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In power systems planning, economic load dispatch considering the uncertainty of
renewable energy sources is one of the most important challenges that researchers have
been concerned about. Complex operational constraints, non-convex cost functions of
power generation, and some uncertainties make it difficult to solve this problem through
conventional optimization techniques. In this article, an improved dynamic differential
annealed optimization (IDDAQ) meta-heuristic algorithm, which is an improved version
of the dynamic differential annealed optimization (DDAO) algorithm has been
introduced. This algorithm has been used to solve the economic emission load dispatch
(EELD) problem in power systems that include wind farms, and the performance of the
proposed technique was evaluated in the IEEE 40-unit and 6-unit standard test systems.
The results obtained from numerical simulations demonstrate the profound accuracy and
convergence speed of the proposed IDDAO algorithm compared to conventional
optimization algorithms including, PSO, GSA, and DDAO, while independent runs
indicate the robustness and stability of the proposed algorithm.

l. Introduction

Due to the ever-increasing progress of industries and the
expansion of cities, the need for electric energy and
consequently, thermal power generation has significantly
increased. In recent years, the emission of harmful gases such
as sulfur oxide and nitrogen oxide, which have caused
atmospheric pollution and intensified global warming, has
become a critical issue. One of the ways to limit the emission
of these gases is to apply stricter policies on thermal units [1,
2]. To apply new regulations and tax considerations for
excessive greenhouse gas emissions, a problem combining
load economic dispatch and emission constraints known as the
load economic emission dispatch problem is introduced [2].

Economic load dispatch has an important and sensitive task
in the operation and planning of power systems in such a way
that it requires the generation units to meet the load demand
while the total power generation cost is minimized and various
technical and operational limitations of this process are met [2,
3]

One of the most important solutions to reduce
environmental pollutants is to replace fossil fuels with
renewable energy, and one of the most important and cost-
effective sources of renewable energy is wind energy [4]. The
use of wind energy in the generation of electrical energy does
not cause environmental pollution, and its maintenance cost is
reasonable compared to other renewable energy sources.
However, due to the random nature of wind speed forecasting,
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solving the problem of economic load dispatch with the
participation of wind units has many challenges [5, 6].

Classical optimization methods such as gradient descent,
Landa's iteration method, linear programming method and
dynamic programming in the simple economic load dispatch
problem provide suitable results when the cost function is
smooth, continuous, and differentiable [7]. These methods
don’t provide suitable answers when the cost function is non-
convex, discontinuous, and non-derivative and there are
various electrical and mechanical constraints such as the effect
of the input valve, generation and consumption balance
constraints, generation limits, prohibited zones, the limit of the
permitted rate of change of power and the losses of the
transmission network. These problems have led researchers to
use intuitive optimization algorithms to solve this problem [8-
13].

In recent years, different optimization algorithms have been
used to solve the problem of economic load dispatch by
considering the effect of wind units, including the PSO
optimization algorithm and its improved variants called
EMOPSO [10], or the gravitational acceleration enhanced
particle swarm optimization (GAEPSO) algorithm [14],
CMOPEO-EED algorithm [15], EMA algorithm [16], NSGA-
Il algorithm [17], CSCA algorithm [18], IMOBSO algorithm
[19], NSGWO algorithm [20], MQLSA algorithm [21],
MODE algorithm [22], WMA algorithm [23], COOT
algorithm [24] and CRO algorithm [25]. In the following,
some of the articles presented in this regard are mentioned.

In [26], a hybrid method combined with linear and non-
linear programming is employed to tackle with non-convexity
of economic dispatch, considering the valve point effects. The
woodpecker mating algorithm (WMA) is used by [23] to solve
the economic dispatch problem considering the nonlinear
properties of generators. In the presence of RESs, the chaotic
slap swarm optimization algorithm has been applied to cope
with the non-convexity caused by the valve point loading
effect [27]. The quasi-oppositional-based political optimizer
has been implemented by [28], which has minimized the costs
and emissions as well. However, with an increase in the
number of units, the proposed technique requires a higher
number of iterations to reach a desirable solution. The kernel
search optimization algorithm and PSO with Cauchy
perturbation [29] are also used to solve economic dispatch
problem with non-convexity of valve point loading effect.
Results indicate that the proposed methodology is robust and
flexible. [30] introduced an improved mayfly algorithm
incorporating levy flight to resolve the combined economic
emission dispatch problem encountered in microgrids with
thermal, solar, and wind generation. Although this reference,
successfully minimizes total cost and emission for four
different scenarios, the speed of the solution has not been
discussed. Quasi-oppositional learning-based chaos-assisted
sine cosine algorithm has been applied in [31] for dynamic
economic emission dispatch in hybrid energy systems. In this
reference, the participation of wind and solar energy resources
led to a reduction of 20.84% and 8% in generation costs,
respectively. [32] evaluates the implementation of the
grasshopper optimization algorithm with the binary approach
to solve heat and power economic emission dispatch

considering the valve point loading effect, ramp-rate
constraints, prohibited zones, and transmission losses. This
reference has additionally introduced a new case study to
examine the effectiveness of the proposed strategy. To
increase convergence performance and solution speed in
solving the problem of hybrid dynamic economics emissions
dispatch, an improved COOT optimization algorithm is
utilized [24]. Adaptive chaotic class topper optimization
algorithm [33], exchange market algorithm (stock ticker EMA)
[34], and chemical reaction optimization (CRO) [25] are also
applied to solve combined economic emission dispatch
problem.

Solving the EELD problem along with uncertainties about
renewable energy sources has been associated with many
challenges in recent years. Even though the literature is
enriched with the optimization techniques employed to solve
it but still a lot of papers are being published incorporating the
problem through the variants of metaheuristic optimization
techniques.

In this paper, the EELD problem has been solved by presenting
an improved dynamic differential annealed optimization
algorithm, which is an improved version of the DDAO
algorithm. The main contributions of this work are as follows:

- An improved dynamic differential annealed
optimization algorithm is proposed to enhance the
performance of the conventional DDAO optimizer.

- The efficacy of the proposed algorithm to solve the
EELD problem in 6-unit and 40-unit test systems is
validated.

- The competence and effectiveness of the proposed
IDDAO in terms of robustness, quality of the
solution, and computational efficiency are compared
with various methods suggested in the literature.

The remainder of this article is organized as follows:

The EELD problem is formulated in section 2. In part 3, the
proposed IDDAO algorithm is introduced, followed by section
4 which discusses and evaluates the performance and
effectiveness of the proposed IDDAO algorithm in 6-unit and
40-unit test systems to solve EELD with the presence of wind

generation. Section 5 is dedicated to the conclusion.

Il.  The problem of economic emission load
dispatch

With the increase in the demand for electric power
generation and the reduction of power resources and the
increase in pollution, the optimization issues in modern power
systems have received more attention from researchers.
Considering the output power of wind units, one of the most
important optimization issues in power systems related to
loading management on the demand side for calculation of the
optimal output of generators on the generation side. In terms
of the generated power of thermal units, the power plants do
not have the same specifications and have different fuel costs,
and are located at different distances from the load centers, and
the lines that connect them to the loads have different
specifications. In addition to these problems, the generation
capacity of power plants is more than the total demand of loads
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and system losses in normal operating conditions, leading to
the issue that there are different choices for the amount of
power generated by each power plant [3].

In power systems analysis, economic load dispatch has an
important role, as it requires the generation units to meet the
load demand while the total cost of power generation is
minimized, and various non-linear and complex constraints of
this process are met. In the simplest possible case, the
economic load dispatch problem has the objective function of
relation (1) [25].

N
E = Z(ai + b;P; + ¢;PP) 1)

Whelrelthe total production power of thermal power plants
is represented by F,, N represents the number of thermal units,
and a;, b;, and c; are the cost coefficients of each unit.
Considering the effect of the steam valve, the cost function

changes as follows [25].
N

FC = Z (ai + blPI + Cipiz
i=1 )
+ |ei X sin (fi(Pimin - Pl))')

Where the coefficients f; and e; are related to the effect
of the steam valve and the lower limit of the generation of each
unit. For each thermal unit, the cost of the total emission is
expressed as the following relationship [25]:

E. = ) 1072(a; + BiP; +viP?) + miexp(8;P)  (3)

N
i=1

where «;, B;, Vi, n;, and §; are the emission coefficients
of each generator.

The cost of power generated by wind units in the following
relationship consists of three parts [35]. The first part is related
to the cost paid to the owner of wind turbines. The second part
is related to the conditions in which the output power of the
wind unit is greater than its estimated value, so some of the
generated power will be wasted or the power of other units
must be reduced by redistributing load so that the difference
between the planned power of the wind unit and the output of
the wind unit should be applied in the cost function. The third
part of the cost function is related to the conditions in which
the output power of the wind unit is less than the planned value
for it. In this case, to balance the generation and consumption
power, the revolving reserve capacity should be used [35].

M
WT,j
Fy = Z djw; + kp f (w-— W}-)fW w)dw
j=1 Wj (4)

+ kRJ-f j(wj - w)fW (w)dw

In the above relation, the number of wind units and the
factor of the planned power cost of the wind unit is shown by
M, and d;. In the second and third parts, kp; shows the
penalty factor for generating more power than the planned

amount, and kg ; shows the penalty factor for generating less
than the planned amount. In this relationship, f,, (w)
represents the probability density function of the output power
of the wind turbine, which is calculated from the following
relationships [16, 35].

klv; ((1 + pl)vi)k_1

fww) = e c

< ((1 + pl)vi)k> ©)
xexp| —( ———

c
_ (%J) ©)

U]

Where w is the output power of the wind turbine, v isthe
wind speed, p is the ratio of the output power to the nominal
wind power, and 1 is the ratio of the linear range of the wind
speed to the connection speed of the wind turbine.

A. Obijective function

The objective function implemented in this paper is as
follows:

T, = Minimaze (F.+E.+ Fy) (8)
B. System limitations

The EELD problem has several constraints. The first
constraint is the balance of the power system's generation and
consumption power so that the set of power generation at any
time is equal to the set of consumption power and network
losses. This issue is defined as the following relationship. It
should be noted that the system losses are considered a
function of the power generation, whose value is calculated
from the following equations.

N

Z Pi = PDemand + PLoss (9)
i=1

N N N
P = ). ) PiByBy+ Y BioP:+ Bog (10)

i=1 j=1 i=1

Where, the required power is indicated by Ppemang » @nd the
losses of the power system are indicated by P .. Boo» Bios
and B;are the network loss coefficients, and constants during

normal operating conditions [28].

The second constraints indicate the minimum and maximum
of generated power by thermal and wind power plants as
follows [35]:

P < P < PO < wp < wy (12)

where the upper and lower limit of the power generation of
each thermal unit is indicated by P/™** and P/™", and the
rated power and output power for each wind unit are indicated
by w,;, and w;.
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I11.  The proposed optimization algorithm
Introducing the DDAO algorithm, the proposed improved
algorithm has been discussed in this section.

A. Dynamic differential
algorithm (DDAO)
The dynamic differential annealing optimization (DDAO)

algorithm presented in reference [36] is inspired by the optimal
production process of two-phase annealed steel. This
algorithm is effective in solving optimization problems. The
processes of this algorithm are briefly described below:

The first stage includes the production of the initial
population. At this stage, the initial population of solutions is
generated randomly. This population includes candidate
answers and general answers. In the second step, for the
production of two-phase steel, the temperature decreases
randomly. The random process of temperature reduction
causes the formation of different phases of steel that have
different energies. These energies are proportional to the value
of the cost function. In the third stage, the two-phase steel
cooling process is done in three ways, which are: air cooling,
accelerated cooling system, and slow cooling system. This
procedure can be represented by the following equation.

N{ = Rgs + [REs + RLs] J=1..,N (12

where NS’ and Rg;g represent the new solution in the Jth
iteration and the random solution of production, respectively.
R& and RL represent the randomly selected solution
according to K and | index.

In the fourth stage which is related to reducing the
differential temperature, the steel is exposed to the forging
process. Because during the forging process, the dynamic
characteristic of the hammer fluctuates between 1 and R, this
process can be formulated according to the following equation.
F, :{ 1;if Be(I,Z) =1 (13)

R[0,1];if Re(I,2) =0

where, Fg;, R, and Re represent the forging parameter, the
random value, and the remainder divided by 2, respectively.
Forging processes and differential cooling processes are
integrated in the following equation.

N/ = Rgs + [RE + RLs] = F (14)

In the annealing process, the probability of forming a new
phase with higher quality is higher than that of a weaker base.
This process is defined by the acceptance probability, Pr,
according to the following relations:

annealed optimization

Pr=et (15)
_ CNS) — C(Pw) 16
AD = CP) (16)

In this regard, AD represents the difference between the
merit value of the potential responses resulting from equation
(14) and the merit value corresponding to the Py index. The
values of p and t represent the population size and temperature
variable, respectively. The best solution is selected by

satisfying the following equation:
Pr>R €]0,1] a7
Based on equation (12),
1 If tis high
Pr:{O If tislow (18)
The mentioned stages are repeated until reaching the
stopping condition of the algorithm, which can be the
maximum number of iterations or reaching a certain cost
function.
B. Improved dynamic differential annealed
optimization algorithm (IDDAO)
Investigations imply that the forging parameter, F;, has a

significant effect on the overall efficiency of the DDAO
algorithm in solving mathematical optimization problems. For
some cases, setting F;=1 in equation (14), the random value
improves while for some sets of problems, the random value
becomes worse. This may reversely happen in other cases.
equation (13) provides a solution for this algorithm in which
F; =1 for half of the iterations while for other iterations F;
is a random number in the interval [0, 1]. Investigations also
show that the randomness of the value of F; causes the
algorithm not to desirably perform in reaching the optimal
solution; therefore, equations (13) and (14) are considered as
follows.

Fo/** = W,.F;) + C.rand(NYst — N/) (19)

N =N+ (20)
In these equations, W, is defined as a weighting factor, C

is a learning factor (a number between 1.5-2) and rand is a
random number between [0, 1]. Also, to prevent the divergence
of Fy, its final value is limited.
Equation (19) contains two terms. The first term is a ratio of
the forging parameter for each phase, and its role is similar to
the momentum in the neural network. The second term is
proportional to the difference between the obtained answer
compared to the best existing answer (N2¢5%), which increases
the speed of guiding the answer toward the optimal answer. In
the proposed improved algorithm, the degree of accuracy and
convergence is highly dependent on W,, so its value is
considered dynamically and linearly according to equation
(21). In the beginning, by choosing large values for W,, it is
possible to find good solutions in the early stages, while in the
final stages, the smallness of W, causes better convergence.

We!+1 = We] + [Wemm + Wemax]/Niteration (21)

In this equation, w,"**, w"" and Njerarion are the

maximum weighting factor, minimum weighting factor, and
the number of iterations in the algorithm, respectively. The
pseudo-code of this algorithm is shown in Figure 1.

IV.  The EELD Based on IDDAO Algorithm
To evaluate the performance of the proposed improved
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IDDAO algorithm, the EELD problem for 6-unit and 40-unit
standard IEEE test systems has been applied, and the results
have been compared with those of PSO, GSA, and DDAO
algorithms. In the proposed algorithm, the position vector is
considered as the following equation.

X = [Pl,Pz,...,PNG]T (22)

where x is the power generated by each power plant.

In this study simulations have been done in MATLAB
R2021b software, using a Core i7, 2.30 GHz processor, and a
4G Ram. The number of populations is 150, the number of
iterations is 100, and the number of independent runs is 30.
The best solution of all independent runs is considered the
optimal solution of the algorithms.

A. EELD for 6-unit IEEE test system
For the standard IEEE 6-unit test system with a load demand

of 2,834 p.u., cost function coefficients, the generation
constraints units, thermal unit emission cost coefficients, and
wind turbine data are given in Tables 1 to 3 respectively
[16,37].

Considering the permitted range of power generation of
power plants, the fuel cost of thermal power plants, the cost
function of pollution, and two wind farms, the output power of
power plants along with the optimal values of the objective
function for the proposed IDDAO algorithm and PSO, GSA,
DDAO algorithms are given in Table 4.

Psendocode: IDDAO Algorithm
Input: size of the population, variable temperature t, dimensions

1: Population Initialization xg (K =1, .....N);
2: Initialization of cooling rate and temperature parameters;
3: Evaluating fitness for every solution;

4: Best solution (N2#) =xg;

5: While T < Iyup

6:  Initialization of sub population R.g;

7:  Evaluating the cost function for every Reg:
8. Sorting of Reg

9:  Select the best solution in sub population;
10:  Selection of two random solutions;

11:  Evaluation of Ng’ from equation (20);

12:  Population sorting;

13:  for (each solution within the population)
14: if (there occurs enhancement)

15: xx =N/

16: else

17: Replacement of worst solution using equation (15)
and (16);

18: end if

19:  end for

20: Updating of xg ;

21: T =T* rate of cooling
22:2T=T+1

23: end while

24: Return xg

Ouiput: Best solution

Fig. 1. The pseudo-code of the IDDAO algorithm.

TABLE 1
COST FUNCTION COEFFICIENTS OF THE 6-UNIT
SYSTEM.
Uniti  Generation Fuel cost coefficients
limits
Pimin Pimax G by G e f
1 0.05 0.5 10 200 100 - -
2 0.05 0.6 10 150 120 - -
3 0.05 1.0 20 180 40 - -
4 0.05 1.2 10 100 60 - -
5 0.05 1.0 20 180 40 - -
6 0.05 0.6 10 150 100 - -
TABLE 2
EMISSION COEFFICIENTS OF THE 6-UNIT SYSTEM.
Unit i Emission coefficients
% B ¥i n; &
1 4.091 —5.554 6.490 2.0e—4 2857
2 2.543 —6.047 5.638 5.0e—4 3333
3 4.258 —5.054 4,586 1.0e—6  8.000
4 5.326 —3.550 3.380 2.0e-3 2.000
5 4.258 —5.094 4.586 1.0e—-6 8.000
6 6.131 —5.555 5.151 1.0e-5 6.667
TABLE 3
THE PARAMETERS OF WIND TURBINES.
k C Cmj d Wi Wimar T, Vi Ve
W) (MW)  (ms)  (m's) _ (mis)
WT1 22 15 100 120 10 100 45 b 15
WT2 22 15 100 150 10 100 45 b 15
TABLE 4
BEST SOLUTION FOR 40-UNIT TEST SYSTEM.
Outputs (MW) PSO 14 GSA[4] DDAO IDDAQ
TU1 0.02 0.1445 0.2896 0.2041
TU 2 03006 0 5346 03258 03325
TU 3 0.2824 0.2387 0.3501 0.3478
TU 4 0.3129 0.06 0.3625 0.3581
TU 5 04032 02548 03521 03795
TU 6 0.4161 0.2267 0.6258 0.6295
WT1 0.8 0.5771 0.5289 04919
WT2 0.302 0.8 0.2896 0.2941
Fuel cost ($/h) 624.97 588.46 571.99 565.89
EC (ton/h) 0.2043 0.2133 0.2049 0.2019
Total cost ($/h) 1836 1853 1776 1674

B. EELD for 40-unit IEEE test system

For the IEEE 40-unit test system, the cost function
coefficients, power generation limits, and pollution
coefficients are stated in Tables 5 and 6, respectively [37].

Considering the permitted range of power generation, the
cost of fuel consumed by thermal power plants, and the cost
function of pollution, the simulation of EELD based on the
PSO, GSA, DDAO, and IDDAO algorithm was carried out,
and results are summarized in Table 7.

V. Numerical results and discussions

Based on Tables 4 and 7, the total cost reduction achieved
by the IDDAO algorithm compared to DDAO, GSA, and PSO
algorithms for the 6-unit test system is 102 $/h, 179 $/h, and
162 $/h and for a 40-unit test system equals 1332 $/h, 7828 $/h,
and 2810 $/h, respectively. Results demonstrate the superiority
of the proposed algorithm in reaching the optimal solution over
other algorithms.



International Journal of Industrial Electronics, Control and Optimization (IECO). 2023, 6(3) 166

TABLE 5
COST FUNCTION COEFFICIENTS OF THE 40-UNIT
SYSTEM.
Unit i Generation limits Fuel cost coefficients
Pumin Pimay o by o € fi
1 36 114 94.705 6.73 0.00690 100 0.084
2 36 114 94.705 6.73 0.00690 100 0.084
3 G0 120 309.54 707 0.02028 100 0.084
4 20 190 369.03 B.18 0.00942 150 0.063
5 47 97 14889 535 0.01140 120 0077
& 68 140 22233 805 0.01142 100 0.084
7 110 300 287N 303 0.00357 200 0042
8 135 300 39198 6.99 0.00492 200 0042
9 135 300 455.76 660 0.00573 200 0042
10 130 300 72182 12.90 0.00605 200 0042
11 94 375 635.20 12.90 0.00515 200 0.042
12 94 375 654.69 1280 0.00569 200 0042
13 125 500 913.40 1250 0.00421 300 0035
14 125 500 1760.40 884 0.00752 300 0.035
15 125 500 1760.40 B84 0.00752 300 0,035
16 125 500 1760.40 884 0.00752 300 0.035
17 220 500 647.85 797 0.00313 300 0.035
18 220 500 649.69 795 0.00313 300 0,035
19 242 550 647.83 797 0.00313 300 0.035
0 242 550 B47.81 797 0.00313 300 0,035
2 254 550 785.96 663 0.00298 300 0.035
2 254 550 785.96 663 0.00298 300 0.035
23 254 550 79453 666 0.00234 300 0.035
24 254 550 72453 6.66 0.00284 300 0035
25 254 550 801.32 7.10 0.00277 300 0,035
26 254 550 201.32 7.10 0.00277 300 0.035
27 10 150 1055.10 333 052124 120 0.077
8 10 150 1055.10 333 052124 120 0077
9 10 150 1055.10 333 052124 120 0077
30 47 97 148.89 535 0.01140 120 0077
3 G0 190 12292 6.43 0.00160 150 0.063
iz 60 190 22292 643 0.00160 150 0.063
33 60 190 2292 643 0.00160 150 0.063
34 a0 200 107.87 895 0.00010 200 0.042
35 a0 200 116.58 862 0.00010 200 0042
36 an 200 116.58 262 0.00010 200 0042
37 25 110 30745 5.88 001610 80 0.098
k] 15 110 30745 588 0.01610 80 0098
39 25 110 30745 588 001610 80 0.098
40 242 550 647.83 797 0.00313 300 0.035
2500 T T T T T T T T T
—IDDAOQ
——DDAO
2400 ——— = PSO
— — —GSA
2300 1
£ 2200 g
-
c
-.9_, 2100 1
g
2
w 2000 1
@
£
i 1900 1

1800

1700

1600 I L I L L I L I I
0 10 20 30 40 50 60 70 80 90 100

Iteration
Fig 2. Convergence behaviors of fitness function for the
6-unit test system.

The convergence curve of the proposed improved algorithm
for the best solution obtained for the 6-unit and 40-unit test
systems is shown in Figures 2 and 3. The IDDAO algorithm
has converged to a more optimal solution after a smaller
number of iterations compared to other algorithms. PSO, GSA,
and DDAO algorithms have a lower convergence speed and
are stuck in the local solution. Hence, it can be concluded that
the performance of the proposed algorithm is satisfactory for
solving the EELD problem.

TABLE 6
EMISSION COEFFICIENTS OF THE 40-UNIT SYSTEM.
Unit i Emission coefficients
£ B Tu Ll L
1 60 —-2122 00480 1.3100 005690
2 60 —222 0.0480 1.3100 0.05690
3 100 —2.36 00762 1.3100 0.05690
4 120 —-3.14 10,0540 09142 004540
5 50 -1.89 0.0850 0.9936 004060
6 B0 —3.08 00854 1.3100 0.05690
7 100 —3.06 10,0242 0.E550 0.02846
= 130 -232 0.0310 0.6550 0.02846
9 150 =211 00335 0.E550 0.02846
10 280 —4.34 0.4250 0.E550 0.02846
11 220 —4.34 00322 0LE550 0.02346
12 225 —4.28 00338 0.E550 0.02846
13 300 —4.18 0.0296 0.5035 0.02075
14 520 —3.34 00512 0.5035 0.02075
15 510 —-3.55 0.0496 0.5035 0.02075
16 510 —3.55 0.0496 0.5035 0.02075
17 220 —268 00151 0.5035 0.02075
12 222 —-266 00151 0.5035 0.02075
19 220 —268 00151 0.5035 0.02075
20 220 —268 00151 0.5035 0.02075
21 290 -222 0.0145 0.5035 0.02075
22 285 =222 0.0145 0.5035 0.02075
23 295 —-2126 00138 0.5035 0.02075
24 295 —-2.26 00138 0.5035 0.02075
25 310 —-2.42 00132 0.5035 0.02075
26 310 —2.42 0.0132 0.5035 0.02075
27 360 =111 18420 0.9936 004060
28 360 =111 1.8420 0.9936 D04 060
29 360 111 1.8420 0.9936 D.04060
30 50 -1.89 0.0850 0.9936 004060
31 B0 —2.08 00121 0.9142 004540
3z B0 —-2.08 00121 09142 0.04540
33 BO —208 00121 0.9142 004540
34 65 —-3.48 10,0012 06550 0.02846
35 70 —-3.24 10,0012 06550 0.02846
36 T —3.24 0.0012 0.6550 0.02846
a7 100 -1.98 0.0950 1.4200 0.06770
38 100 —-1.98 10,0950 1.4200 0.06770
39 100 —198 0.0950 1. 4200 0.06770
40 220 —2.68 00151 0.5035 0.02075
520000 T
——IDDAO
— = —GSA
———DDAO
510000 ——PsO
=
&
5 500000
=}
2
2
I}
@ 490000 -
£
™
480000
SO PR S K S A -
470000 - ' - - ' : - : '
0 10 20 30 40 50 60 70 80 90 100

Iteration
Fig 3. Convergence behaviors of fitness function for the
40-unit test system.

To check the compatibility of the proposed improved
algorithm, the values of the best solution, the worst solution,
and the average solution along with the standard deviation
(STD) considering 30 independent runs for PSO, GSA, DDAO,
and IDDAO algorithms for 6-unit and 40-unit test system are
given in Table 8. Results show that the standard deviation of
the optimal solutions obtained by the IDDAOQ algorithm is
smaller than other algorithms, which indicates its higher
robustness and stability to different parameters of algorithms.
Comparing the average time required to run the proposed
algorithm with other algorithms, it can also be concluded that
the solution speed of the IDDAO algorithm surpasses those of
other algorithms.
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TABLE 7
BEST SOLUTION FOR THE 40-UNIT TEST SYSTEM.
Outputs (MW) PSO[23]  GSAa[Z3]  DDAO IDDAO
TU 1 1140000 1120124 113.2849 112.152051
TU 2 1062356 102.0546 1129873 1106585
TU3 1182564 65,3624 1189851 1191124
TU4 182 6634 1890000 172.3033 1725485
TUS 97.0000 B1.45T0 56,9899 G7.0000
TU& 102.1987 1400000 120.7941 1185487
TU7 134.0531 178.9692 297 9866 2405487
TUS 292225 261.0062 298.0531 2091473
U9 2901165 1440886 2809833 2002548
TU 10 1338041 268 6632 141.9755 138.2546
TU 11 101.236% 262.5468 290.8744 278.2351
TU 12 1547289 JIR.0018 2958873 2992548
TU 13 3082166 3572549 428 0894 425365
TU 14 3683325 4026638 4219738 4259854
TU 15 3712215 4810378 430 9884 4242154
TU 16 381.2681 4267826 416.9725 3088547
TU 17 4162678 4682504 449 Tad1 4486354
TU 18 4829655 411.0338 451.0875 451.5241
TU 19 506.2201 452 7650 463 4483 4669878
TU 20 5162468 4853300 424 9509 4206662
TU 21 5027719 4107262 4187534 4172154
TU 22 4354741 446.8291 4385739 445.754
TU 23 4821264 4105897 4155968 4421187
TU 24 5380536 4296281 420 083 4302522
TU 25 5450089 355 4008 442 3693 447.6584
TU 26 4262278 4972740 421.7939 4002215
TU 27 121.223% 110.0368 20,6631 38.2654
TU 28 1260343 103.0191 209746 50.2654
TU 29 106.226% 135 4404 28.2672 1025245
TU 30 96,0892 67.2264 95.0546 902154
TU 31 1720086 160.2286 1831982 1782654
TU 32 181.6147 1562273 169 8629 1681145
TU 33 170.1243 162 1683 1832297 1752654
TU 34 191.3843 150.6824 184 8734 190 2457
TU 35 1895371 163 4874 190.2495 192 3659
TU 36 172.0034 173.7898 197.8624 186.2658
TU 37 07,6206 09 3548 1026921 90,1212
TU 38 04 4813 961757 103.2485 104.3256
TU 39 86,0853 99.0471 100.2394 95.3298
TU 40 4622264 4841232 4320281 4206965
WT 1 460468 662162 41.5432 452185
WT2 00468 04,0293 32,1267 40.2354
Fuel cost{%/h) 142 068 14356268 14124146 14102541
EC {ton/h) 178432 18002822 17195376 171902 52
Taotal cost{ $/h) 474934 479405 473456 472124
TABLE 8
STATISTICAL COMPARISON BETWEEN IDDAO AND
DIFFERENT.
Svf“*:;s Algorithms  Best(Sh) Worst(5/h) Average(h)  STD l‘:l‘:::'i‘; (‘g
PSO 1836 1880 1856 15.1471 3542
- GSA 1853 1914 1886 205487 4754
DDAO 1776 1831 1793 11.2514 4124
IDDAO 1674 1724 1685 72135 3.562
PSO 474934 495336 481108 64517854 262541
- GSA 479405 503375 480051 87212145 34524
DDAO 473456 492394 479610 14255215 34854
IDDAO 472124 490064 478733 5012341 25.43

VI. Conclusions

In this article, to solve the EELD problem with the
participation of wind farms, a novel strategy based on the
IDDAO algorithm has been introduced. The limitations such
as generation-demand balance, uncertainty, and the non-
convexity of cost functions for thermal power plants have also
been considered. The performance of the proposed algorithm
to solve the EELD problem for two standard test systems of 6-
unit and 40-unit were compared and evaluated. The minimum

reduction of the total cost function obtained by the proposed
IDDAO algorithm Compared to the DDAO, GSA, and PSO
algorithms was 102 $/h and 1332 $/h for 6-unit and 40-unit test
systems, respectively. These results demonstrate that the new
approach developed in this paper can efficiently reduce the
expected cost of the integrated thermal-wind system.
Moreover, to check the robustness and stability of the proposed
algorithm, the EELD problem was implemented for 30
independent runs. The results indicate the superiority of the
proposed algorithm in the speed of convergence and proper
performance compared to other studied algorithms.
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