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endovascular mechanical
thrombectomy in acute large
vessel ischemic stroke
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Background and objective: Automated machine learning or autoML has been

widely deployed in various industries. However, their adoption in healthcare,

especially in clinical settings is constrained due to a lack of clear understanding

and explainability. The aim of this study is to utilize autoML for the prediction of

functional outcomes in patients who underwent mechanical thrombectomy and

compare it with traditional ML models with a focus on the explainability of the

trained models.

Methods: A total of 156 patients of acute ischemic stroke with Large Vessel

Occlusion (LVO) who underwent mechanical thrombectomy within 24 h of stroke

onset were included in the study. A total of 34 treatment variables including

clinical, demographic, imaging, and procedure-related data were extracted.

Various conventional machine learning models such as decision tree classifier,

logistic regression, random forest, kNN, and SVM as well as various autoMLmodels

such as AutoGluon, MLJAR, Auto-Sklearn, TPOT, and H2O were used to predict

the modified Rankin score (mRS) at the time of patient discharge and 3 months

follow-up. The sensitivity, specificity, accuracy, and AUC for traditional ML and

autoML models were compared.

Results: The autoML models outperformed the traditional ML models. For

the prediction of mRS at discharge, the highest testing accuracy obtained by

traditional ML models for the decision tree classifier was 74.11%, whereas for

autoMLwhichwas obtained through AutoGluon, it showed an accuracy of 88.23%.

Similarly, for mRS at 3 months, the highest testing accuracy of traditional ML was

that of the SVM classifier at 76.5%, whereas that of autoML was 85.18% obtained

through MLJAR. The 24-h ASPECTS score was the most important predictor for

mRS at discharge whereas for prediction of mRS at 3 months, the most important

factor was mRS at discharge.

Conclusion: Automated machine learning models based on multiple treatment

variables can predict the functional outcome in patients more accurately than

traditional ML models. The ease of clinical coding and deployment can assist

clinicians in the critical decision-making process. We have developed a demo

application which can be accessed at https://mrs-score-calculator.onrender.

com/.
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1. Introduction

Deployment of machine learning (ML) in the healthcare

domain has helped in improving outcomes, cutting costs, and

advancing clinical research and understanding (1). However,

their wide adoption is constrained by data accessibility, dataset

imbalances, requirement of data science expertise in fine-tuning

and model deployment (2). AutoML is an attempt to solve

the above issues, not constrained by domain, to minimize

human intervention in data preprocessing, feature selection,

and model development and deployment. While traditional

artificial intelligence (AI) requires expertise in model development

and deployment, autoML aims to make the technology more

decentralized and accessible (3). AutoML is a serious attempt at

algorithmic automation with support for explainability so that

cross-domain experts without specialized knowledge of AI can

benefit from the advancements. In this study, we aim to investigate

the performance of autoML vis-a-vis traditional ML approaches

with a focus on understanding internal processes and ease of

clinical coding to apprise the clinical community. Specifically, we

aim to predict the clinical outcome of stroke thrombectomy, which

would help clinicians in better decision-making for the invasive

high-risk procedure. The above application study has been selected

as it represents the general complexity and challenges in themedical

domain, such as a small sample size, a high dataset imbalance, and

a large number of feature variables. To the best of our knowledge,

there are no previous studies investigating the performance of

autoML in clinical studies.

Ischemic stroke due to occlusion of a major intracranial vessel,

also called “large vessel occlusion” (LVO) is the most common

cause of neurological impairment worldwide (4). The occlusion

is due to the formation of a thrombus within one or more of

the major intracranial vessels (5). After coronary artery disease,

stroke ranks as the second leading cause of death. It is the

third leading cause of early mortality, causing the death of an

estimated 6.2 million people annually and 113 million disability-

adjusted life years (DALY) (6). Although, a well-timed medical

management of stroke including intravenous thrombolysis therapy

for dissolution of the intravascular thrombus is the mainstay of

treatment, a subset of stroke patients also benefit from endovascular

treatment in which the occluding thrombus is directly removed

via trans-arterial approach, thereby recanalizing the vessel and

saving the brain tissues from irreversible damage. This procedure

called mechanical thrombectomy is invasive and causes various

complications (7). The factors predicting the functional outcome

of the thrombectomy procedure are unclear. While many patients

benefit from the procedure, few show neurological deterioration

despite undergoing the mechanical thrombectomy procedure (4).

Therefore, it would be ideal to understand the factors influencing

the functional outcome post-mechanical thrombectomy. However,

this is challenging as a wide range of factors influence the post-

procedure outcome.

Few studies have been undertaken to predict post-mechanical

thrombectomy functional outcomes in the patients of LVO. Heo et

al. (8) developed three machine learning models (neural network,

random forest, and logistic regression) to predict the modified

Rankin Scale (mRS) score at 3 months. Similarly, Brugnara et al.

(9) compared different machine learning models with conventional

statistical methods to predict the mRS score at 3 months. Although

these models have achieved good accuracy, they have their own

limitations such as manual feature selection, extraction, and lack

of explainability. We investigate if autoML can be an alternative

solution to the limitations of traditional MLmodels. AutoML refers

to the class of algorithms that focus on the gradual automation

of machine learning by rule-based improvements in the design

and optimization of various machine learning algorithms (10).

AutoML is a scalable, efficient, and easily deployable solution that

automates time-consuming iterative tasks of model selection and

development. It also constructs an ensemble of ML algorithms

and constructs the best-performing ML method with given data

(11). Figure 1 shows a simplified flowchart describing the difference

between traditional ML and autoML approaches.

The primary contributions of this study are:

• Investigating the prediction capability and explainability of

autoML algorithms vis-a-vis traditional ML frameworks in the

clinical domain.

• Assessing the application of autoML models as a potential

clinical decision support tool for predicting functional

outcomes in patients who underwent mechanical

thrombectomy.

• Considering an exhaustive list of 34 treatment variables for the

AI-based prediction from a clinical perspective.

2. Materials and methods

The study was approved by the Ethical Committee of Sree

Chitra Tirunal Institute of Medical Sciences and Technology,

Trivandrum, Kerala, India. As it was a retrospective study, the need

for informed consent was waived.

2.1. Definition of the predicted outcome

The modified Rankin score (mRS score) at the time of the

patient’s discharge from the hospital and 3 months follow-up

was used to determine the functional outcome of mechanical

thrombectomy. The mRS score is a 6-point disability score with

possible scores from zero to six where zero denotes lack of any

symptoms, five denotes severe bedridden disability and a score of

six denotes death. We classified the mRS score into three classes:

class 1 (mRS≦ 2 = favorable outcome), class 2 (mRS > 2 and≦ 5 =

unfavorable outcome), and class 3 (mRS = 6 = death) (12).

2.2. Study cohort

Patient data between January 2013 and January 2022 were

retrieved from the institute database. Patients with acute ischemic

stroke due to LVO and who subsequently underwent CT evaluation

followed by mechanical thrombectomy were included in the study.

Patients with posterior circulation stroke, who had no clinical data,

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1259958
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Raj et al. 10.3389/fneur.2023.1259958

FIGURE 1

Simplified flowchart describing the di�erence in traditional ML and autoML approaches.

and those who did not undergo pretreatment CT imaging were

excluded from the study. After applying the inclusion and exclusion

criteria, 156 patients were selected for the study. Figure 2 shows the

visual representation of the workflow of the study.

For both traditional and autoML models, the remaining 156

patients were grouped randomly into either a training or testing

cohort in an approximately 1:1 ratio, which was matched for

various prognostic classes (Table 1). The training and testing set

had 71 and 85 patients, respectively. The division of the dataset

into an approximately 1:1 ratio is a slight departure from the

conventional approach of dividing the dataset in the ratio of 7:3.

This is done to train the model on a small sample space, replicating

the situation in a single-center cohort with existing low data sharing

protocol in the medical domain. This also helped us to create a

large external dataset of 85 patients to capture the generalizability

capacity of the developed model. Dividing the dataset in the ratio

of 7:3 would have left us with a small test sample size, thereby not

reflecting the diversity of cases in a real-world scenario.

2.3. Pretreatment variables

As a wide range of factors are known to interplay in

predicting the outcome of thrombectomy procedures, a total

of 34 variables including clinical, demography, imaging, and

parameters pertaining to intervention procedures were included

in our study. The clinical variables included age; gender; risk

factors such as diabetes, hypertension, hyperlipidemia, peripheral

vascular diseases, smoking, addiction, or cardiac disease; pre-

stroke mRS score; blood pressure and blood sugar at presentation;

antithrombotic/antiplatelet medication status; NIHSS score at

presentation; NIHSS stroke at 24 h post-procedure; stroke

etiology; type of stroke; and bridging thrombolysis. The imaging

variables comprised ASPECTS score at presentation, presence of

hyperdense clot, thrombus length, site of occlusion, CT collateral

score (modified TAN score), follow-up ASPECTS score, and

hemorrhagic transformation. The variables pertaining to the

thrombectomy procedure included the final recanalization score

(thrombolysis in cerebral ischemia-TICI), major life-threatening

periprocedural events during mechanical thrombectomy, and

procedures during or outside routine working hours (8 a.m. to

4 p.m.). Time metrics such as door-to-groin puncture and groin

puncture to recanalization were summed into a single value for

analysis. To the best of our knowledge, this is the first study

encompassing such an exhaustive list of treatment variables for the

prediction of a patient’s prognosis. All the variables were extracted

from the hospital database and verified by the interventional

neuroradiologist. Table 1 describes basic statistics of the training

and testing datasets.

2.4. Data preprocessing

Automated data preprocessing is a crucial aspect of autoML.

Various autoMLs employ customized preprocessing techniques

that define their prediction capability. For instance, autoGluon

(13) identifies the given problem as a classification or regression

problem on the basis of the label column. It categorizes each

feature as categorical, numeric, text, or date/time and handles them

separately. Also, missing values are handled by categorizing them in

the “Unknown” category rather than imputing them, which allows

autoGluon to handle missing values even during test time. Similar

strategies are employed by different autoMLs, which reduce human

intervention and save manual effort.

However, we did simple preprocessing to adhere to the

clinical literature. The categorical variables were dichotomized for
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FIGURE 2

Visual representation of the workflow of the study.

their presence or absence. The ordinal data which included the

various scoring systems were grouped under fewer subcategories.

For instance,

• ASPECTS scores were grouped into three subcategories as

< 5, 5–7, and > 7 (14)

• NIHSS scores were < 5, 5–15, and > 15 (15)

• clot lengths were ≤ 10 mm, 10–20 mm, and ≥ 20 mm (16)

• CT collateral score was dichotomized as per modified TAN

score (17, 18)

• thrombolysis in cerebral ischemia scores were TICI 0 or 1,

TICI 2a or 2b, and TICI 2c or 3 (19)

• The level or site of vessel occlusion was grouped under three

classes based on the involvement of the Internal Carotid

Artery (ICA), proximal segment (M1), distal segment (M2) of

Middle Cerebral Artery (MCA), and Anterior Cerebral Artery

(ACA) (20)

– Class 1: All ICA occlusion

– Class 2: M1 occlusion without ICA occlusion, with or

without M2, and beyond occlusion

– Class 3: M2 and beyond occlusion without ICA and M1

occlusion.

Additionally, the presence or absence of ACA involvement

was also considered due to its role in the collateralization of

MCA branches.

2.5. Model building

To extensively compare traditional ML models with autoML,

we have selected five models for each category. Although the

detailed workflow has been explained in respective publications,

for the purpose of completeness and understanding, we summarize

their workings in a simple manner.

For derivation of the model, the training data could be defined

as X =
{

x(1), x(2), x(3), . . . , x(n)
}

, where n is the number of patients

in the training data. The individual input vector x is defined as

x = [x1, x2, x3, . . . , xm], where x1, . . . , xm are components of the

input vector andm is the number of variables included in this study.
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TABLE 1 Selected demographic, clinical, and treatment characteristics

and clinical outcome in training and testing set cohorts.

Training set Testing set

Age, mean (range) 60.91 (39–88) 57.35 (23–78)

Females, n (%) 28 (39.4) 33 (38.8)

Reached within routine working
hours, n (%)

36 (50.7) 47 (55.29)

Hypertension, n(%) 40 (56.34) 51 (60)

Diabetes, n (%) 26 (36.62) 35 (41.17)

Smoking, n (%) 16 (22.53) 10 (11.76)

Coronary artery disease, n (%) 15 (21.1) 16 (18.8)

Valvular heart disease, n (%) 11 (15.4) 21 (24.7)

Dyslipidemia, n (%) 15 (21.1) 22 (25.88)

Past Stroke, n (%) 9 (12.6) 16 (18.8)

Antiplatelet medications, n (%) 18 (25.35) 25 (29.41)

Right Hemisphere, n (%) 35 (49.29) 38 (44.70)

NIHSS at admission, median (IQR) 16 (12–20) 16 (11–21)

mRS at admission, median (IQR) 4 (4–4) 4 (4–5)

Baseline CT ASPECTS, median
(IQR)

7 (6–8) 6 (5–7)

Hyperdense middle cerebral artery
sign, n (%)

37 (52.11) 43 (50.58)

Occluded vessel

ICA and beyond, n (%) 12 (16.90) 23 (27.05)

M1, MCA and beyond,
n (%)

58 (81.69) 59 (69.41)

Involvement of anterior cerebral
artery, n (%)

9 (12.6) 13 (15.29)

Clot burden score, median (IQR) 6 (5–6) 6 (4–6)

Thrombus length, median (IQR) 10 (14–7) 11 (14–8)

Modified tan score, n (%) 38 (53.52) 44 (51.76)

Bridging thrombolysis, n (%) 27 (38.02) 26 (30.58)

TICI score

0, n (%) 1 (1.40) 7 (8.23)

1, n (%) 3 (4.22) 4 (4.7)

2a, n (%) 7 (9.85) 13 (15.29)

2b, n (%) 24 (33.8) 28 (32.94)

2c+3, n (%) 36 (50.7) 32 (37.64)

Symptomatic intracerebral bleed, n
(%)

4 (5.63) 6 (7.05)

24 hour CT ASPECTS score,
median (IQR)

6 (5–7) 6 (4–7)

mRS at Discharge, median (IQR) 3 (2-4) 4 (2-4)

mRS at 3 months, median (IQR) 2 (1-3) 3 (1-4)

Time from stroke onset 108 110

to recanalisation, median (range in
minutes)

(45–250) (30–345)

The target is determined by Y .

Y = { “favorable outcome,” “unfavorable outcome,” and “death”}

2.5.1. ML frameworks
Support vector machine (21): Support Vector Machine or

Support Vector Classifier constructs a hyperplane(s) to separate

two or more classes. The objective is to construct a hyperplane and

position it such that it is at a maximum distance from the data

points. An important hyper-parameter is the selection of kernel

function. A kernel function reduces the computational burden by

efficiently enabling computations to be performed in a higher-

dimensional feature space. A few examples of kernel functions are

linear function, polynomial function, radial basis function, and

sigmoid function. We have selected a radial basis function as our

kernel to handle the non-linear data in our sample (22).

Logistic regression (23): A logistic regression model is based

on a sigmoid function, which outputs a value in the range between

zero and one. Let p be the probability that the event we want to

predict has occurred. Logistic regression assumes that the odds

ratio z of the event is well explained by the linear function of the

adequately weighted variables. wi represents the weight of the i th

variable.

z = log
p

1− p
=

n
∑

i=0

wixi

p =
1

1+ e−z

Next, the cost function J(w) is defined as written below:

J(w) =
∑n

i=1

[

−y(i) log
(

φ

(

z(i)
))

−
(

1− y(i)
)

log
(

1− φ

(

z(i)
)]

+ λ
2R (1)

The first section of J(w) was derived from the log-likelihood

function of the event Y , and the second section, R, was

the regularization parameter. The hyper-parameters are the

regularization parameters, which could be L1 or L2 regularization,

and λ, which needs to be set up by hyperparameter tuning. For

our experiments, we had set L2 as our regularization function with

LBFGS (Broyden-Fletcher-Goldfarb-Shanno) as our solver (24).

The number of maximum iterations was set to 1,000.

k nearest neighbors (25): kNN, a supervised learning

algorithm, uses proximity to determine the class of the test data.

It assumes that similar data points exist in close proximity. In this

algorithm, k is the hyper-parameter, which decides the number of

the closest points that would be considered for predictions. If k is

too low, it would lead to overfitting, and if it is too high, it would

lead to underfitting. kNN is also sensitive to outliers and is not

memory-efficient. For our experiments, we selected the value of k

as five.

Decision tree classifier (26): A decision tree classifier, uses a set

of rules to make decisions that are based on Information Gain (IG).

IG is the basic criteria to determine if a feature should be used to
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split a node for expanding the tree. The information gain (IG) in a

decision tree is defined as (26):

IG
(

Dp, f
)

= I
(

Dp

)

−
Nleft

Np
I (Dleft ) −

Nleft

Np
I
(

Dright
)

(2)

Here, Dp is the data of the parent node, Dleft is the data of the

left child node, andDright is the data of the right child node. I is the

impurity of the data, which is defined either as an entropy or Gini

impurity. Np is the number of the parent node, Nleft is the number

of the left child node, and Nright is the number of the right child

node. When I is defined as the “entropy,” IH is defined as written

below (26):

IH(t) = −

c
∑

i=1

p(i | t) log2 p(i | t) (3)

When I is defined as the “Gini impurity,” IG is defined as stated

below (26):

IG(t) =
c

∑

i=1

p(i | t)(1− p(i | t)) (4)

The depth of the tree is determined on the basis of the training

dataset. In our experiments, we have selected Gini Impurity as our

impurity criterion.

Random forest classifier (27): Since decision tree classifiers are

prone to overfitting, the creation of ensembles is one of the most

popular methods. The algorithm of a random forest classifier can

be summarized as:

1. For t = 1 to T :

A) Draw a bootstrap sample |D| from the dataset D and make

the bootstrap sample Dt .

B) Select q variables at random from them variables.

C) Grow a random-forest tree Mt with Dt until the minimum

node size nmin is reached.

2. Output the ensemble of trees {Mt}
T
1 .

3. For the classification, majority voting is used. When Ŷt(x) is the

class prediction of the t th tree of the forest, the prediction is

shown below:

ŶT
rf (x) = majority vote

{

Ŷt(x)
}T

1
. (5)

For our experiments, the number of trees in the forest was set

to 100, owing to the large number of features in the dataset. The

impurity criterion was the same as the Decision Tree Classifier, that

is, the Gini impurity.

2.5.2. autoML frameworks
Auto-sklearn (28): Auto-sklearn is one of the earliest

AutoML frameworks that aims to solve the Combined Algorithm

Selection and Hyperparameter optimization (CASH) problem by

introducing two innovations.

Firstly, it introduces a meta-learning step to warm-start

the Bayesian Optimization technique. Bayesian optimization

fits a probabilistic model to capture the relationship between

hyperparameter settings and their measured performance; it then

uses this model to select the most promising hyperparameter

setting. However, Bayesian optimization is slow for hyperparameter

spaces as large as those of entire ML frameworks but can fine-tune

performance over time. The introduction of the meta-learning step

helps to quickly suggest some instantiations of the ML framework

that are likely to perform exceptionally well. Still, it is unable to

provide fine-grained information on performance. Integrating the

benefits of both techniques makes meta-learning complementary to

Bayesian optimization.

Secondly, Auto-sklearn introduces the ensembling of models

trained bymeta-learning and Bayesian optimization. This ensemble

architecture is more resilient and less prone to overfitting as it

does not have to adhere to a single pipeline layout. Given the well-

known tendency for ensembles to outperform individual models, it

can also increase performance. Figure 3 shows an overview of the

Auto-Sklearn workflow.

H2O autoML (29): The H2O framework (H2O.ai, 2013)

contains the automated machine learning algorithm H2O AutoML

(H2O.ai, 2017), which handles binary, multi-class classification,

and regression tasks on tabular datasets. It supports a variety

of basic models, including Deep Neural Networks, Random

Forests, Gradient Boosting Machines (GBM), and Generalized

Linear Models (GLM). H2O AutoML introduces two essential

advancements to improve the models’ accuracies. First, the base

models are fine-tuned using the fast random search approach

(defined as lambda search), in which the hyperparameters are

selected from the range of values (defined as alpha values)

speculated to be the most crucial. The quick random searchmethod

introduced in H2O AutoML is comparable to the auto-sklearn

Bayesian optimization method.

Second, H2OAutoML designs and deploys two stackedmodels:

“All models ensemble,” which combines all the base models trained,

and “Best of the Family ensemble,” which contains the best-

performing models. Fast random searches across several algorithm

families provide a wide range of base models, but when combined

with stacking, they yield efficacious ensembles. However, the

stacked ensembles perform exceptionally well when the base

models are robust separately and have uncorrelated errors. Figure 4

shows the overview of the working of the H2O autoML framework.

Tree-based pipeline optimization tool (30): TPOT is

another popular AutoML based on genetic programming

(GP), an evolutionary computation technique for automatically

constructing computer programs. It is a wrapper for scikit-learn,

the Python machine learning toolkit, that manages feature

preprocessing, model selection, and hyperparameter optimization

operations for a specific machine learning task. Specifically,

TPOT creates multiple copies of the dataset and modifies them

using pipeline operators. The pipeline operators have supervised

classification operators (e.g., Decision trees, kNN, Random Forests,

XGBoost, and Logistic Regression) and feature preprocessing

operators (e.g., Scalers, PCA, Binarizers, and Polynomial Features),

which create new modified features. The features are then

combined to create genetic programming primitives, which are

subsequently used to create genetic programming trees. The

feature selection operators include Variance Threshold, Select K

Best, and Recursive Feature Elimination. The top 20 pipelines with

the highest degree of classification accuracy are determined, and
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FIGURE 3

Simplified workflow in the auto-sklearn framework. The boxes in blue indicate the innovations introduced by Auto-sklearn.

FIGURE 4

Simplified workflow of the H2O autoML framework. The boxes in blue indicate the innovations introduced by the H2O AutoML framework.

FIGURE 5

Simplified workflow of the TPOT autoML framework. The boxes in blue indicate the innovations introduced by the TPOT autoML framework.

five copies of each are rendered to generate a new population.

The new population is then subjected to one-point crossover

and mutation. The evaluation is performed for 100 generations,

adding and adjusting pipeline operators that increase classification

accuracy and pruning operators that reduce classification accuracy.

Eventually, the algorithm selects the exemplary “best” pipeline

from the iteration that has the maximum accuracy. Figure 5 shows

the overview of the working of TPOT autoML.

MLJAR (31): MLJAR is an AutoML python package that

works on tabular data and provides four modes of operation:

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1259958
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Raj et al. 10.3389/fneur.2023.1259958

“explain,” “compete,” “perform,” and “optuna.” While the “Explain”

mode is suitable for the dataset’s initial data analysis and

explainability, the “compete” mode is for model training in time-

constraint circumstances. In the “perform” mode, production-

ready ML pipelines are deployed based on the optimum prediction

time. MLJAR also deploys ML algorithms with hyperparameters

optimized as proposed in the “Optuna framework.” The important

characteristics of MLJAR are listed below:

1. It establishes a “baseline” for the data so that ML model

performance may be accessed. For classification tasks, the

“baseline” is calculated using the prior class distribution; for

regression tasks, it is calculated using the simple mean.

2. Models are trained using a variety of algorithms, including

Nearest Neighbors, Linear, Random Forest, Extra Trees,

LightGBM, Xgboost, and CatBoost.

3. Features preprocessing, such as missing values imputation and

converting to categoricals, are accomplished inherently.

4. It performs hyperparameters optimization by random search

over a defined set of values, optuna framework, and hill-

climbing to fine-tune final models.

5. It can design, test, and deploy ensemble models.

6. Themost crucial characteristic ofMLJAR is its explainability: All

ML pipelines created can be analyzed using markdown reports

containing details of all models.

7. Feature importance for each feature is computed using

permutation, and for every algorithm, dependence and decision

plots can be viewed and analyzed.

AutoGluon (13): Autogluon is an open source AutoML

by awslabs and supports basic algorithms such as LightGBM,

LightGBMXT, CatBoost, XGBoost, Random forests, Extremely

Randomized Trees, k-Nearest Neighbors, and neural networks.

Apart from the basic algorithms, AutoGluon introduces two crucial

innovations, which boost the efficiency of the models trained.

Firstly, appropriately tuned neural networks are integrated

with the ensembled models, which provide enhanced accuracy

gains. Since the decision boundaries learned by neural networks

differ from the tree-based models, they introduce variability and

generalization to the trained models.

Secondly, AutoGluon introduces ground-breaking multi-layer

stack ensembling. Various basic models make up the first layer, and

their outputs are concatenated before being fed into the multiple

stacker models that make up the second layer. AutoGluon reuses all

its base layer model types as stackers, while conventional stacking

techniques utilize simpler models in the stacker than the base

layers (with the same hyperparameter settings). The multi-layer

stacking approach used by AutoGluon has two features in common

with deep learning. The straight transfer of original features to

the following layer is comparable to skip connections in residual

networks, while layer-wise training is comparable to hidden layers

in deep learning. In the final stacking layer, AutoGluon applies

ensemble selection to aggregate the stacker models predictions in a

weighted manner. Figure 6 shows the multi-layer stacking strategy

of autoGluon.

K-fold ensemble bagging, a straightforward ensemble

technique that lowers the variance in the generated predictions,

helps AutoGluon perform even better. This approach involves

randomly dividing the data into k separate units, and then training

the model on each k unit using a new set of test data. Each model

generates out-of-fold (OOF) predictions based on the validation

data, and AutoGluon bags all models.

Overfitting is avoided by repeating the k-fold bagging

procedure on n separate random divisions of the training data

and averaging all OOF predictions across the bags. Predicting

how many bagging rounds can be completed during the allocated

training period yields the number of repetitions, n. Averaging over

several k-fold bags, OOF forecasts have substantially less variance

and are less likely to overfit. According to the authors, the n-

repeated k-fold bagging procedure is beneficial for smaller datasets

when OOF overfitting occurs since OOF data sizes are constrained.

The above innovations make the AutoGluon-trained models faster,

more robust, and significantly more accurate.

2.6. Model performance

The model performance has been evaluated on training and

testing accuracy, Area Under Curve (AUC), sensitivity, and

specificity. Five-fold cross-validation was applied to assess the

performance of traditional ML models, and for autoML, we rely

on the respective inbuilt cross-validationmechanisms. The training

accuracy demonstrates the performance of the model on which the

model was trained while the testing accuracy is the performance on

the external dataset. Area Under the ROC Curve is an important

metric in the clinical domain as it provides an aggregate measure

of performance across all thresholds (32). The closer the curve

approaches the left corner of the graph, the better its discriminating

capability. The diagonal reference line on the AUC curve represents

a random region where the model is unable to classify favorable or

unfavorable outcomes (sensitivity = specificity).

3. Results

The total training time for 71 patients using the best-

performing model (AutoGluon) was 208.59s and the prediction

time for 85 patients was 0.045s.

3.1. Comparison of traditional ML and
autoML for predicting mRS at discharge

The accuracy of various conventional ML and autoMLmethods

are shown in Table 2. The training accuracy was high among all

the conventional ML methods, ranging from 89.49% for SVM

to 99.99% for the decision tree classifiers; however, the testing

accuracy was suboptimal. The decision tree classifier showed an

accuracy of 74.11% while it was only 57.65% for SVM. Other

classifiers accuracies lay between these two extreme values. On

the contrary, autoML methods displayed good performance in

training datasets, with the lowest accuracy of 89.93% for the auto-

H2O method to the highest of 94.09% for the AutoGluon method.

Other classifiers such as auto-sklearn and TPOT demonstrated

an accuracy of 94.03 and 93.69%, respectively. Testing accuracy

was highest for AutoGluon which showed an accuracy of 88.23%,

followed by MLJAR and auto-sklearn, which had an accuracy of
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FIGURE 6

Multi-layer stack ensembling strategy of AutoGluon.

TABLE 2 Performance of various autoMLs and traditional ML algorithms for predicting mRS at discharge.

Sr. No Models Training accuracy Testing accuracy AUC Sensitivity Specificity

1 Auto-Gluon 94.09 88.23 0.95 0.74 0.91

2 MLJAR logloss 0.22∗ 84.7 0.85 0.83 0.89

3 Auto-Sklearn 94.03 83.52 0.87 0.73 0.89

4 TPOT 93.69 76.47 0.91 0.44 0.75

5 Decision tree classifier 99.99 74.11 0.83 0.78 0.89

6 H2O 89.93 72.9 NA∗ 0.53 0.84

7 Logistic regression 89.05 65.88 0.78 0.53 0.77

8 Random forest 68.7 65.88 0.65 0.34 0.67

9 kNN 92.12 64.7 0.69 0.46 0.74

10 SVM 89.49 57.64 0.73 0.42 0.71

The values of AUC, Sensitivity, and Specificity are for the testing set. ∗Due to the technical limitation of the concerned autoML, the values could not be calculated.

84.7 and 83.53% respectively. The accuracy for other classifiers was

less (76.47 and 72.9% for TPOT and H2O, respectively).

3.2. Comparison of traditional ML and
autoML for predicting mRS at 3 months

AutoML methods consistently outperformed traditional ML

approaches in the prediction of clinical prognosis at 3 months

(Table 3). Similar to earlier results, traditional ML had high training

accuracy of 92 to 99%, while a similar optimism was not evident

in the testing phase. The highest accuracy was obtained with the

SVM classifier (76.5%), while other classifiers demonstrated even

worse performances (72.83% for logistic regression and random

forest, 69.13% for decision tree classifier, and 51.85% for knn

classifier). Accuracy for autoML methods varied from a low score

of 72.8% (H2O) to a high score of 85.18% (MLJAR). Auto-gluon

was the second-best performing autoML method, with an accuracy

of 83.18% while other auto classifiers had an accuracy of 82.7 and

76.54%, respectively.

3.3. Area under the curve, sensitivity, and
specificity of the model for prediction of
mRS at discharge and at 3 months

The AUC for mRS prediction at discharge for the best-

performing model (AutoGluon) was 0.95, with sensitivity and

specificity of 0.74 and 0.89, respectively. For other autoML

methods, the AUC ranged between 80 and 90, while it was generally

low for traditional ML techniques. The observation was similar

for mRS prediction at 3 months as well, where autoML methods

had a high AUC in the range of 0.89–0.96, which was higher than
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TABLE 3 Performance of various autoMLs and traditional ML algorithms for predicting mRS at 3 months.

Sr. No. Models Training accuracy Testing accuracy AUC Sensitivity Specificity

1 Auto-Gluon 93.12 83.95 0.96 0.75 0.85

2 MLJAR logloss 0.15* 85.18 0.91 0.83 0.91

3 Auto-Sklearn 96.6 82.7 0.89 0.75 0.88

4 TPOT 96 76.54 0.9 0.7 0.85

5 H2O 70.67 72.8 NA∗ 0.63 0.83

6 Decision tree classifier 99.99 69.13 0.76 0.72 0.85

7 Logistic regression 91.33 72.83 0.89 0.69 0.84

8 Random forest 98.45 72.83 0.89 0.68 0.84

9 kNN 92 51.85 0.67 0.42 0.72

10 SVM 93.11 76.54 0.87 0.72 0.86

The values of AUC, sensitivity, and specificity are for the testing set. ∗Due to the technical limitation of the concerned autoML, the values could not be calculated.

the traditional ML approaches. The sensitivity and specificity of

MLJAR and AutoGluon, the two methods that had high predictive

accuracy, were 0.83 and 0.9 vs. 0.81 and 0.90, respectively. Tables 2,

3 demonstrate the AUC, sensitivity, and specificity values of all the

ML methods evaluated in this study. Supplementary Figures 1, 2

show ROC curves for select autoML and traditional ML methods

evaluated in this study.

4. Discussion

In several domains, especially medical and clinical,

understanding why a model produces a specific prediction

can be just as crucial as obtaining accurate predictions. There

is a conflict between accuracy and interpretability since the best

performance is sometimes attained by complex models, such as

ensembling and deep neural networks, that even experts have

trouble understanding. The capacity to accurately interpret a

prediction model’s output fosters the necessary clinical confidence,

offers perception into how a model may be improved, and aids

comprehension of the process being modeled. In this regard, we

explored a popular prediction interpretation framework known as

SHAP (SHapley Additive exPlanations) (33), which interprets each

feature’s importance value, providing insights into the decision-

making approach of the model. Most AutoMLs have integrated

the SHAP framework into their respective codebase to provide

explainability and interpretability.

The learning capacity of a model is dependent on its ability

to learn the importance of features in predicting a class. While

AutoML constructs complex models by ensembling, it also

prioritizes various features as part of feature selection with the aim

to improve on the predictions. AutoGluon was the best-performing

model on mRS at discharge and MLJAR on mRS at 3 months.

Figures 7, 8 show the feature importance of two top-performing

models. For the prediction of mRS at discharge by AutoGluon

(Figure 7A), the 24-h ASPECTS score had the highest impact.

Other features in the order of reducing importance include stroke

severity at the onset, time taken for recanalization from the onset of

stroke, stroke etiology, age, TICI score, hypertension, hyperdense

MCA, and smoking. For the prediction of mRS at 3 months by

MLJAR (Figure 8B), mRS at discharge had the highest impact.

Other important features in decreasing order were the hyperdense

MCA sign, NIHSS at admission, time taken for recanalization from

the onset of stroke, age, and stroke etiology.

Comparing the feature importance of the two best-performing

models, we may note that for predicting mRS at discharge, 50% of

the features in the Top 10 and 80% of the features in the Top 20

are the same. Similarly, for predicting mRS at 3 months, 60% of

the features in the Top 10 and 80% of the features in the Top 20

are the same although the relative importance of features in both

cases varies. This provides greater insight into the decision-making

process of the models and may be a first step toward objectively

defining a relative importance score to variables in predicting the

modified Rankin Score.

For greater insights into the predictive capability of traditional

machine learning algorithms, we investigated the feature

importance of these models. Figure 9 shows the feature importance

of the decision tree classifier and SVM, which are two of the

extreme performing traditional machine learning algorithms

for mRS at Discharge. Similarly, Figure 10 shows the feature

importance of SVM and kNN, which are two of the extreme

performing traditional machine learning algorithms for mRS at

3 months. It was observed that the order of relative importance

and number of variables considered in model decision-making

play a crucial role in model prediction. For example, comparing

Figures 7A, 9A, one may observe that while AutoGluon and the

decision tree classifier have almost the same number of features

(20 in this case), their relative importance is a decisive factor

in the model prediction. While autoGluon has attributed 24 H

CT ASPECTS the highest importance, the decision tree classifier

has attributed it to time for recanalization from the onset of

stroke (SUM). Forty percent of the features in the Top 10 and

60% of the features in the Top 20 are matching between the

best-performing ML model and the best-performing AutoML

model. These matches are less than the one compared between the

best-performing AutoML models. The poor performance of kNN

in predicting mRS at 3 months may be attributed to the incorrect

feature importance assigned to various clinical parameters for the

prediction of mRS scores (Figure 10B). While the best-performing

autoML methods have their feature importance aligned to the
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FIGURE 7

Feature importance of various variables as interpreted by SHAP for mRS at discharge and 3 months by AutoGluon. SUM represents the time taken for

recanalization from the onset of stroke. (A) mRS at discharge. (B) mRS at 3 months.

FIGURE 8

Feature importance of various variables as interpreted by SHAP for mRS at Discharge and 3 months by MLJAR. SUM represents the time taken for

recanalization from the onset of stroke. (A) mRS at discharge. (B) mRS at 3 months.
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FIGURE 9

Feature importance as interpreted for mRS at discharge by (A) Decision Tree Classifier and (B) SVM.

clinical methodology of predicting mRS at discharge and 3

months, the under-performing machine learning algorithms have

failed to develop a decision model as per clinical requirements.

The interpretation of the model’s output could go a long way

in fostering confidence among clinicians and enable greater

adaptation of autoML in clinical practice.
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FIGURE 10

Feature importance as interpreted for mRS at 3 months by (A) SVM and (B) kNN.

From the clinical perspective, a clinician also uses the same

factors to select and counsel patients prior to the procedure

although much more subjectively than that possible with the

use of autoML algorithms. A pre-hand knowledge of which

factors and the degree of the effect of the functional outcome

of mechanical thrombectomy procedure will help in providing

a customized approach to each patient. The application of the

model into routine clinical use would ensure that those patients
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who would gain maximum benefit out of the procedure are

offered the treatment timely. It will also help to avoid unnecessary

invasive interventions in those who are unlikely to improve post-

thrombectomy procedures. Additionally, it will aid the clinicians in

better counseling of stroke patients and their families regarding the

prognosis.

Several striking features distinguish this study from the

previous related works. In the most recent study, (34) manually

developed an ensemble of seven ML models with nine clinical

features. In contrast, we explored automated ensembling, without

human intervention with an exhaustive list of 34 treatment

variables. The other advantage of autoML is its ability to handle

missing values either by imputing or categorizing them as

“Unknown” to handle real-world scenarios. Furthermore, training

the models on a small training set and testing it on an equal

number of samples, as in the real-world scenario, helps to

test the generalizability capacity of the models. In this respect,

the prediction capability of autoML vis-a-vis traditional ML

algorithms can be appreciated. The integration of SHAP to autoML

frameworks has filled the gap between accuracy and interpretability

giving clinicians the necessary confidence in using the developed

models as decision support systems. Automated feature selection

and model ensembling would go a long way in decreasing human

intervention and manual effort, thus promoting the adoption of

autoML across domains.

There are a few limitations to our study. Firstly, since it was

a single-center retrospective study, the testing sample although

equivalent to the training sample, can further be enhanced and

tested for real-world deployments. Secondly, as evident from

Figure 7, the autoML frameworks considered only 20 features of

the given 34 features in their decision-making. Prediction capability

through the remaining 14 features may be studied in future works.

5. Conclusion

In conclusion, our study demonstrates the robustness,

efficiency, and potential of autoML over traditional ML algorithms.

Even with an exhaustive list of treatment variables and a small

training sample size, autoML outperformed traditional ML models

in predicting functional outcomes. The promising results suggest

that further development and deployment of autoML frameworks

in the clinical domain could assist clinicians in early prognosis,

customized treatments, and improved counseling for patients and

their families.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institute

Ethics Committee, Sree Chitra Tirunal Institute ofMedical Sciences

and Technology, Trivandrum, Kerala, India. The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent for participation was

not required from the participants or the participants’ legal

guardians/next of kin in accordance with the national legislation

and institutional requirements. Written informed consent was

not obtained from the individual(s) for the publication of any

potentially identifiable images or data included in this article

because as it was a retrospective study, the need for informed

consent was waived off by the Institute Ethics Committee.

Author contributions

RR: Data curation, Formal analysis, Software, Visualization,

Writing—original draft, Writing—review and editing. SK:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Supervision, Writing—original

draft, Writing—review and editing. JM: Investigation, Project

administration, Resources, Validation, Visualization, Writing—

review and editing. PS: Data curation, Supervision, Validation,

Writing—review and editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Department of Biotechnology, Govt. of India,

through project funding BT/PR33134/AI/133/17/2019.

Acknowledgments

We acknowledge the assistance from Dr. Harikishore

Kamepalli, MD, Department of Imaging Sciences and

Interventional Radiology, Sree Chitra Tirunal Institute of

Medical Sciences, and the project staff, Comprehensive Stroke Care

Program, Department of Neurology in the data collection process.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fneur.2023.

1259958/full#supplementary-material

Frontiers inNeurology 14 frontiersin.org

https://doi.org/10.3389/fneur.2023.1259958
https://www.frontiersin.org/articles/10.3389/fneur.2023.1259958/full#supplementary-material
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Raj et al. 10.3389/fneur.2023.1259958

References

1. A Romero RA, Y Deypalan MN, Mehrotra S, Jungao JT, Sheils NE, Manduchi E,
et al. Benchmarking AutoML frameworks for disease prediction using medical claims.
BioData Min. (2022) 15:15. doi: 10.1186/s13040-022-00300-2

2. Rashidi HH, Tran N, Albahra S, Dang LT. Machine learning in health care and
laboratory medicine: General overview of supervised learning and Auto-ML. Int J Lab
Hematol. (2021) 43:15–22. doi: 10.1111/ijlh.13537

3. Montes GA, Goertzel B. Distributed, decentralized, and democratized
artificial intelligence. Technol Forecast Soc Change. (2019) 141:354–8.
doi: 10.1016/j.techfore.2018.11.010

4. Saleem Y, Nogueira RG, Rodrigues GM, Kim S, Sharashidze V, Frankel M, et
al. Acute neurological deterioration in large vessel occlusions and mild symptoms
managedmedically. Stroke. (2020) 51:1428–34. doi: 10.1161/STROKEAHA.119.027011

5. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, et al.
Endovascular treatment for acute ischemic stroke. N Engl J Med. (2013) 368:904–13.
doi: 10.1056/NEJMoa1213701

6. Krishnamurthi RV, Ikeda T, Feigin VL. Global, regional and country-
specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid
haemorrhage: a systematic analysis of the global burden of disease study 2017.
Neuroepidemiology. (2020) 54:171–9. doi: 10.1159/000506396

7. Behme D, Gondecki L, Fiethen S, Kowoll A, Mpotsaris A, Weber W.
Complications of mechanical thrombectomy for acute ischemic strokeâĂŤa
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