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In power systems planning, economic load dispatch considering the uncertainty of 

renewable energy sources is one of the most important challenges that researchers have 

been concerned about. Complex operational constraints, non-convex cost functions of 

power generation, and some uncertainties make it difficult to solve this problem through 

conventional optimization techniques. In this article, an improved dynamic differential 

annealed optimization (IDDAO) meta-heuristic algorithm, which is an improved version 

of the dynamic differential annealed optimization (DDAO) algorithm has been 

introduced. This algorithm has been used to solve the economic emission load dispatch 

(EELD) problem in power systems that include wind farms, and the performance of the 

proposed technique was evaluated in the IEEE 40-unit and 6-unit standard test systems. 

The results obtained from numerical simulations demonstrate the profound accuracy and 

convergence speed of the proposed IDDAO algorithm compared to conventional 

optimization algorithms including, PSO, GSA, and DDAO, while independent runs 

indicate the robustness and stability of the proposed algorithm. 

 

 

  

 

I. Introduction 

Due to the ever-increasing progress of industries and the 

expansion of cities, the need for electric energy and 

consequently, thermal power generation has significantly 

increased. In recent years, the emission of harmful gases such 

as sulfur oxide and nitrogen oxide, which have caused 

atmospheric pollution and intensified global warming, has 

become a critical issue. One of the ways to limit the emission 

of these gases is to apply stricter policies on thermal units [1, 

2]. To apply new regulations and tax considerations for 

excessive greenhouse gas emissions, a problem combining 

load economic dispatch and emission constraints known as the 

load economic emission dispatch problem is introduced [2].  

Economic load dispatch has an important and sensitive task 

in the operation and planning of power systems in such a way 

that it requires the generation units to meet the load demand 

while the total power generation cost is minimized and various 

technical and operational limitations of this process are met [2, 

3]. 

One of the most important solutions to reduce 

environmental pollutants is to replace fossil fuels with 

renewable energy, and one of the most important and cost-

effective sources of renewable energy is wind energy [4]. The 

use of wind energy in the generation of electrical energy does 

not cause environmental pollution, and its maintenance cost is 

reasonable compared to other renewable energy sources. 

However, due to the random nature of wind speed forecasting, 
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solving the problem of economic load dispatch with the 

participation of wind units has many challenges [5, 6]. 

Classical optimization methods such as gradient descent, 

Landa's iteration method, linear programming method and 

dynamic programming in the simple economic load dispatch 

problem provide suitable results when the cost function is 

smooth, continuous, and differentiable [7]. These methods 

don’t provide suitable answers when the cost function is non-

convex, discontinuous, and non-derivative and there are 

various electrical and mechanical constraints such as the effect 

of the input valve, generation and consumption balance 

constraints, generation limits, prohibited zones, the limit of the 

permitted rate of change of power and the losses of the 

transmission network. These problems have led researchers to 

use intuitive optimization algorithms to solve this problem [8-

13]. 

In recent years, different optimization algorithms have been 

used to solve the problem of economic load dispatch by 

considering the effect of wind units, including the PSO 

optimization algorithm and its improved variants called 

EMOPSO [10], or the gravitational acceleration enhanced 

particle swarm optimization (GAEPSO) algorithm [14],  

CMOPEO-EED algorithm [15], EMA algorithm [16], NSGA-

II algorithm [17], CSCA algorithm [18], IMOBSO algorithm 

[19], NSGWO algorithm [20], MQLSA algorithm [21], 

MODE algorithm [22], WMA algorithm [23], COOT 

algorithm [24] and CRO algorithm [25]. In the following, 

some of the articles presented in this regard are mentioned. 

In [26], a hybrid method combined with linear and non-

linear programming is employed to tackle with non-convexity 

of economic dispatch, considering the valve point effects. The 

woodpecker mating algorithm (WMA) is used by [23] to solve 

the economic dispatch problem considering the nonlinear 

properties of generators. In the presence of RESs, the chaotic 

slap swarm optimization algorithm has been applied to cope 

with the non-convexity caused by the valve point loading 

effect [27]. The quasi-oppositional-based political optimizer 

has been implemented by [28], which has minimized the costs 

and emissions as well. However, with an increase in the 

number of units, the proposed technique requires a higher 

number of iterations to reach a desirable solution. The kernel 

search optimization algorithm and PSO with Cauchy 

perturbation [29] are also used to solve economic dispatch 

problem with non-convexity of valve point loading effect. 

Results indicate that the proposed methodology is robust and 

flexible. [30] introduced an improved mayfly algorithm 

incorporating levy flight to resolve the combined economic 

emission dispatch problem encountered in microgrids with 

thermal, solar, and wind generation. Although this reference, 

successfully minimizes total cost and emission for four 

different scenarios, the speed of the solution has not been 

discussed. Quasi-oppositional learning-based chaos-assisted 

sine cosine algorithm has been applied in [31] for dynamic 

economic emission dispatch in hybrid energy systems. In this 

reference, the participation of wind and solar energy resources 

led to a reduction of 20.84% and 8% in generation costs, 

respectively. [32] evaluates the implementation of the 

grasshopper optimization algorithm with the binary approach 

to solve heat and power economic emission dispatch 

considering the valve point loading effect, ramp-rate 

constraints, prohibited zones, and transmission losses. This 

reference has additionally introduced a new case study to 

examine the effectiveness of the proposed strategy. To 

increase convergence performance and solution speed in 

solving the problem of hybrid dynamic economics emissions 

dispatch, an improved COOT optimization algorithm is 

utilized [24]. Adaptive chaotic class topper optimization 

algorithm [33], exchange market algorithm (stock ticker EMA) 

[34], and chemical reaction optimization (CRO) [25] are also 

applied to solve combined economic emission dispatch 

problem. 
Solving the EELD problem along with uncertainties about 

renewable energy sources has been associated with many 

challenges in recent years. Even though the literature is 

enriched with the optimization techniques employed to solve 

it but still a lot of papers are being published incorporating the 

problem through the variants of metaheuristic optimization 

techniques. 

In this paper, the EELD problem has been solved by presenting 

an improved dynamic differential annealed optimization 

algorithm, which is an improved version of the DDAO 

algorithm. The main contributions of this work are as follows : 

- An improved dynamic differential annealed 

optimization algorithm is proposed to enhance the 

performance of the conventional DDAO optimizer. 

-  The efficacy of the proposed algorithm to solve the 

EELD problem in 6-unit and 40-unit test systems is 

validated. 

- The competence and effectiveness of the proposed 

IDDAO in terms of robustness, quality of the 

solution, and computational efficiency are compared 

with various methods suggested in the literature. 

The remainder of this article is organized as follows: 

The EELD problem is formulated in section 2. In part 3, the 

proposed IDDAO algorithm is introduced, followed by section 

4 which discusses and evaluates the performance and 

effectiveness of the proposed IDDAO algorithm in 6-unit and 

40-unit test systems to solve EELD with the presence of wind 

generation. Section 5 is dedicated to the conclusion. 

 

II. The problem of economic emission load 

dispatch  

With the increase in the demand for electric power 

generation and the reduction of power resources and the 

increase in pollution, the optimization issues in modern power 

systems have received more attention from researchers. 

Considering the output power of wind units, one of the most 

important optimization issues in power systems related to 

loading management on the demand side for calculation of the 

optimal output of generators on the generation side. In terms 

of the generated power of thermal units, the power plants do 

not have the same specifications and have different fuel costs, 

and are located at different distances from the load centers, and 

the lines that connect them to the loads have different 

specifications. In addition to these problems, the generation 

capacity of power plants is more than the total demand of loads 



163            Using Improved DDAO Algorithm To Solve Economic …/M Shafiee, et al 

 

and system losses in normal operating conditions, leading to 

the issue that there are different choices for the amount of 

power generated by each power plant [3]. 

In power systems analysis, economic load dispatch has an 

important role, as it requires the generation units to meet the 

load demand while the total cost of power generation is 

minimized, and various non-linear and complex constraints of 

this process are met. In the simplest possible case, the 

economic load dispatch problem has the objective function of 

relation (1) [25]. 

𝐹𝑐 = ∑(𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2)

𝑁

𝑖=1

 (1) 

Where the total production power of thermal power plants 

is represented by 𝐹𝑐, N represents the number of thermal units, 

and 𝑎𝑖 , 𝑏𝑖 , and 𝑐𝑖  are the cost coefficients of each unit. 

Considering the effect of the steam valve, the cost function 

changes as follows [25]. 

Fc = ∑ (ai + biPi + ciPi
2

N

i=1

+ |ei × sin (fi(Pi
min − Pi))|) 

(2) 

Where the coefficients 𝑓𝑖 and 𝑒𝑖 are related to the effect 

of the steam valve and the lower limit of the generation of each 

unit. For each thermal unit, the cost of the total emission is 

expressed as the following relationship [25]: 

𝐸𝑐 = ∑ 10−2(𝛼𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖
2) + 𝜂𝑖exp(𝛿𝑖𝑃𝑖)

𝑁

𝑖=1

 (3) 

where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝜂𝑖 , and 𝛿𝑖 are the emission coefficients 

of each generator. 

The cost of power generated by wind units in the following 

relationship consists of three parts [35].  The first part is related 

to the cost paid to the owner of wind turbines. The second part 

is related to the conditions in which the output power of the 

wind unit is greater than its estimated value, so some of the 

generated power will be wasted or the power of other units 

must be reduced by redistributing load so that the difference 

between the planned power of the wind unit and the output of 

the wind unit should be applied in the cost function. The third 

part of the cost function is related to the conditions in which 

the output power of the wind unit is less than the planned value 

for it. In this case, to balance the generation and consumption 

power, the revolving reserve capacity should be used [35]. 

𝐹𝑊 = ∑ 𝑑𝑗𝑤𝑗

𝑀

𝑗=1

+ 𝑘𝑃,𝑗 ∫ (𝑤 − 𝑤𝑗)𝑓𝑤

𝑤𝑟,𝑗

𝑤𝑗

(𝑤)𝑑𝑤

+ 𝑘𝑅,𝑗 ∫ (𝑤𝑗 − 𝑤)𝑓𝑤

𝑤𝑗

0

(𝑤)𝑑𝑤 

(4) 

In the above relation, the number of wind units and the 

factor of the planned power cost of the wind unit is shown by 

𝑀 , and 𝑑𝑗 . In the second and third parts, 𝑘𝑃,𝑗  shows the 

penalty factor for generating more power than the planned 

amount, and 𝑘𝑅,𝑗 shows the penalty factor for generating less 

than the planned amount. In this relationship, 𝑓𝑊(𝑤) 

represents the probability density function of the output power 

of the wind turbine, which is calculated from the following 

relationships [16, 35]. 

𝑓𝑊(𝑤) =
𝑘𝑙𝑣𝑖

𝑐
(

(1 + 𝜌𝑙)𝑣𝑖

𝑐
)

𝑘−1

∗ exp (− (
(1 + 𝜌𝑙)𝑣𝑖

𝑐
)

𝑘

) 

(5) 

𝑙 = (
(𝑣𝑟 − 𝑣𝑖)

𝑣𝑖

) (6) 

𝜌 =
𝑤

𝑤𝑟

 (7) 

Where 𝑤 is the output power of the wind turbine, 𝑣 is the 

wind speed, 𝜌 is the ratio of the output power to the nominal 

wind power, and l is the ratio of the linear range of the wind 

speed to the connection speed of the wind turbine. 

A. Objective function 

The objective function implemented in this paper is as 

follows: 

𝑇𝑐 = 𝑀𝑖𝑛𝑖𝑚𝑎𝑧𝑒 (𝐹𝑐 + 𝐸𝑐 + 𝐹𝑊) (8) 

B. System limitations 

The EELD problem has several constraints. The first 

constraint is the balance of the power system's generation and 

consumption power so that the set of power generation at any 

time is equal to the set of consumption power and network 

losses. This issue is defined as the following relationship. It 

should be noted that the system losses are considered a 

function of the power generation, whose value is calculated 

from the following equations. 

∑ 𝑃𝑖 = 𝑃Demand + 𝑃Loss 

𝑁

𝑖=1

 (9) 

𝑃Loss = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+ ∑ 𝐵𝑖0𝑃𝑖

𝑁

𝑖=1

+ 𝐵00 (10) 

Where, the required power is indicated by 𝑃Demand , and the 

losses of the power system are indicated by 𝑃Loss . 𝐵00, 𝐵𝑖0, 

and 𝐵𝑖𝑗are the network loss coefficients, and constants during 

normal operating conditions [28].  

The second constraints indicate the minimum and maximum 

of generated power by thermal and wind power plants as 

follows [35]: 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥0 ≤ 𝑤𝑗 ≤ 𝑤𝑟,𝑗  (11) 

where the upper and lower limit of the power generation of 

each thermal unit is indicated by 𝑃𝑖
𝑚𝑎𝑥  and 𝑃𝑖

𝑚𝑖𝑛 , and the 

rated power and output power for each wind unit are indicated 

by 𝑤𝑟,𝑗, and 𝑤𝑗 . 
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III. The proposed optimization algorithm 

Introducing the DDAO algorithm, the proposed improved 

algorithm has been discussed in this section. 

A. Dynamic differential annealed optimization 

algorithm (DDAO) 
The dynamic differential annealing optimization (DDAO) 

algorithm presented in reference [36] is inspired by the optimal 

production process of two-phase annealed steel. This 

algorithm is effective in solving optimization problems. The 

processes of this algorithm are briefly described below: 

The first stage includes the production of the initial 

population. At this stage, the initial population of solutions is 

generated randomly. This population includes candidate 

answers and general answers. In the second step, for the 

production of two-phase steel, the temperature decreases 

randomly. The random process of temperature reduction 

causes the formation of different phases of steel that have 

different energies. These energies are proportional to the value 

of the cost function. In the third stage, the two-phase steel 

cooling process is done in three ways, which are: air cooling, 

accelerated cooling system, and slow cooling system. This 

procedure can be represented by the following equation. 

𝑁𝑆
𝐽 = 𝑅𝐺𝑆 + [𝑅𝐶𝑆

𝐾 + 𝑅𝐶𝑆
𝐼 ]    𝐽 =  1, . . . , 𝑁 (12) 

where 𝑁𝑆
𝐽
 and 𝑅𝐺𝑆  represent the new solution in the Jth 

iteration and the random solution of production, respectively. 

𝑅𝐶𝑆
𝐾 and 𝑅𝐶𝑆

𝐼 represent the randomly selected solution 

according to K and I index. 

In the fourth stage which is related to reducing the 

differential temperature, the steel is exposed to the forging 

process. Because during the forging process, the dynamic 

characteristic of the hammer fluctuates between 1 and R, this 

process can be formulated according to the following equation. 

𝐹𝐺 = {
1; 𝑖𝑓 𝑅𝑒(𝐼, 2) = 1

𝑅[0,1]; 𝑖𝑓 𝑅𝑒(𝐼, 2) = 0
 (13) 

where, 𝐹𝐺 , R, and Re represent the forging parameter, the 

random value, and the remainder divided by 2, respectively. 

Forging processes and differential cooling processes are 

integrated in the following equation. 

𝑁𝑆
𝐽 = 𝑅𝐺𝑆 + [𝑅𝐶𝑆

𝐾 + 𝑅𝐶𝑆
𝐼 ] ∗ 𝐹𝐺      (14) 

In the annealing process, the probability of forming a new 

phase with higher quality is higher than that of a weaker base. 

This process is defined by the acceptance probability, Pr, 

according to the following relations: 

𝑃𝑟 = 𝑒
−𝛥𝐷

𝑡  (15) 

𝛥𝐷 =
𝐶(𝑁𝑆

𝐽) − 𝐶(𝑃𝑀)

𝐶(𝑃𝑀)
 (16) 

In this regard, 𝛥𝐷  represents the difference between the 

merit value of the potential responses resulting from equation 

(14) and the merit value corresponding to the PM index. The 

values of p and t represent the population size and temperature 

variable, respectively. The best solution is selected by 

satisfying the following equation: 

𝑃𝑟 > 𝑅 ∈ [0, 1] (17) 

Based on equation (12), 

𝑃𝑟 = {
1  𝐼𝑓 𝑡 𝑖𝑠 ℎ𝑖𝑔ℎ
0  𝐼𝑓 𝑡 𝑖𝑠 𝑙𝑜𝑤

 (18) 

The mentioned stages are repeated until reaching the 

stopping condition of the algorithm, which can be the 

maximum number of iterations or reaching a certain cost 

function.  

B. Improved dynamic differential annealed 

optimization algorithm (IDDAO) 
Investigations imply that the forging parameter, 𝐹𝐺 , has a 

significant effect on the overall efficiency of the DDAO 

algorithm in solving mathematical optimization problems. For 

some cases, setting 𝐹𝐺=1 in equation (14), the random value 

improves while for some sets of problems, the random value 

becomes worse. This may reversely happen in other cases. 

equation (13) provides a solution for this algorithm in which 

𝐹𝐺  = 1 for half of the iterations while for other iterations 𝐹𝐺  

is a random number in the interval [0, 1]. Investigations also 

show that the randomness of the value of 𝐹𝐺  causes the 

algorithm not to desirably perform in reaching the optimal 

solution; therefore, equations (13) and (14) are considered as 

follows. 

𝐹𝐺
𝐽+1 = 𝑊𝑒 . 𝐹𝐺

𝐽 + 𝐶. 𝑟𝑎𝑛𝑑(𝑁𝑆
𝑏𝑒𝑠𝑡 − 𝑁𝑆

𝐽)  (19) 

𝑁𝑆
𝐽+1 = 𝑁𝑆

𝐽 + 𝐹𝐺

𝐽+1
 (20) 

In these equations, 𝑊𝑒 is defined as a weighting factor, 𝐶 

is a learning factor (a number between 1.5-2) and rand is a 

random number between [0, 1]. Also, to prevent the divergence 

of 𝐹𝐺 , its final value is limited. 

Equation (19) contains two terms. The first term is a ratio of 

the forging parameter for each phase, and its role is similar to 

the momentum in the neural network. The second term is 

proportional to the difference between the obtained answer 

compared to the best existing answer (𝑁𝑆
𝑏𝑒𝑠𝑡), which increases 

the speed of guiding the answer toward the optimal answer. In 

the proposed improved algorithm, the degree of accuracy and 

convergence is highly dependent on 𝑊𝑒 , so its value is 

considered dynamically and linearly according to equation 

(21). In the beginning, by choosing large values for 𝑊𝑒, it is 

possible to find good solutions in the early stages, while in the 

final stages, the smallness of 𝑊𝑒 causes better convergence. 

𝑤𝑒
𝐽+1 = 𝑤𝑒

𝐽 + [𝑤𝑒
𝑚𝑖𝑛 + 𝑤𝑒

𝑚𝑎𝑥]/𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  (21) 

In this equation, 𝑤𝑒
𝑚𝑎𝑥 , 𝑤𝑒

𝑚𝑖𝑛 and 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  are the 

maximum weighting factor, minimum weighting factor, and 

the number of iterations in the algorithm, respectively. The 

pseudo-code of this algorithm is shown in Figure 1. 

IV. The EELD Based on IDDAO Algorithm 

To evaluate the performance of the proposed improved 
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IDDAO algorithm, the EELD problem for 6-unit and 40-unit 

standard IEEE test systems has been applied, and the results 

have been compared with those of PSO, GSA, and DDAO 

algorithms. In the proposed algorithm, the position vector is 

considered as the following equation. 

𝑥 = [𝑃1, 𝑃2, … , 𝑃𝑁𝐺
]

𝑇
 (22) 

where 𝑥 is the power generated by each power plant.  

In this study simulations have been done in MATLAB 

R2021b software, using a Core i7, 2.30 GHz processor, and a 

4G Ram. The number of populations is 150, the number of 

iterations is 100, and the number of independent runs is 30. 

The best solution of all independent runs is considered the 

optimal solution of the algorithms.  

A. EELD for 6-unit IEEE test system  
For the standard IEEE 6-unit test system with a load demand 

of 2,834 p.u., cost function coefficients, the generation 

constraints units, thermal unit emission cost coefficients, and 

wind turbine data are given in Tables 1 to 3 respectively 

[16,37].  

Considering the permitted range of power generation of 

power plants, the fuel cost of thermal power plants, the cost 

function of pollution, and two wind farms, the output power of 

power plants along with the optimal values of the objective 

function for the proposed IDDAO algorithm and PSO, GSA, 

DDAO algorithms are given in Table 4. 

 

 
Fig. 1. The pseudo-code of the IDDAO algorithm.  

TABLE 1  

COST FUNCTION COEFFICIENTS OF THE 6-UNIT 

SYSTEM. 

 
TABLE 2 

EMISSION COEFFICIENTS OF THE 6-UNIT SYSTEM. 

 
TABLE 3 

THE PARAMETERS OF WIND TURBINES. 

 
TABLE 4 

BEST SOLUTION FOR 40-UNIT TEST SYSTEM. 

 

B. EELD for 40-unit IEEE test system  

For the IEEE 40-unit test system, the cost function 

coefficients, power generation limits, and pollution 

coefficients are stated in Tables 5 and 6, respectively [37].  

Considering the permitted range of power generation, the 

cost of fuel consumed by thermal power plants, and the cost 

function of pollution, the simulation of EELD based on the 

PSO, GSA, DDAO, and IDDAO algorithm was carried out, 

and results are summarized in Table 7. 

V. Numerical results and discussions 

Based on Tables 4 and 7, the total cost reduction achieved 

by the IDDAO algorithm compared to DDAO, GSA, and PSO 

algorithms for the 6-unit test system is 102 $/h, 179 $/h, and 

162 $/h and for a 40-unit test system equals 1332 $/h, 7828 $/h, 

and 2810 $/h, respectively. Results demonstrate the superiority 

of the proposed algorithm in reaching the optimal solution over 

other algorithms. 
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TABLE 5 

COST FUNCTION COEFFICIENTS OF THE 40-UNIT 

SYSTEM. 

 

 
Fig 2. Convergence behaviors of fitness function for the 

6-unit test system. 
The convergence curve of the proposed improved algorithm 

for the best solution obtained for the 6-unit and 40-unit test 

systems is shown in Figures 2 and 3. The IDDAO algorithm 

has converged to a more optimal solution after a smaller 

number of iterations compared to other algorithms. PSO, GSA, 

and DDAO algorithms have a lower convergence speed and 

are stuck in the local solution. Hence, it can be concluded that 

the performance of the proposed algorithm is satisfactory for 

solving the EELD problem. 

TABLE 6 

EMISSION COEFFICIENTS OF THE 40-UNIT SYSTEM. 

 

 
Fig 3. Convergence behaviors of fitness function for the 

40-unit test system. 

To check the compatibility of the proposed improved 

algorithm, the values of the best solution, the worst solution, 

and the average solution along with the standard deviation 

(STD) considering 30 independent runs for PSO, GSA, DDAO, 

and IDDAO algorithms for 6-unit and 40-unit test system are 

given in Table 8. Results show that the standard deviation of 

the optimal solutions obtained by the IDDAO algorithm is 

smaller than other algorithms, which indicates its higher 

robustness and stability to different parameters of algorithms. 

Comparing the average time required to run the proposed 

algorithm with other algorithms, it can also be concluded that 

the solution speed of the IDDAO algorithm surpasses those of 

other algorithms. 
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TABLE 7 

BEST SOLUTION FOR THE 40-UNIT TEST SYSTEM. 

 
TABLE 8 

 STATISTICAL COMPARISON BETWEEN IDDAO AND 

DIFFERENT. 

 
 

VI. Conclusions 

In this article, to solve the EELD problem with the 

participation of wind farms, a novel strategy based on the 

IDDAO algorithm has been introduced. The limitations such 

as generation-demand balance, uncertainty, and the non-

convexity of cost functions for thermal power plants have also 

been considered. The performance of the proposed algorithm 

to solve the EELD problem for two standard test systems of 6-

unit and 40-unit were compared and evaluated. The minimum 

reduction of the total cost function obtained by the proposed 

IDDAO algorithm Compared to the DDAO, GSA, and PSO 

algorithms was 102 $/h and 1332 $/h for 6-unit and 40-unit test 

systems, respectively. These results demonstrate that the new 

approach developed in this paper can efficiently reduce the 

expected cost of the integrated thermal-wind system. 

Moreover, to check the robustness and stability of the proposed 

algorithm, the EELD problem was implemented for 30 

independent runs. The results indicate the superiority of the 

proposed algorithm in the speed of convergence and proper 

performance compared to other studied algorithms.  
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