementary mechanisms that regulate mucosal immunity, 
physicochemical barriers, and the gut microbiota. Thus, enteric 
microbiota-derived EVs may provide insight into therapeutic 
strategies against diseases implicated in inflammation and barrier 
dysfunction, such as T2DM.

4.3. Circulatory system

Bacterial extracellular vesicle is a hazard factor for CVD and 
coronary heart diseases such as atherosclerosis, among which 
endothelial dysfunction and calcium deposition play a key role in the 
development of atherosclerosis. Nanoscale BEVs can lead to 
proteolytic damage in blood vessels that cannot be  accessed by 
bacteria, making them analogous to parent bacteria in the 
pathogenesis of CVD (Farrugia et al., 2020).

Studies have shown the role that BEVs play in causing endothelial 
injury to promote vascular permeability and cause disease phenotypes 
both in vitro and in vivo (Zhang et al., 2020). P. gingivalis OMVs can 
increase vascular permeability probably through proteolytic cleavage 
of endothelial cell–cell adhesins such as PECAM-1 (Farrugia et al., 
2020). P. gingivalis OMVs can also activate Rho kinase (ROCK) in 
human umbilical vein endothelial cells, causing endothelial 
dysfunction (Jia et al., 2015). In addition, stimulation with OMVs 
from CagA-enriched H. pylori facilitated atherosclerotic plaque 
formation via endothelium injury in vivo and promoted apoptosis in 
human umbilical vein endothelial cells (Wang et  al., 2021). 
Additionally, P. gingivalis OMVs induced the calcification of vascular 
smooth muscle cells by activating the ERK1/2-RUNX2 pathway 
(Miyakawa et al., 2004; Yang et al., 2016).

Bacterial extracellular vesicles facilitate cardiac tissue 
inflammation to cause related diseases. A recent study revealed that 
gut BEVs containing microbial DNA led to obesity-associated 
adrenomedullary inflammation and catecholamine production (Gao 
et al., 2022). Additionally, EVs from a uropathogenic E. coli strain 
exerted a direct effect on cardiomyocytes and induced cardiac tissue 
inflammation and injury (Svennerholm et al., 2017).

These studies highlight the idea that the entry of BEVs into 
circulation potentially initiates atherosclerosis and cardiac tissue 
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inflammation and may contribute to the disruption of the vascular 
system, resulting in the occurrence of CVD.

4.4. Respiratory system

The existence of BEVs in the lungs of patients with severe 
pulmonary infections and the fact that BEVs can transport virulence 
factors may indicate their role in the process of infection 
(Bomberger et al., 2009). The mechanism mediated by BEVs may 
inhibit the host’s immune response to bacteria. For example, the 
delivery of Cif through P. aeruginosa OMVs to the cytoplasm of host 
cells hampered CTRF chloride production and thus dampened the 
ability to clear respiratory pathogens through mucus cilia 
(Bomberger et al., 2011). P. aeruginosa OMVs also evade the host 
immune response by altering DNA methylation in human lung 
macrophages (Kyung Lee et al., 2021). Streptococcus pneumoniae 
MVs delivered vesicle-associated proteins into human monocyte-
derived dendritic cells, induced proinflammatory cytokines, and 
exposed targets for complement factors in serum, thereby 
promoting pneumococcal evasion of humoral host defense 
(Codemo et al., 2018).

It has been recently shown that the majority of host 
proinflammatory responses induced by PAMPs are mediated by BEVs. 
MVs produced by S. aureus also fuse in a cholesterol-dependent 
manner with the plasma membrane of host cells, causing the delivery 
of α-hemolysin (HIa), which can trigger apoptosis in T-lymphocytes 
(Thay et  al., 2013). Klebsiella pneumoniae OMVs increased the 

proinflammatory cytokines IL-1β, IL-8 and TNF-α in human 
epithelial cells, mast cells and macrophages (You et al., 2019). Likewise, 
OMVs secreted by respiratory pathogens induced a strong 
proinflammatory response in immature THP-1 macrophages (Volgers 
et al., 2017). L. pneumophila OMVs can activate macrophages via 
TLR2 and cause tissue damage in human lung tissue explants (Jäger 
et al., 2015; Jung et al., 2016). Furthermore, peptidoglycan-containing 
OMVs were internalized into epithelial cells via lipid rafts to trigger 
NOD1-dependent responses both in vitro and in vivo (Kaparakis et al., 
2010). Additionally, intratracheal exposure to K. pneumoniae OMVs 
caused severe lung pathology in neutropenic mice similar to bacterial 
infection (Lee et  al., 2012). OMVs from P. aeruginosa and 
A. baumannii provoked pulmonary inflammation in vivo, partly 
modulated by the TLR2 and TLR4 pathways (Park et al., 2013; Marion 
et al., 2019). Furthermore, BEVs can promote the development of 
airway hypersensitivity to inhaled allergens. Repeated airway 
treatment with S. aureus MVs provoked Th1 and Th17 neutrophilic 
pulmonary inflammation, primarily through TLR2 signaling (Kim 
et al., 2012).

In addition, BEVs can promote bacterial colonization in the 
respiratory tract and the maintenance of biofilms. For instance, EVs 
from several common respiratory pathogens including, Haemophilus 
influenzae, M. catarrhalis, S. pneumoniae, and P. aeruginosa, promoted 
the adherence and aggregation of intracellular bacteria (Volgers et al., 
2017). The changes induced by P. aeruginosa OMVs resulted in an 
increase in the Psl/biomass ratio in the early biofilm matrix, which 
helped to protect growing colonies from the harmful effects of 
antimicrobial agents (Esoda and Kuehn, 2019). Additionally, 

TABLE 2 Contribution of gut microbe EVs to immune homeostasis.

Species Evidence from studies Reference

Escherichia coli Nissle 1917 Reduction in the expression of pro-inflammatory cytokines in colitis Lee et al. (2012)

Increase in epithelial barrier integrity through the upregulation of tight junction 

proteins

Alvarez et al. (2016)

Bacteroides fragilis Promotion of an immunomodulatory Treg response through DCs stimulation in colitis 

and mucosal tolerance through the regulation of autophagic genes

Shen et al. (2012)

Induction and inhibition of anti-inflammatory and pro-inflammatory cytokines in the 

Caco-2 cell line, respectively

Ahmadi Badi et al. (2019)

Lactobacillus rhamnosus Increase in gut DC levels and the induction of IL-10 release Al-Nedawi et al. (2015)

Lactobacillus sakei Increase in IgA production in the gut and improvement in epithelial barrier function Yamasaki-Yashiki et al. (2019)

Lactobacillus kefir, Lactobacillus 

kefiranofaceins, Lactobacillus kefirgranum

Suppression of proinflammatory cytokine production in an IBD mouse model Seo et al. (2018)

Akkermansia muciniphila Inhibition of colitis progression by improving macroscopic scores Kang et al. (2013)

Promotion of AMPK phosphorylation and prevention of LPS-induced intestinal barrier 

damage

Chelakkot et al. (2018)

Recovery of the gut barrier integrity in HFD-induced obesity by improving the 

expression of tight junction proteins

Chelakkot et al. (2018)

Bifidobacterium longum Improvements in allergic diarrhea through mast cells apoptosis in a food allergy mouse 

model

Kim et al. (2016)

Bifidobacterium bifidum Promotion of an immunomodulatory Treg response through DC stimulation in 

PBMCs-isolated naïve T cells

López et al. (2012)

Bifidobacterium vulgatus Induction of tolerance in colonic BMDCs Maerz et al. (2018)

DCs, dendritic cells; IL, interleukin; HFD, high-fat diet; IBD, inflammatory bowel disease; IgA, immunoglobulin A; PBMCs, peripheral blood mononuclear cells; BMDCs, Bone Marrow-
Derived Dendritic Cells.
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C. albicans biofilm EVs participated in matrix polysaccharide 
formation and decreased sensitivity to the antifungal drug fluconazole 
(Zarnowski et  al., 2018). Furthermore, a proteomics study of 
P. aeruginosa biofilms identified that the proteins related to OMVs 
consist of more than 20% of the total matrix proteome (Couto et al., 
2015). Many proteins associated with virulence are exclusively 
secreted via L. pneumophila OMVs, such as intracellular survival and 
replication (ProA1), invasion (IcmK), persistence and spreading in the 
lung (fliC) (Galka et al., 2008). Furthermore, after exposure to OMVs, 
vitronectin increased both in vivo and in vitro, and the increase 
in vitronectin in the bronchoalveolar space helped evade complement-
mediated clearance (Paulsson et al., 2018).

In summary, by targeting the BEV-related contents involved in the 
interaction between these vesicles and human lung cells or immune 
cells, new treatments for pulmonary infections may emerge, such as 
vaccines or drugs, that protect patients from bacterial invasion.

4.5. Motor system

4.5.1. The osteoclastic effects of BEVs
Studies have revealed that microbes or their released vesicles can 

induce inflammatory responses to initiate osteoclast activity and 
dampen osteoblast activity, leading to bone loss. Some citrullinated 
proteins were confirmed in OMVs from P. gingivalis, which implied a 
correlation between BEVs and rheumatoid arthritis (RA) (Larsen 
et al., 2020). Peptidylarginine deiminase (PPAD), which is correlated 
with the occurrence of RA, was also abundantly present in secreted 
BEVs (Gabarrini et al., 2018a,b). Moreover, human osteoblasts and 
synovial cells can internalize Kingella kingae OMVs, and the levels of 
granulocyte-macrophage colony-stimulating factor (GM-CSF) and 
IL-6 increase in RA synovial fluid upon interaction with OMVs, 
promoting signal transduction in infected joints and damaging bone 
tissues during bacterial infection (Maldonado et al., 2011). BEVs also 
aggravate joint damage by promoting bacterial evasion. After exposure 
to P. gingivalis OMVs, S. aureus accumulated in a gingipain-and 
PPAD-dependent manner, which promoted the uptake of 
Staphylococcus by human neutrophils and facilitated bacterial entry 
into the bloodstream (du Teil Espina et al., 2022). Therefore, the role 
of BEVs could potentially explain why RA patients show higher levels 
of disease severity or complications such as osteoarticular infection.

To investigate the association between BEVs and osteoporosis, an 
in vivo model of MAMP-induced inflammatory bone loss in mice was 
established, and Filifactor alocis EVs triggered systemic bone loss and 
osteoclastogenesis through TLR2 activation (Song et al., 2020; Kim 
et  al., 2021). These studies provide new insight into the effects of 
pathogen-derived EVs in systemic bone loss.

4.5.2. The osteoprotective effects of BEVs
In contrast, probiotic-derived vesicles exhibit osteoprotective 

effects. After oral administration to GC-treated mice, Lactobacillus 
animalis EVs could access the femoral head and improve trabecular 
bone microarchitecture (Chen et  al., 2022). EVs produced by 
A. muciniphila and the gut microbiota from children can access and 
accumulate in bone tissues to ameliorate ovariectomy-induced 
osteoporotic phenotypes by enhancing osteogenic activity and 
dampening osteoclast formation (Liu et al., 2021). Likewise, Proteus 
mirabilis OMVs inhibited osteoclast differentiation and caused 

mitochondria-dependent apoptosis (Wang et al., 2022). In the same 
study, treatment with OMVs restored bone loss in experimental 
osteoporosis and collagen-induced arthritis (Wang et al., 2022). 
Intriguingly, BEVs counteracted bacteria-mediated osteoclastogenic 
pathways. For example, K. kingae OMVs decreased 
osteoclastogenesis in a dose-dependent manner and inhibited 
proinflammatory cytokine production by infected macrophages 
(Pesce Viglietti et al., 2021). Therefore, BEVs exhibit advantages in 
bone health, and these studies offer a mechanistic basis for 
BEV-mediated osteoprotective functions.

5. Conclusion

In recent decades, our knowledge of the physiological and 
pathological effects of EVs derived from gram-negative and gram-
positive bacteria has improved unprecedentedly. BEVs are now 
commonly recognized as a delivery system that consolidate 
bacterial roles in bacterial survival, inflammation and 
pathogenesis in diverse biological milieu, and bacteria can 
modulate the biogenesis and content of BEVs in a tailored manner 
as needed. Moreover, recent advances in BEV science have 
attempted to address the question of how BEV-host interactions 
contribute to systemic diseases from different perspectives. To 
expound the intricate mechanisms underlying the role that BEVs 
play in infection and anti-infection activities in almost every 
system, we hope to explore novel therapeutic interventions.
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