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Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can

lead to severe disease in the lower lung. However, these two infections are

caused by very different pathogens (Mycobacterium vs. virus), they have different

mechanisms of pathogenesis and immune response, and differ in how long the

infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common

feature, which is also frequently observed in other respiratory infections: the

burden of disease in the elderly is greater. Here, we discuss possible reasons for

the higher burden in older adults, including the effect of co-morbidities,

deterioration of the lung environment, auto-immunity, and a reduced antibody

response. While the answer is likely to be multifactorial, understanding the main

drivers across different infections may allow us to design broader interventions

that increase the health-span of older people.

KEYWORDS

SARS-CoV-2, Mycobacterium tuberculosis, COVID-19, TB, elderly, immunity,
infectious diseases
Introduction

The older adult population (> 60 years old) is projected to double to 2 billion by 2050

(1, 2). Natural lung aging is associated with progressive changes at both the cellular and

organ level, including cellular senescence and chronic inflammation among others (3). This

causes a decline in lung function and impaired immunological responses (4–7), which

would be expected to influence the response to respiratory infections.

Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are both predominantly

respiratory diseases but do not have a great deal in common beyond that. COVID-19

results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a

virus that in most people persists for a few weeks or less and is cleared by the adaptive

immune response. Protection against symptomatic SARS-CoV-2 infection correlates

strongly with the levels of neutralizing antibodies against the virus (8). In support of

this, the Omicron variant of SARS-CoV-2 was able to extensively re-infect people with pre-

existing immunity (9) because it had high-level escape from neutralizing antibodies elicited
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by previous infection or vaccination (10). In contrast, TB, caused by

Mycobacterium tuberculosis (M.tb), can persist indefinitely in the

infected individual (11, 12). Further, TB generally follows a bimodal

age pattern, with higher risk of severe disease in children below 5

years of age and adult individuals of > 30 years old (13, 14), while

severe COVID-19 is more common in older adults and pediatric

COVID-19 deaths are relatively rare (15). These differences may be

due to the fact that the immune responses in TB and COVID-19

are different.

Despite the differences, these two infections share common

features: first, both are strongly affected by immunosuppression

(e.g. during HIV infection), indicating that their control strongly

depends on T cell and/or antibody responses, which are

compromised by the CD4 T cell depletion and dysregulation

during HIV infection (16–24). Indeed, TB is one of the cardinal

diseases leading to the death of people living with HIV (PLWH) in

the pre-ART era (25, 26). On the other hand, the most striking effect

of HIV co-infection in COVID-19 happens in advanced HIV

disease (defined as a CD4 T cell counts of less than 200 cells per

microliter), where prolonged SARS-CoV-2 infection can last for

months (27–33), leading to extensive SARS-CoV-2 genome

evolution. A second common feature, which will be the focus of

this review, is the remarkably higher disease burden in the elderly

population (34). This is also true for most respiratory infections

such as respiratory syncytial virus (35, 36), influenza (37, 38), and

even rhinovirus, which is usually a mild upper respiratory tract

infection, but can become a more severe lower respiratory infection

in the elderly, very young children, or immunocompromised

people (39).

Globally, COVID-19 has a mortality rate of about 1% (40),

although this is influenced and fluctuates depending on many

factors, including phenotypic and genotypic host factors,

host immunity, and SARS-CoV-2 variants, among others. The

elderly are at a higher risk of having more severe disease, which

manifests as a lower respiratory tract infection that may require

hospitalization, intensive care, and ventilation. It also results in

higher mortality (41–43). The increase in the probability to die from

COVID-19 as a function of age is dramatic: relative to the under-55

age group, mortality increases 8-fold in the 55-64 age group and 62-

fold in the over 65 age group (43).
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In contrast to the 1% mortality rate from COVID-19, mortality

from TB disease is roughly a quarter of the TB incidence (44). That

is, about a quarter of people diagnosed with TB disease will die.

However, most people who are exposed to M.tb do not progress to

symptomatic disease and instead have subclinical or asymptomatic

infection for years. In this case, the infection is controlled by the

host immune response (45, 46). In the elderly population, such

subclinical or asymptomatic infection has a higher chance to

develop into TB disease (47–49). Indeed, more than 90% of TB

cases in older individuals result from reactivation of latent TB

infection (LTBI) (50). Elderly people that develop TB disease have

high mortality, mainly due to treatment failure. A recent report

evaluating data from four countries shows that the treatment

success rate among people with TB < 65 years old is 82% but

decreases among the older age groups to 76% in 65−74 year-olds,

65% in 75−84 year-olds, and 46% in ≥85 year-olds (51).

There are multiple factors that may interact with each other and

potentially play a role in the higher disease burden in COVID-19 and

TB in the elderly, and their contribution may differ between the two

infections. These include age-associated inflammation (inflammaging),

a less effective immune response due to immunosenescense, and a

highly oxidized lung environment (Figure 1). Although observed less

frequently, other factors such as an age-related increase in

autoantibodies (autoimmunity) may play a role in higher COVID-19

severity in the elderly. In addition, increasing numbers of people living

with comorbidities in the elderly population may be particularly

important. These factors tend to arise at different times along the life

span (Figure 1). In the next sections, we outline examples for each of

these factors, including how theymay exacerbate COVID-19 and TB in

older individuals.
Inflammaging and
immunosenescence

The process of aging is associated with a decline in immune

functions marked by immunosenescence, resulting in increased

susceptibility to autoimmunity, malignancies, and infectious

diseases (4, 5, 52–58). Immunosenescence is relatively well

characterized in the adaptive immune system. Age-related
FIGURE 1

Factors associated with increased TB and COVID-19 disease burden with age across the life span. Darker red in bar denotes higher disease burden
and severity and numbers denote age. Created with BioRender.com.
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adaptive immune dysfunction is related to a lingering level of low-

grade inflammation, immune dysfunction, increased number of

memory T cells, and the loss ability of T cells to respond to antigens,

as well as irreversible T cell loss of proliferation capacity.

Interestingly, viral (e.g. SARS-CoV-2) and bacterial (e.g. M.tb)

infections can also increase the extent of immune senescence,

adding to the increased immune dysfunction and inflammation,

especially in the elderly population (reviewed in detail in (59)).

Senescence in the innate immune system, where innate

immunity is the first response to infection, is less well-

characterized. Evidence for macrophage senescence during aging

is supported by decreased pro-inflammatory responses of human

(60–64) and mouse phagocytes to lipopolysaccharide (LPS)

stimulation (65–70), which could be linked to age-related

alterations in Toll-Like Receptor (TLR) expression and/or

signaling which recognizes pathogen-associated molecular

patterns (65, 66, 71–73).

Still, cellular immunosenescence does not fully explain

increased circulating pro-inflammatory cytokines seen in elderly

people, non-human primates, and old mice (61, 74–76), or the

increased expression of pro-inflammatory genes with aging in

several organs (77–81). This has led to a second paradigm,

termed inflammaging, in which chronic, low-grade inflammation

develops with increasing age in tissues that are frequently exposed

to innate immune stimulation and oxidative stress (82, 83).

Inflammaging occurs in the human lung, with increased numbers

of macrophages and neutrophils in the lung alveolar lining fluid

(ALF) of elderly individuals, as well as increased levels of IL-6 and

IL-8 (84, 85). Specifically, IL-6 is the commonly used biomarker of

inflammaging (86). There is also increased p38 MAPK

phosphorylation and nuclear localization of NF-kB (87–89), a

critical regulator of inflammation. Resident alveolar macrophages

are more activated in the elderly (90–92) and have increased

production of pro-inflammatory cytokines in response to TLR

stimulation (93). Taken together, there is strong evidence that

chronic inflammation occurs in the lungs as we age.

How inflammaging affects M.tb and SARS-CoV-2 infection is

not completely understood. However, in both infections, a balanced

immune response is thought to be critical both for infection control

and to prevent immune system mediated damage. Tumor necrosis

factor (TNF), the upstream activator of the NF-kB system, is

elevated in inflammaging. High levels of TNF lead to reduced

control of M.tb through programmed cell necrosis of activated

macrophages via the mitochondrial-lysosomal-endoplasmic

reticulum signaling circuit (94–96). Since macrophages are the

primary host cells of M.tb as well as the most important line of

defense against this pathogen, macrophage death in turn increases

M.tb replication since the bacilli are able to robustly grow in the

dead infected cells (97).

Immunosenescence and inflammaging are also suspected to

contribute to severe COVID-19 in the elderly as well as to

persistence of symptoms following acute disease (98, 99). Severe

SARS-CoV-2 infection is characterized by a cytokine storm that,

combined with a dysfunctional immune response in the elderly,

leads to the accumulation of immune cells in the lungs and

overproduction of pro-inflammatory molecules such as IL-6 (a
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marker of inflammaging), resulting in more tissue damage (100–

102). High levels of pro-inflammatorymolecules (hyperinflammatory

syndrome) promote the survival of neutrophils via decreased

apoptosis (103); and persistent increased systemic levels of

neutrophils and monocytes in COVID-19 patients are associated

with increased disease severity (104). Age-associated dysregulation

and senescence of T-cells may also influence the immune response to

SARS-CoV-2 (105). As seen in HIV infection, CD4 T cell depletion

and dysregulation may lead to the inability to clear SARS-CoV-2

infection, most likely due to the inability to generate antibodies which

will effectively neutralize the virus (27). This would be expected since

CD4 T cells are critical to facilitate the antibody response to infection

(106). Lastly, SARS-CoV-2 infection might also increase chronic

inflammation in the elderly, resulting in a higher chance of long-

term sequelae even after viral clearance (long-COVID) (107). New

therapies targeting age-associated pathways may be critical to reduce

COVID-19 mortality and/or long-term sequelae in the aging

population (108).
Lung environment in the elderly in the
context of TB and COVID-19

Local inflammation and oxidation occur in the aging lung and

influences the ALF (109, 110). ALF is a surfactant which reduces

surface tension and allows the lung alveoli to expand. It also

functions in multiple ways in the innate immune response to

lung pathogens. Here we will focus on the ALF as an example of

how the lung environment can change with age and its impact on

TB and COVID-19.

ALF is generated, secreted, and recycled by alveolar epithelial type

II cells (ATII), and is essential for maintaining lung homeostasis (111,

112). ALF in elderly individuals degrades quickly and is not

regenerated efficiently because of ATII senescence. In addition, low-

grade chronic inflammation in old age is expected to alter ALF

component production and activity, due in part to biochemical

modifications because of the alveolar oxidation state. We and others

have shown that components of human ALF including collectins

(which bind pathogen surface oligosaccharides or lipids and mark

the pathogen for the innate immune response), surfactant protein (SP)-

A and SP-D, homeostatic hydrolytic activities (hydrolases), surfactant

lipids, and the complement system are critical elements of the innate

immune system during M.tb infection (113–115) and play important

roles in M.tb-phagocyte encounters (116–119). Indeed, SP-A

upregulates the expression of the mannose receptor in macrophages,

which in turn favorsM.tb survival within phagocytes. In contrast, SP-D

can directly bind M.tb clustering bacteria, favoring recognition and

uptake by phagocytes driving better control of the infection (110).

In a study defining the molecular composition of ALF in the

aging lung, our findings demonstrate that pro-inflammatory

cytokines are increased, SP-A and SP-D and complement

components are significantly increased but dysfunctional, ALF

hydrolases are decreased, and surfactant lipids are oxidized in

both mice and humans (109). Further, a recent quantitative

proteomic profiling of the lung environment of human adult vs.
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elderly ALF investigated molecular fingerprints, pathways, and

regulatory networks that characterize the alveolar space in old age

compared to younger individuals (120). ALF from elderly

individuals had significantly increased production of matrix

metalloproteinases, markers of cellular senescence, antimicrobials,

and proteins of neutrophilic granule origin, among others,

suggesting that neutrophils could be potential contributors to the

dysregulated alveolar environment with increasing age.

Consistent with reduced ALF functionality with age, M.tb

exposed to human ALF obtained from older adults showed

increased intracellular growth in macrophages and ATIIs (121–

123), as well as increased bacterial burden and lung tissue damage in

mice (121). In addition, M.tb exposed to ALF from healthy 18- to

45-year-old adults upregulated key cell envelope genes associated

with amino acid, carbohydrate, and lipid metabolism, as well as

genes associated with redox homeostasis and transcriptional

regulators, while M.tb exposed to ALF from 60+ year-old

individuals showed lower transcriptional responses (124). The

changes in ALF in aging support the concept that the pulmonary

environment can modify mucosal immune responses, thereby

increasing the susceptibility to pulmonary infections in the

elderly population.

How ALF influences SARS-CoV-2 infection is mostly

unknown. However, patients with severe COVID-19 sometimes

harbor IgA autoantibodies against pulmonary SP-B and SP-C,

blocking the function of the lung surfactant lipid layer and

potentially contributing to alveolar collapse and poor oxygenation

(125). Other studies indicate that levels of SP-D in blood could be

used as a biomarker for COVID-19 severity as a result of the

impairment of the pulmonary barrier caused by prolonged

inflammation (126). Still, how the levels, status, and function of

ALF components in the alveolar environment determine the

outcome of M.tb and SARS-CoV-2 infection and disease severity

of TB and COVID-19, respectively, still needs to be elucidated

in detail.
Reduced adaptive immune responses

The adaptive immune response is essential to control bothM.tb

and SARS-CoV-2. CD4 T cells are critical in the orchestration of

both the antibody and cellular adaptive immune response to

infections (106, 127, 128). For SARS-CoV-2, the strongest

correlate of protection against symptomatic infection is the level

of pre-existing neutralizing antibody immunity (8, 129). Thus,

SARS-CoV-2 neutralizing antibody levels are studied extensively

as a function of age. A complication of measuring neutralizing

antibody levels after infection is that higher disease severity elicits

higher antibody levels (130). However, it is possible to distinguish

between neutralizing antibody production capacity and disease

severity by measuring neutralizing antibody levels to SARS-CoV-

2 post-vaccination, with much of the data coming from

mRNA vaccines.

One of the first studies examining the neutralizing antibody

response to the Pfizer BNT162b2 mRNA vaccine against SARS-

CoV-2 found that the fraction of people with a detectable
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neutralizing antibody response decreased slowly as a function of

age up to the age of 80, with almost all individuals responding to the

vaccine. After 80, the probability to elicit a neutralizing antibody

response plummeted and was close to zero at 90, although the

number of individuals in this part of the age range was small in the

study (131). A second study used a cutoff of 55 years for who is

elderly and showed substantially lower neutralizing antibody levels

in the older age group after the first dose of an mRNA vaccine (132).

However, this difference decreased with the second dose. A third

study done in Singapore also found that people over 60 had lower

neutralizing responses with an mRNA vaccine. However, they

showed a strong increase in neutralizing antibodies with a third,

booster dose (133). The benefit of a booster dose was recapitulated

in a group of over-80-year-olds who did not have an antibody

response to the first two doses (134).

The role of neutralizing antibodies in the immune response to

M.tb is currently unclear. However, the reduced ability to mount an

effective neutralizing antibody response may indicate an overall less

effective adaptive immune response in the elderly, which would

reduce M.tb control.
Autoimmunity

An essential component of the initial immune response to both

M.tb and SARS-CoV-2 is interferon (IFN), which orchestrates the

innate immune response to infection. In TB, the type II interferon

IFN-g activates macrophages and enables them to initiate

maturation and acidification of the M.tb-containing phagosome,

as well as other antimicrobial responses (135). The failure of this

process to kill the internalized bacilli leads to macrophage death and

M.tb growth in the dead infected cells (97). Mice deficient in IFN-g
quickly succumb to TB (136, 137).

The role of type I interferons during M.tb infection is not

completely understood, with some studies reporting a host

protective role vs. other studies suggesting a detrimental role

under different host-M.tb encounter settings (138, 139). However,

type I interferons including IFN-a are an important component of

the innate immune response to SARS-CoV-2 (100), and they are

rapidly induced in early stages of the infection (140). Multiple

SARS-CoV-2 genes attempt to interfere with IFN (141–144).

Individuals with inborn errors in type I IFN immunity are much

more prone to severe COVID-19 (145) and mice deficient for type I

IFN have reduced activation of CD4 and CD8 T cells and reduced

recruitment of monocytes and monocyte-derived macrophages to

the lung (146).

Anti-IFN antibodies might block IFN binding to IFN receptors,

impairing its antiviral effect (147). There have been sporadic case

reports of anti-IFN antibodies increasing susceptibility to

mycobacterial infections (148–150) or shown to be elevated at the

site of infection in advanced TB patients (151). In contrast, SARS-

CoV-2 infection is reported to be more severe in individuals with

autoantibodies to type I IFN. In one study, 101 of 987 patients with

severe COVID-19 have been found to have these autoantibodies,

while none of the 663 individuals with asymptomatic or mild SARS-

CoV-2 infection had anti-IFN type I antibodies (152). The
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prevalence of anti-IFN type I antibodies was found to be strongly

age dependent (153, 154). Autoantibodies neutralizing high

concentrations of IFN-a were present in 0.18% of individuals

between 18 and 69 years, 1.1% of individuals between 70 and 79

years, and 3.4% of people >80 years of age (154). Autoantibodies are

unlikely to completely explain the higher susceptibility of the elderly

population to severe COVID-19. However, such autoimmunity may

be a contributing factor in a subset of people (155) and an example

of an age dependent affect which is highly variable between people

of the same age. Also, antibodies to other host proteins are known to

increase with age (156). This may potentially add to disease

pathology in a similar way.
Comorbidities

An important aspect of the shift towards a global aging

population is increasing chronic illness. The top 10 comorbidities

associated with the elderly population include hypertension (58%),

high cholesterol (47%), arthritis (31%), ischemic heart disease

(29%), diabetes (27%), chronic kidney disease (18%), heart failure

(14%), depression, Alzheimer disease and dementia (11%) and

chronic obstructive pulmonary disease (COPD, 11%) (157). Some

of these comorbidities overlap with known risk factors for TB

(diabetes) and higher COVID-19 severity (obesity, hypertension,

high cholesterol, and diabetes). Thus, a common risk factor for TB

and COVID-19 which increases in prevalence in the elderly is

diabetes. This is not surprising, as diabetes leads to higher mortality

from a range of infectious diseases (158).

Projections suggest that the global incidence of diabetes will

double in the next 20 years, with 40% of this estimated to result

from the aging population (159, 160). The elderly are at high risk for

developing type 2 diabetes due to underlying insulin resistance,

impaired pancreatic function, and a higher obesity prevalence

linked to changes in body composition and physical inactivity

(161, 162). The resulting high blood sugar can cause serious

complications such as heart disease, kidney problems, and loss of

vision. Furthermore, diabetes in older adults is associated with a

higher risk for chronic microvascular and cardiovascular

complications and common geriatric syndromes and is linked to

higher mortality (163). People with diabetes have altered cytokine

release by macrophages and T cells, impaired neutrophil

recruitment, and decreased levels of type I interferons as well as

reduced numbers of new populations of dendritic cells (DCs) and

natural killer (NK) cells (164). Also, the diabetic lung is

characterized by structural modifications such as abnormalities in

small vessels (alveolar diabetic microangiopathy or microvascular

disease) (165), as well as alterations in the interstitial environment

(166, 167) and autonomic neuropathy with loss of autonomic

innervation in bronchioles (168), which might contribute to

adverse outcomes in respiratory diseases (169).
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While the interactions between TB and diabetes in the elderly

are not completely understood, people with diabetes are 3 times

more likely to develop pulmonary TB, especially those with poorly

controlled diabetes (170, 171). In vitro and in vivo studies have

found reduced association and uptake of M.tb by monocytes from

people with diabetes and alveolar macrophages from mice with

chronic diabetes, as well as reduced innate immune responses and a

persistent systemic hyper-inflammation in TB-diabetic individuals

(172–174). Diabetes also promotes TB reactivation due to impaired

T cell immunity, specifically because of decreased IFN-g production
by CD4 T cells (175). In addition, cavitary disease (where cavities

are abnormal, thick-walled, air-filled spaces in the lung which result

when a granuloma encasing M.tb liquifies and ruptures) is more

frequently observed in elderly TB patients with diabetes than in

non-diabetic elderly patients, suggesting that diabetes promotes

cavitation in the aging lung parenchyma (176).

In addition, TB might pose a risk of developing diabetes (177).

A persistent inflammatory state in response to TB disease might

result in secondary metabolic effects such as “stress hyperglycemia”,

defined as temporary hyperglycemia caused by stress during acute

illness (178). It has been suggested that stress hyperglycemia may

negatively influence TB treatment outcomes, although this

relationship is still poorly understood (178).

Individuals with diabetes are at a higher risk for SARS-CoV-2

severe disease and mortality (34, 179–185). According to an analysis

done in the South African population, the hazard ratios for

mortality range from 3 to 12 for ≥20 years old public-sector

patients, with the mortality risk increasing as blood sugar control

decreases. Risk may be lower in other populations, perhaps due to

better diabetes control: about 3-fold higher for mortality as reported

in a meta-analysis (181). While the worse disease outcome of SARS-

CoV-2 infection in diabetics is well established, diabetics are

not necessarily at higher risk of infection with SARS-CoV-2

(179), indicating that not all aspects of immunity are

equally compromised.
M.tb and SARS-CoV-2 co-infection

Respiratory infections tend to interact in one of two ways. They can

synergize, with the cardinal example being Streptococcus pneumoniae

bacterial infection after influenza virus infection. This happens because

the virus causes damage to the mucosal surface, allowing the bacteria to

attach better and invade more easily (186). In addition, the type I

interferon response to the virus decreases phagocyte function and

therefore control of the bacteria by phagocytosis (186). The other

possible interaction is antagonism, and usually happens between

viruses. This is called super-infection exclusion and occurs because

the type I interferon antiviral response trigged by one virus can inhibit

other viruses (187). Two studies by independent groups examined

experimental SARS-CoV-2/M.tb co-infection in K18-hACE2
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transgenic mice. Both groups found that SARS-CoV-2 infection did

not affect M.tb loads or associated pathology. They also observed that

M.tb infected mice were more resistant to SARS-CoV-2 infection (188,

189). This is consistent with a report that intravenous administration of

BCG, a live attenuated TB vaccine developed from Mycobacterium

bovis, protects mice against lethal SARS-CoV-2 challenge (190). Thus,

there is currently no mechanistic basis for synergy between SARS-

CoV-2 and M.tb. There is still a poor understanding of the pathology

and immunological changes associated with M.tb/SARS-CoV-2 co-

infection (191), as recently reviewed in (192).

In terms of epidemiology, some studies suggest that the

dysregulated immunity during M.tb infection is associated with

increased susceptibility and severity of COVID-19 and vice versa

(193–198). There is also some evidence suggesting that in the

elderly population, TB and COVID-19 may be associated with

increased mortality compared to each disease occurring alone (199–

201). Mechanisms may include increased lung damage in TB

patients with COVID-19, resulting in impaired lung function

(202) or higher risk of TB reactivation after COVID-19 infection

due to depletion of CD4 T cells and excessive lung fibrosis. Worse

outcomes of co-infection may also be because of shared clinical,

immunological, and social determinants (203–206), as well as

compromised linkage to care for HIV and TB in a pandemic

environment (207). In our own South Africa based cohort of

SARS-CoV-2 infected individuals, we did not observe a clear

enrichment of active TB disease (208) relative to the observed

incidence in the South African population (209).
Conclusions and future perspectives

Aging has a negative effect on the outcomes of both SARS-CoV-2

and M.tb infection, and may be considered a subtype of

immunosuppression/dysregulation which varies widely between

individuals of a similar age. This may be because the effect is multi-

factorial and involves age-related inflammation (inflammaging) and

senescence of immune cell subsets, as reviewed previously (210). It is

particularly damaging to the adaptive arm of the immune response

which is critical to control both infections. In addition to that, the lung

environment itself also changes with age, and many of the changes are

associated with the reduced ability of alveolar fluid to perform its innate

immune functions. Aging also increases autoimmunity, and in a subset

of individuals this may manifest as autoantibodies to immune

mediators such as interferons, with the result that innate immunity

becomes less effective at reducing pathogen replication. This is an

example of how the effects of aging can be heterogeneous. Lastly, co-

morbidities such as type II diabetes increase with age, and such co-

morbidities, though they do not necessarily increase the chances of

infection, are risk factors for more severe disease if infection does occur.

Conversely, SARS-CoV-2 and M.tb infections may accelerate

age-related processes. For example, M.tb infection and TB

treatment, as well as long-COVID, might result in cardiovascular

complications and induce cardiovascular disease (211), an

important comorbidity associated with the older population. Also,
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SARS-CoV-2 is associated with increased oxidative stress, which

also plays a role in the pathogenesis of diabetes (212).

Some of the processes described here are already targets for

interventions. For example, the elderly are prioritized for COVID-19

vaccination to compensate for the less effective immune response to

SARS-CoV-2 (213). Other interventions, for example better control of

diabetes, are available but are not uniformly implemented due to health

systems challenges, particularly in low- and middle-income countries

(214). Interventions which may increase lung health at a given stage of

life are yet little explored, but have the potential to work across

pathogens to decrease the effects of infection, which could translate

to substantial gains in the health span of aging populations.
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Allué-Guardia et al. 10.3389/fimmu.2023.1250198
References
1. UN. World population Ageing 2019: Highlights. (2020).

2. Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The
aging lung: Physiology, disease, and immunity. Cell (2021) 184(8):1990–2019. doi:
10.1016/j.cell.2021.03.005

3. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of
aging: An expanding universe. Cell (2023) 186(2):243–78. doi: 10.1016/j.cell.
2022.11.001

4. Chalise HN. Aging: basic concept. Am J BioMed Sci Res (2019) 1:8–10. doi:
10.34297/AJBSR.2019.01.000503

5. Cho SJ, Stout-Delgado HW. Aging and lung disease. Annu Rev Physiol (2020)
82:433–59. doi: 10.1146/annurev-physiol-021119-034610

6. Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, et al. An
atlas of the aging lung mapped by single cell transcriptomics and deep tissue
proteomics. Nat Commun (2019) 10(1):963. doi: 10.1038/s41467-019-08831-9

7. Kim J, Heise RL, Reynolds AM, Pidaparti RM. Aging effects on airflow dynamics
and lung function in human bronchioles. PloS One (2017) 12(8):e0183654. doi:
10.1371/journal.pone.0183654

8. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al.
Neutralizing antibody levels are highly predictive of immune protection from
symptomatic SARS-CoV-2 infection. Nat Med (2021) 27:1205–11. doi: 10.1038/
s41591-021-01377-8

9. Pulliam JR, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome
MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of
Omicron in South Africa. Science (2022) 376(6593):eabn4947. doi: 10.1126/
science.abn4947

10. Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al. Omicron
extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature (2021)
602(7898):654–6. doi: 10.1038/s41586-021-04387-1

11. Menzies NA, Swartwood N, Testa C, Malyuta Y, Hill AN, Marks SM, et al. Time
since infection and risks of future disease for individuals with mycobacterium
tuberculosis infection in the United States. Epidemiology (2021) 32(1):70–8. doi:
10.1097/EDE.0000000000001271

12. Kiazyk S, Ball TB. Latent tuberculosis infection: An overview. Can Commun Dis
Rep (2017) 43(3-4):62–6. doi: 10.14745/ccdr.v43i34a01

13. Bunyasi EW, Mulenga H, Luabeya AKK, Shenje J, Mendelsohn SC, Nemes E,
et al. Regional changes in tuberculosis disease burden among adolescents in South
Africa (2005-2015) . PloS One (2020) 15(7) :e0235206. doi : 10.1371/
journal.pone.0235206

14. Iqbal SA, Winston CA, Bardenheier BH, Armstrong LR, Navin TR. Age-period-
cohort analyses of tuberculosis incidence rates by nativity, United States, 1996-2016.
Am J Public Health (2018) 108:S315–S20. doi: 10.2105/AJPH.2018.304687

15. Wang JG, Zhong ZJ, Mo YF, Wang LC, Chen R. Epidemiological features of
coronavirus disease 2019 in children: a meta-analysis. Eur Rev Med Pharmacol Sci
(2021) 25(2):1146–57. doi: 10.26355/eurrev_202101_24685

16. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, et al. IFI16
DNA sensor is required for death of lymphoid CD4 T cells abortively infected with
HIV. Science (2014) 343(6169):428–32. doi: 10.1126/science.1243640

17. Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, et al. Abortive
HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid
tissue. Cell (2010) 143(5):789–801. doi: 10.1016/j.cell.2010.11.001

18. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell
death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature (2014) 505
(7484):509–14. doi: 10.1038/nature12940

19. Galloway NL, Doitsh G, Monroe KM, Yang Z, Muñoz-Arias I, Levy DN, et al.
Cell-to-cell transmission of HIV-1 is required to trigger pyroptotic death of lymphoid-
tissue-derived CD4 T cells. Cell Rep (2015) 12(10):1555–63. doi: 10.1016/
j.celrep.2015.08.011

20. Banda NK, Bernier J, Kurahara DK, Kurrle R, Haigwood N, Sekaly RP, et al.
Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for
activation-induced apoptosis. J Exp Med (1992) 176(4):1099–106. doi: 10.1084/
jem.176.4.1099

21. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, et al.
Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature
(1995) 375(6531):497–500. doi: 10.1038/375497a0

22. Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, et al.
HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering
the cellular redox state. EMBO J (1995) 14(3):546–54. doi: 10.1002/j.1460-
2075.1995.tb07030.x

23. Zeng M, Haase AT, Schacker TW. Lymphoid tissue structure and HIV-1
infection: life or death for T cells. Trends Immunol (2012) 33(6):306–14. doi:
10.1016/j.it.2012.04.002

24. Cooper A, Garcıá M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ. HIV-1
causes CD4 cell death through DNA-dependent protein kinase during viral integration.
Nature (2013) 498(7454):376–9. doi: 10.1038/nature12274
Frontiers in Immunology 07
25. Sepkowitz KA, Raffalli J, Riley L, Kiehn TE, Armstrong D. Tuberculosis in the
AIDS era. Clin Microbiol Rev (1995) 8(2):180–99. doi: 10.1128/CMR.8.2.180

26. Bell LC, Noursadeghi M. Pathogenesis of HIV-1 andMycobacterium tuberculosis
co-infection. Nat Rev Microbiol (2018) 16(2):80–90. doi: 10.1038/nrmicro.2017.128

27. Cele S, Karim F, Lustig G, San JE, Hermanus T, Tegally H, et al. SARS-CoV-2
prolonged infection during advanced HIV disease evolves extensive immune escape.
Cell Host Microbe (2022) 30(2):154–162.e5. doi: 10.1016/j.chom.2022.01.005

28. Lustig G, Ganga Y, Rodel H, Tegally H, Jackson L, Cele S, et al. SARS-CoV-2
evolves increased infection elicited cell death and fusion in an immunosuppressed
individual. medRxiv (2022), 22282673. doi: 10.1101/2022.11.23.22282673

29. Riddell AC, Kele B, Harris K, Bible J, MurphyM, Dakshina S, et al. Generation of
novel SARS-CoV-2 variants on B.1.1.7 lineage in three patients with advanced HIV
disease. Clin Infect Dis (2022) 75(11):2016–8. doi: 10.1093/cid/ciac409

30. Wilkinson SAJ, Richter A, Casey A, Osman H, Mirza JD, Stockton J, et al.
Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol (2022) 8(2):
veac050. doi: 10.1093/ve/veac050

31. Maponga TG, Jeffries M, Tegally H, Sutherland A, Wilkinson E, Lessells RJ, et al.
Persistent SARS-CoV-2 infection with accumulation of mutations in a patient with
poorly controlled HIV infection. Clin Infect Dis (2022). doi: 10.2139/ssrn.4014499

32. Hoffman SA, Costales C, Sahoo MK, Palanisamy S, Yamamoto F, Huang C, et al.
SARS-coV-2 neutralization resistance mutations in patient with HIV/AIDS, california,
USA. Emerging Infect Diseases (2021) 27(10):2720–3. doi: 10.3201/eid2710.211461

33. Karim F, Moosa MY, Gosnell B, Sandile C, Giandhari J, Pillay S, et al. Persistent
SARS-CoV-2 infection and intra-host evolution in association with advanced HIV
infection. medRxiv (2021). doi: 10.1101/2021.06.03.21258228

34. Boulle A, Davies M-A, Hussey H, Ismail M, Morden E, Vundle Z. Western cape
department of health in collaboration with the national institute for communicable
diseases SA. Risk factors for coronavirus disease 2019 (COVID-19) death in a
population cohort study from the western cape province, South Africa. Clin Infect
Dis (2020) 73(7):e2005–e15. doi: 10.1093/cid/ciaa1198

35. Savic M, Penders Y, Shi T, Branche A, Pircon JY. Respiratory syncytial virus
disease burden in adults aged 60 years and older in high-income countries: A
systematic literature review and meta-analysis. Influenza Other Respir Viruses (2023)
17(1):e13031. doi: 10.1111/irv.13031

36. Branche AR, Falsey AR. Respiratory syncytial virus infection in older adults: an
under-recognized problem. Drugs Aging (2015) 32(4):261–9. doi: 10.1007/s40266-015-
0258-9

37. Paget J, Spreeuwenberg P, Charu V, Taylor RJ, Iuliano AD, Bresee J, et al. Global
mortality associated with seasonal influenza epidemics: New burden estimates and
predictors from the GLaMOR Project. J Glob Health (2019) 9(2):020421. doi: 10.7189/
jogh.09.020421

38. Langer J, Welch VL, Moran MM, Cane A, Lopez SMC, Srivastava A, et al. High
clinical burden of influenza disease in adults aged >/= 65 years: can we do better? A
systematic literature review. Adv Ther (2023) 40(4):1601–27. doi: 10.1007/s12325-023-
02432-1

39. Hung IF, Zhang AJ, To KK, Chan JF, Zhu SH, Zhang R, et al. Unexpectedly
higher morbidity and mortality of hospitalized elderly patients associated with
rhinovirus compared with influenza virus respiratory tract infection. Int J Mol Sci
(2017) 18(2):259. doi: 10.3390/ijms18020259

40. WHO. WHO Coronavirus (COVID-19) Dashboard 2023. Available at: https://
covid19.who.int/.

41. O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS,
Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature
(2021) 590(7844):140–5. doi: 10.1038/s41586-020-2918-0

42. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort
study. Lancet (2020) 395(10229):1054–62. doi: 10.1016/S0140-6736(20)30566-3

43. Yanez ND, Weiss NS, Romand JA, Treggiari MM. COVID-19 mortality risk for
older men and women. BMC Public Health (2020) 20(1):1742. doi: 10.1186/s12889-
020-09826-8

44. Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality
during 1990-2000. Bull World Health Organization (1994) 72(2):213.

45. Wong EB. It is time to focus on asymptomatic tuberculosis. Clin Infect Diseases
(2021) 72(12):E1044–E6. doi: 10.1093/cid/ciaa1827

46. Shah M, Dorman SE. Latent tuberculosis infection. New Engl J Med (2021) 385
(24):2271–80. doi: 10.1056/NEJMcp2108501

47. Li SJ, Li YF, Song WM, Zhang QY, Liu SQ, Xu TT, et al. Population aging and
trends of pulmonary tuberculosis incidence in the elderly. BMC Infect Dis (2021) 21
(1):302. doi: 10.1186/s12879-021-05994-z

48. Piergallini TJ, Turner J. Tuberculosis in the elderly: Why inflammation matters.
Exp Gerontol (2018) 105:32–9. doi: 10.1016/j.exger.2017.12.021

49. Caraux-Paz P, Diamantis S, de Wazières B, Gallien S. Tuberculosis in the elderly.
J Clin Med (2021) 10(24):5888. doi: 10.3390/jcm10245888
frontiersin.org

https://doi.org/10.1016/j.cell.2021.03.005
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.34297/AJBSR.2019.01.000503
https://doi.org/10.1146/annurev-physiol-021119-034610
https://doi.org/10.1038/s41467-019-08831-9
https://doi.org/10.1371/journal.pone.0183654
https://doi.org/10.1038/s41591-021-01377-8
https://doi.org/10.1038/s41591-021-01377-8
https://doi.org/10.1126/science.abn4947
https://doi.org/10.1126/science.abn4947
https://doi.org/10.1038/s41586-021-04387-1
https://doi.org/10.1097/EDE.0000000000001271
https://doi.org/10.14745/ccdr.v43i34a01
https://doi.org/10.1371/journal.pone.0235206
https://doi.org/10.1371/journal.pone.0235206
https://doi.org/10.2105/AJPH.2018.304687
https://doi.org/10.26355/eurrev_202101_24685
https://doi.org/10.1126/science.1243640
https://doi.org/10.1016/j.cell.2010.11.001
https://doi.org/10.1038/nature12940
https://doi.org/10.1016/j.celrep.2015.08.011
https://doi.org/10.1016/j.celrep.2015.08.011
https://doi.org/10.1084/jem.176.4.1099
https://doi.org/10.1084/jem.176.4.1099
https://doi.org/10.1038/375497a0
https://doi.org/10.1002/j.1460-2075.1995.tb07030.x
https://doi.org/10.1002/j.1460-2075.1995.tb07030.x
https://doi.org/10.1016/j.it.2012.04.002
https://doi.org/10.1038/nature12274
https://doi.org/10.1128/CMR.8.2.180
https://doi.org/10.1038/nrmicro.2017.128
https://doi.org/10.1016/j.chom.2022.01.005
https://doi.org/10.1101/2022.11.23.22282673
https://doi.org/10.1093/cid/ciac409
https://doi.org/10.1093/ve/veac050
https://doi.org/10.2139/ssrn.4014499
https://doi.org/10.3201/eid2710.211461
https://doi.org/10.1101/2021.06.03.21258228
https://doi.org/10.1093/cid/ciaa1198
https://doi.org/10.1111/irv.13031
https://doi.org/10.1007/s40266-015-0258-9
https://doi.org/10.1007/s40266-015-0258-9
https://doi.org/10.7189/jogh.09.020421
https://doi.org/10.7189/jogh.09.020421
https://doi.org/10.1007/s12325-023-02432-1
https://doi.org/10.1007/s12325-023-02432-1
https://doi.org/10.3390/ijms18020259
https://covid19.who.int/
https://covid19.who.int/
https://doi.org/10.1038/s41586-020-2918-0
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1186/s12889-020-09826-8
https://doi.org/10.1186/s12889-020-09826-8
https://doi.org/10.1093/cid/ciaa1827
https://doi.org/10.1056/NEJMcp2108501
https://doi.org/10.1186/s12879-021-05994-z
https://doi.org/10.1016/j.exger.2017.12.021
https://doi.org/10.3390/jcm10245888
https://doi.org/10.3389/fimmu.2023.1250198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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