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Copper has several clinically relevant radioisotopes and versatile coordination
chemistry, allowing attachment of its radionuclides to biological molecules. This
characteristic makes it suitable for applications in molecular imaging or
radionuclide targeted therapy. Of particular interest in nuclear medicine today
is the theranostic approach. This brief review considers five radionuclides of
copper. These are Cu-60, Cu-61, Cu-62, Cu-64, and Cu-67. The first four are
positron emitters for imaging, and the last one Cu-67 is a β–-emitting radionuclide
suitable for targeted therapy. The emphasis here is on theory-aided evaluation of
available experimental data with a view to establishing standardised cross-section
database for production of the relevant radionuclide in high purity. Evaluated cross
section data of the positron emitters have been already extensively reported; so
here they are only briefly reviewed. More attention is given to the data of the
68Zn(p,2p)67Cu intermediate energy reaction which is rather commonly used for
production of 67Cu.
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1 Introduction

Copper is an essential trace element in all living systems. It has versatile coordination
chemistry (Blower et al., 1996; Wadas et al., 2007) which allows its metallation with various
chelators, such as DOTA (1,4,7,10-tetraazacyclododecane tetraacetic acid), NOTA (1,4,7-
triazacyclononane triacetic acid) etc., that can be conjugated to biological targetingmolecules
like peptides, proteins and antibodies (Blower et al., 1996; Wadas et al., 2007; Aluicio-Sarduy
et al., 2018). Thus suitable radionuclides of copper attached to those molecules have great
potential in molecular imaging and/or radionuclide targeted therapy, i.e., in following the
theranostic approach, which entails the use of two radionuclides of the same element in
identical chemical form, one a positron emitter for measuring the distribution kinetics of the
radioactivity in the body via Positron Emission Tomography (PET), and the other a
radionuclide emitting corpuscular radiation (β–, α or Auger electrons) useful for internal
radiotherapy. The two nuclides are denoted as “matched pair” (Herzog et al., 1993; Rösch
et al., 2017; Qaim et al., 2018). The radionuclides of copper of theranostic interest are listed in
Table 1. They consist of four positron-emitting radionuclides, namely, 60Cu(T1/2 = 23.7 min),
61Cu(T1/2 = 3.33 h), 62Cu(T1/2 = 9.67 min) and 64Cu(T1/2 = 12.7 h), and the β–emitting
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radionuclide 67Cu (T1/2 = 61.83 h). Whereas 60Cu and 62Cu, being
rather short-lived, have found only limited application in PET
measurements (Wallhaus et al., 1998; McCarthy et al., 1999; Ng
et al., 2014), 61Cu and 64Cu are more widely used. In particular 64Cu
is gaining increasing significance due to its almost ideal decay
characteristics for PET imaging (Williams et al., 2005). The
counterpart radionuclide 67Cu is of considerable interest in
internal radiotherapy because of its suitable half-life and
β–energy. The “matched pairs” 61Cu/67Cu and 64Cu/67Cu thus
constitute very important theranostic pairs. Furthermore, because
of its β–and Auger electron emission component, the radionuclide
64Cu is also of interest in radionuclide targeted therapy.

The most significant decay data and the important production
methods of the five radionuclides under consideration are also given
in Table 1. Both decay data and production methodologies have
been amply described (Qaim et al., 2018; Qaim, 2019; NUDAT 3.0,
2023; Nichols, 2022; Qaim, 2017; Qaim et al., 2019). In this brief
review therefore we concentrate only on a special aspect, namely, the
standardisation (also called “evaluation”) of nuclear data of those

five radionuclides. As far as we know, to date such a review has not
been written.

2 Standardised decay data:
discrepancies and deficiencies

The decay data have conventionally received more attention
with regard to their standardisation, and detailed evaluated mass
decay chains are available for the above-mentioned five
radionuclides (Junde et al., 2005; Nichols et al., 2012; Browne
and Tuli, 2013; Zuber and Singh, 2015; Singh and Chen, 2021).
The data given in Table 1 are all standardised, especially the half-
lives, the γ-ray energies and their intensities, as well as the β+(β–)
energies and their intensities. They were taken from NUDAT which
is based on evaluated mass decay chains. Yet some uncertainties do
exist. The intensity of the weak 1,345.7 keV γ-ray of 64Cu, for
example, is slightly controversial. The reported standardised value
is (0.47 ± 0.01) % (Bé et al., 2012). A later measurement using 64Cu in

TABLE 1 Standardised decay and production data of some copper radionuclides of theranostic interest.

Radionuclide Decay data Production data

T½ Mode of
decay (%)

Maximum β
particle
energy (keV)

Eγ
in keV(%)

Nuclear reaction Optimum
energy
range (MeV)

Calculated yield
(MBq/μAh) [Ref.]

60Cu 23.7 min β+ (92) 2,500 826.4 (21.7) 60Ni(p,n) 15→7 3,400 [our value]b

EC (8) 1,332.5 (88.0)

1791.6 (45.4)

61Cu 3.34 h β+ (61) 1,300 282.9 (12.2) 61Ni(p,n) 15→7 1,418 [our value]c

1,434 [CRP]dEC (39) 656.0 (10.4)

64Zn(p,α) 18→11 288 [our value]e

257 [CRP]d

62Cu 9.67 min β+ (98) 2,935 875 (0.15) 63Cu(p,2n)62Zn→62Cu 30→14 233 [CRP]f

EC (2) 1,173 (0.34) 62Ni(p,n) 15→7 45,000[our value]c

38,240 [CRP]d

64Cu 12.7 h EC (43.8) 1,345.7(0.47)a 64Ni(p,n) 12→8 304 [our value]g

β+ (17.8) 653 306 [CRP]d

β– (38.4) 571

67Cu 61.8 h β– (100) 577 184.6 (48.6) 70Zn(p,α) 25→10 4.4 [CRP]h

68Zn(p,2p) 80→30 42 [CRP]h

38 [CRP]i

aThere is discrepancy between this value and our reported value of 0.54% (Qaim et al., 2007).
bNot standardised. Yield calculated from theory-validated experimental excitation function (Uddin et al., 2016).
cFrom our evaluated data (Aslam and Qaim, 2014a).
dFrom IAEA-CRP, evaluated data (Tárkányi et al., 2019).
eFrom our evaluated data (Aslam and Qaim, 2014b).
fFrom IAEA-CRP, evaluated data (Hermanne et al., 2018).
gFrom our evaluated data (Aslam et al., 2009).
hFrom IAEA-CRP, evaluated data (Qaim et al., 2011).
iFrom IAEA-CRP, evaluated data (Tárkányi et al., 2022).
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a solution volume of 5 mL gave the same value for the intensity of
this γ-ray (Pibida et al., 2017). But an independent experiment done
earlier at FZJ (Qaim et al., 2007), utilizing a cyclotron-produced,
radiochemically separated, highly pure thin point source gave a
value of (0.54 ± 0.03) %. Incidentally, in that work the intensities
obtained for β+, β–and EC emissions were exactly the same as the
standardised values. The discrepancy is thus specific to the
determination of the 1,345.7 keV γ-ray. An independent
experiment using a properly prepared thin sample of 64Cu is
therefore suggested to solve the discrepancy.

An important consideration in quantification of a PET
measurement is the intensity of the positrons emitted from the
radionuclide (Iβ+). In most cases this intensity (% of decay) is
derived from a balance of various γ-transitions described in the
decay scheme. But often there are uncertainties in the reported
values. A direct experimental determination of the positron
emission intensity involving a spectrometric analysis of the
511 keV annihilation radiation and Kα X-rays, as developed at
FZJ, appears to provide more accurate results (Qaim et al., 2007).
The Iβ+ value for

64Cu obtained this way amounted to 17.8% and is
now regarded as the standard value. For 60Cu, 61Cu, and 62Cu, so far
such a direct measurement has not been performed. On the other
hand, the Iβ+ values for 60Cu and 62Cu, being 93% and ~100%,
respectively, are rather strong; the uncertainty is therefore assumed
to be small. Furthermore, due to very limited use of those
radionuclides, the reported Iβ+ values appear to be satisfactory.
Regarding the radionuclide 61Cu, on the other hand, the reported
Iβ+ value of 61% is rather uncertain (Qaim, 2017; Qaim et al., 2019).
In view of somewhat enhancing interest in this radionuclide, a direct
measurement of the Iβ+ value, as done for 64Cu, appears to be of
some urgency.

As far as the decay data of 67Cu are concerned, there appears to
be no discrepancy (Junde et al., 2005) and the energies and
intensities of all emitted radiations given in Table 1 may be
regarded as standardised values.

3 Methodologies for standardisation of
production data

3.1 General development

In contrast to neutron-induced reactions, the standardisation of
charged-particle induced reaction cross sections, needed for
production of radionuclides at cyclotrons/accelerators, remained
initially somewhat neglected (Qaim, 2020). From 1995 onwards,
however, the IAEA got interested in this field, and the relevant data
compilation and evaluation efforts were intensified. The former led
to improvement of the international EXFOR file and the
standardisation of those data was initiated and followed through
three successive Coordinated Research Projects (CRPs). Since no
evaluation methodology for charged-particle data existed in the
beginning, in the first CRP related to commonly used diagnostic
radionuclides, the work was rather empirical and reliance was placed
on statistical fitting of concordant set of data (Gul et al., 2001). In the
second CRP dealing with therapeutic radionuclides, theory was also
introduced to some extent. Calculations were done using the codes
ALICE-IPPE and EMPIRE for comparison with the experimental

data (Qaim et al., 2011). The third and last CRP in the series became
a very extensive endeavour dealing with a large number of novel
radionuclides (Tárkányi et al., 2019). However, the selection/
rejection of the experimental data in the evaluation process
remained rather empirical, and standardised curves were
obtained by statistical fittings. For comparison, only the results of
the global theoretical file TENDL were considered. All data for
charged-particle production of medical radionuclides evaluated
under those CRPs are available on the website of the IAEA
[Medical Portal (iaea.org)].

3.2 Theory-assisted selection of data in the
standardisation process

Standardisation work on charged-particle induced reaction cross
sections has also been done outside the IAEA-CRPs mentioned above.
In those studies extensive use wasmade of nuclearmodel calculations to
ascertain the most concordant set of data for a given nuclear reaction,
followed by polynomial fitting of the selected data. Based on a
suggestion made by Sudár et al. (2002), the standardisation
methodology was extensively developed under a German-Pakistan
cooperation (Hussain et al., 2009, 2010; Aslam and Qaim, 2014a;
Aslam and Qaim, 2014b; Amjed et al., 2016, 2020; Ali et al., 2019).
It consists of a comparison of the experimental data with the results of a
nuclear model calculation, whereby the input parameters are adjusted
within their recommended limits (RIPL-3). The basic relation for
obtaining the evaluated cross section is developed as

σev E( ) � f E( ) σmodel E( )
where σev (E), σmodel (E) and f (E) are the evaluated cross section,
model calculated cross section and the energy-dependent
normalisation factor, respectively. The ratio of experimental to
calculated data is plotted as a function of energy, followed by a
polynomial fitting to estimate the f (E). The procedure is repeated
with all model calculations. The recommended data are generated by
averaging the normalised model calculations.

For nuclear model calculations, in our collaboration four major
codes, namely, STAPRE, ALICE-IPPE, EMPIRE and TALYS (Koning
et al. 2005) were used. With the exception of ALICE-IPPE, which is
based purely on the exciton precompoundmodel, the other codes entail
a combination of compound and precompound processes, with some
consideration of direct interactions. They reproduce the experimental
data with varying degree of success. In each calculation therefore, the
optical model parameters were varied within their recommended limits
to obtain a fit as close as possible to the experimental data. The
recommended data for the particular production reaction were then
generated as outlined earlier. For uncertainty estimates, a confidence
limit of 95% was adopted. With constant improvements in the code
TALYS in recent years (Koning et al. 2023), its use has become more
universal.

4 Standardised (recommended) cross-
section data

For all 5 radionuclides under consideration, several production
routes were studied (see below). However, in Table 1 we give for each
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radionuclide only the more commonly used production reactions,
the optimum energy ranges derived and the thick target yields
calculated from the standardised excitation functions. Each
radionuclide is discussed below individually.

4.1 Positron emitters

4.1.1 60Cu
The most suitable production route for this radionuclide is

the 60Ni(p,n)60Cu process. However, no attempt has been made
to standardise its cross-section data either in the IAEA-CRP or
by us. On the other hand, a detailed experimental and
theoretical study of the excitation function of this reaction
has been carried out by Uddin et al. (2016). We used those
data as reference values to deduce the optimum energy range
(Ep = 15→7 MeV) for the production of 60Cu, and also
calculated its expected thick target yield. This process has
been developed to produce high-purity 60Cu on a clinical
scale (McCarthy et al., 1999).

4.1.2 61Cu
The cross-section data for the reactions 61Ni(p,n)61Cu,

62Ni(p,2n)61Cu, 60Ni(d,n)61Cu and 58Ni(α,p)61Cu were
standardised by Aslam and Qaim (2014a) and those for the
reactions 64Zn(p,α)61Cu, 64Zn(d,αn)61Cu, 59Co(3He,n)61Cu and
59Co(α,2n)61Cu by Aslam and Qaim (2014b). The standardised
numerical data are given in those two publications. The
59Co(α,2n)61Cu reaction can be used if an α-particle beam of
about 40 MeV is available (Fukumura et al., 2004). However, the
reactions 61Ni(p,n)61Cu and 64Zn(p,α)61Cu have been more
commonly used for production. The suitable energy ranges for
those two reactions were deduced. The calculated yields of 61Cu
from standardised curves by us (Aslam and Qaim, 2014a; Aslam and
Qaim, 2014b) and those by the IAEA-CRP (Tárkányi et al., 2019) are
given in Table 1. They agree within about 1% for the 61Ni(p,n)-
reaction and about 10% for the 64Zn(p,α)-reaction. For both
reactions, using highly-enriched targets, clinical scale production
of high-purity 61Cu has been reported (McCarthy et al., 1999;
Thieme et al., 2013).

4.1.3 62Cu
This short-lived positron emitting radionuclide is obtained via

two routes:

a) natCu(p,xn)62Zn→62Cu (generator)
b) 62Ni(p,n)62Cu

The data for the reaction natCu(p,xn)62Zn have been very well
standardised because it is an important monitor reaction (IAEA
report, Gul et al., 2001) and the calculated yield of 62Zn over the
suitable energy range (Ep = 30→14 MeV) is given in Table 1. Use of
an enriched target is not necessary. This route is the method of
choice for the production of 62Cu (Wallhaus et al., 1998; Ng et al.,
2014). The data for the reaction 62Ni(p,n)62Cu were standardised by
us (Aslam and Qaim, 2014a) and the IAEA-CRP (Tárkányi et al.,
2019). The yields agree within about 15%. This route gives a very
high yield of the product but, in order to achieve high radionuclidic

purity, an enriched target is needed. It has seldom been used for
production.

4.1.4 64Cu
Cross-section data of a large number of reactions leading to the

formation of this radionuclide have been standardised both by us
(Aslam et al., 2009) and under an IAEA-CRP (Qaim et al., 2011).
They include the reactions 64Ni(p,n)64Cu, 64Ni(d,2n)64Cu,
68Zn(p,αn)64Cu, 66Zn(p,2pn)64Cu, 64Zn(d,2p)64Cu, 66Zn(d,α)64Cu,
natZn(d,x)64Cu and a few others. Out of all those reactions,
however, the 64Ni(p,n)64Cu process on highly-enriched target is
the most interesting. Its thick target yields reported by us and
the IAEA-CRP agree within 1%. Initially proposed by the Jülich
group (Szelecsényi et al., 1993) and further developed by the St.
Louis group (McCarthy et al., 1997), the technology was improved
over the years (for a review cf. Qaim et al., 2018), and today this
reaction has become the method of choice for large scale production
of high-purity and high-specific-activity 64Cu.

4.2 Therapeutic radionuclide 67Cu

This β–-emitting therapeutic radionuclide has been of interest
for more than 40 years and its production methods have been
reviewed by several groups (Qaim et al., 2011; Qaim, 2012;
IAEA-report; Smith et al., 2012; Qaim et al., 2018; Mou et al.,
2022). Considerable industrial efforts are underway to produce it via
the 68Zn(γ,p)67Cu process. Its excitation function is known fairly
well. We concentrated on four charged-particle induced reactions.
Three of them have been investigated in the low-energy range. They
are 70Zn(p,α)67Cu (Levkovskii, 1991; Kastleiner et al., 1999;
Dellepiane et al., 2023), 70Zn(d,αn)67Cu (Kozempel et al., 2012;
Nigron et al., 2021) and 64Ni(α,p)67Cu (Skakun and Qaim, 2004;
Ohya et al., 2018; Uddin et al., 2018; Takács et al., 2020). An
evaluation of the cross section data was, however, carried out
only for the 70Zn(p,α)67Cu reaction under an IAEA-CRP (Qaim
et al., 2011). The new data by Delllepiane et al. (2023) up to 18 MeV
fit well in the evaluated curve. Thus a reliable standardised database
is available for this reaction up to 30 MeV. This method has been
used for 67Cu production in MBq quantities at 24–30 MeV
cyclotrons (Hilgers et al., 2003; Lee et al., 2022). Very recently
some new data have been reported for the 70Zn(p,x)67Cu process up
to proton energy of about 70 MeV (Pupillo et al., 2020). The cross
section increases sharply beyond 40 MeV. An evaluation of the data
would be meaningful when more information is available. The
fourth reaction, namely, 68Zn(p,2p)67Cu, is presently often used
for production purposes. The standardisation of production cross
sections was attempted under an IAEA-CRP (Qaim et al., 2011).
Another IAEA-CRP version has also been presented (Tárkányi et al.,
2022). Jung et al. (2023) reported extensive new cross-section
measurements in the higher energy range. We discuss critically
all reported data.

For this reaction, twelve experiments have been reported in
the EXFOR library of the IAEA (http://www-nds.iaea.org/exfor/
exfor.htm) over the proton energy range up to 430 MeV. For
evaluation, however, the data only up to 100 MeV are interesting,
i.e., leaving out some data points in the higher energy region
(Morrison et al., 1962; Morrison et al., 1964; Mirzadeh et al.,
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1986). Cohen et al. (1955) measured only one cross section value at
21.5 MeV which was found to be very discrepant. McGee et al. (1970)
performed measurements at eight energies covering the range from
30 to 85 MeV. They used the reference of Meadows (1953) for the
monitor reaction. The present status of that monitor reaction led us to
correct those data. Similarly the Levkovskii data (1991) were reduced
by 25% because of the use of wrong monitor cross section (Qaim et al.,
2014). Stoll et al. (2002) performed the experiment over a wide energy
range of 24.9–70.8 MeV at two cyclotrons (JULIC and PSI accelerator)
using enriched 68Zn (98.3%) thin target samples and radiochemical
separation of 67Cu. The experimental data were generally consistent
but a few data points showed a systematic lower trend in the energy
range of 35–45MeV investigated at the cyclotron JULIC. Bonardi et al.
(2005) studied this reaction up to 141 MeV using thin target foils of Zn.
The data were consistent but with large uncertainties in all energy
regions. Szelecsényi et al. (2009) reported the data for this reaction up
to 40 MeV. They used enriched 68Zn (≥99%) as the target material.
Recently two detailed measurements have been reported for this
reaction using enriched 68Zn targets, one by Pupillo et al. (2018)
and the other by Jung et al. (2023). Pupillo et al. (2018) measured the
cross sections after radiochemical separation while Jung et al. (2023)
used two analytical methods without radiochemical separation. Both
datasets were found to be consistent. All the normalised data are
plotted in Figure 1 as a function of proton energy. The IAEA evaluated
data curves (Medical Portal (iaea.org)) are also shown in Figure 1. It
is evident that those two evaluations are not fully supported by
the new data. In particular the updated curve (Tárkányi et al.,
2022) appears to be too low. Considering all the data published
we conclude that a new evaluation is necessary using the theory-
assisted selection of data. For practical production of 67Cu via this
route, however, the energy range Ep = 80→30 MeV remains the
most suitable (Qaim, 2012). This method has been practically
used in clinical scale production of 67Cu (Katabuchi et al., 2008;
Medvedev et al., 2012).

5 Discussion

The decay data of the 5 radionuclides of copper relevant for
theranostic applications are well standardised, except for the
intensity of the weak γ-line of 64Cu at 1,345.7 keV where some
discrepancy exists. This discrepancy needs to be solved, especially
because some radionuclide producers use this γ-ray for
determination of the total radioactivity of 64Cu.

The data for production of 61Cu, 62Cu and 64Cu via the more
common routes are well evaluated. For the standardisation of
production cross sections of 60Cu, however, more measurements
are needed. With regard to the data for the production of the
therapeutic radionuclide 67Cu, presently considerable efforts are
underway. Standardised data for the reaction 70Zn(p,x)67Cu are
available up to 30 MeV which consists of the (p,α) reaction. In
the higher energy region up to 70 MeV, however, the cross
section increases rapidly, possibly due to the onset of the
many nucleon emission processes like 70Zn(p,2p2n)67Cu. But
more measurements and a critical evaluation are needed to
obtain standardised data for this process. The presently rather
commonly used intermediate reaction 68Zn(p,2p)67Cu was
evaluated under two IAEA-CRPs. The newest measurements,
however, show some deviations from the evaluated data. A new
critical evaluation should thus be very meaningful. In order to
estimate the specific activity of the radionuclide produced, it is
also imperative to determine via model calculation the inactive
material, i.e., 65Cu, co-produced with the respective
radionuclide.
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FIGURE 1
Normalised experimental data and IAEA-evaluated reaction cross
section curves for the 68Zn(p,2p)67Cu process.
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