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Grinding in a ball mill is a process with high energy consumption; therefore, a slight 

improvement in its performance can lead to significant economic benefits in the industry. 

The softness of the product of the grinding circuits prevents loss of energy in the 

subsequent processes. In addition, controlling the mill's performance is challenging due 

to its complex dynamic characteristics. The primary purpose of this article is to use the 

ground particle size diagram and acoustic signal in ball mill control, and model their 

relationship based on the least squares method. As a result, by extracting valuable data 

from the acoustic signal, the optimal condition of the ball mill_ in terms of ground 

particle size and ball mill load (standard, low, high)_ can be achieved. In doing so, in this 

article, innovative ideas such as adaptive quantum basis, sparse representation, SVD, and 

PCA-based methods were used. The proposed method has been practically implemented 

on the ball mill of the Lakan lead-zinc processing plant. Also, a prototype of the device 

was built. The test results show that the optimal load for the studied ball mill is 10t/h. In 

this case, the ground particle size is 110-120 microns, which is ideal for this plant. Also, 

the power spectrum is in the middle-frequency band (300-700 Hz). According to the 

analysis and results, the proposed method will increase the efficiency of the studied ball 

mill. 

  

 

 

 

I. Introduction 

A. Background 

In mineral processing, particles containing valuable minerals 

must be ground to reach a size that is small enough to be 

released from the tailings and easily separated by a suitable 

concentration method [1, 2]. Grinding is a critical operation in 

mineral processing, which has a considerable impact on the 

economic value of the product. Many industrial surveys have 

proven that the grinding process accounts for a significant part 

of the total cost of metal production [3, 4]. Impact and friction 

are the primary mechanisms for size reduction in grinding. Ball 

milling is an essential process with more than 50% of the total 

energy consumption; therefore, a slight improvement in ball 

mill efficiency would result in a substantial economic benefit 

for the industry. The other important issue in the grinding 

process is the softness of the grinding circuit product. It affects 

the performance of the subsequent separation processes. 

Therefore, the precise control of the grinding circuits is 

significant to prevent energy loss and improve the efficiency 

of the operations. Controlling the performance of a closed 
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circuit ball mill is a challenging issue due to its complex 

dynamic characteristics and numerous interactions during the 

control loops [5]. Also, the variables of the ball mill cannot be 

easily measured due to the harsh working conditions and the 

impossibility of stopping it. Therefore, it is impossible to 

access all the variables for more accurate observation and 

better control of the ball mill performance. The main goal of 

researchers is to reduce the energy consumption of the 

grinding circuits, and, at the same time, to reduce the abrasion 

of grinding media to maintain the high quality of the final 

product [6, 7]. To reach this goal, a model is needed for optimal 

control of the ball mill regarding ground particle size and load 

[8]. One of the variables that has been studied by the 

researchers is the acoustic signal resulting from the collision 

of the material with the shell. The acoustic signal is a 

superposition of the grinding parameters, which shows the 

general state of the ball mill [5]. Therefore, it can indirectly 

express the critical condition of the ball mill operation. 

Although the relationship between the acoustic signal and the 

grinding conditions is complex, some of the ball mill 

characteristics can be extracted by examining the behavior of 

the time domain and frequency of the signal. Finally, using the 

acoustic signal data, the conditions inside the ball mill can be 

identified. Also, a suitable model can be introduced to control 

the ball mill system. 

B. Literature Review 

The acoustic signal has been studied in various researches. 

Recently, the relationship between sound intensity and ground 

particle size has been investigated in the Alumina ball mill [5]. 

In this paper, the critical rotation speed of the ball mill has been 

determined to reach the proper particle size using the sound 

spectrum analysis. According to this article, when the 

rotational speed is lower or higher than the critical speed, the 

size of the output particles increases, and the efficiency of the 

ball mill decreases accordingly. In addition, the sound intensity 

in critical speed is higher than the other modes. Therefore, 

there is a direct correlation between sound intensity and 

grinding efficiency [5]. Tang et al. have introduced some 

developments in the grinding process based on soft measuring 

methods such as acoustic signals and mechanical vibration [9]. 

In that article, techniques such as Fourier and Wavelet are 

reviewed to extract information from sound and vibration 

signals. Some offline and online models have also been 

presented for industrial applications. Shi et al. represented 

some acoustic signal measurement methods using fractional 

Fourier transform to detect the ball mill load [10]. The data 

related to load parameters are extracted by representing the 

signal as a fractional Fourier transform and spectrum 

subtractions. Characteristics of the grinding signal are obtained 

from the geometric spectral subtraction based on an 

autoregressive model in reference [11]. Using ensemble 

empirical mode decomposition and multi-scale spectral 

information, the conditions of the mill load are determined. 

Method [12] uses acoustic emission signals to train the 

convolutional neural network that can predict particle size 

distributions. In this method, the required data are obtained 

from the discrete element method and used for network 

training and testing. 

C. Research Challenges and Motivations 

Although in most of the previous research, soft measuring 

methods have been performed only on a laboratory sample to 

know the parameters of the ball mill. Here, the aim is to use 

such techniques in industrial applications [9]. In this paper, a 

new approach was implemented to control the ground particle 

size and feed rate (load of a ball mill) in the Lakan lead-zinc 

processing plant. Lakan lead-zinc processing plant is 46 

kilometers southwest of Arak, a city in the central province of 

Iran. This factory is one of the most important sources of lead 

and zinc concentrate production, which started working in 

1968. One of the challenges of this factory is its outdated 

equipment. Since the power consumption of this device is high, 

controlling its feed rate and output ground particle size can 

result in higher efficiency and lower energy consumption. 

Therefore, this article aims to present an effective method for 

optimal control of ball mills. To control the ball milling 

operation, parameters such as input feed rate, input water, 

rotational speed, and ball mill particle size distribution are the 

minimum requirements [8]. The specifications of the studied 

ball mill, whose liner is made of plastic, are shown in Table 1. 

It should be noted that the sizes of the balls are not fixed, 

ranging from 20 to 90 mm. The reason is that if a fixed size is 

used, some holes will be created between the balls, increasing 

the grinding time and the size of the ground particles. As 

illustrated, the rotational speed and input water of the ball mill 

studied in this article are constant; however, the feed rate can 

vary. Therefore, in this study, by changing the feed rate of the 

ball mill, we achieved optimal efficiency, and the feed rate was 

proved to be a critical parameter for optimal control of the ball 

mill. 

D. Methodology 

In this study, the wet ball mill efficiency of the Lakan lead-

zinc processing plant is investigated according to the feed rate 

and the ground product,  before and after the ball charging. To 

identify the ball mill system, it is necessary to sample the 

acoustic signal.   
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TABLE 1 

 CHARACTERISTICS OF THE BALL MILL 
Length 2500 mm 

 

Outer diameter 

 

2300 mm 

 

Gearbox input speed 

 

1775 rpm 

 

Output speed 

 

21 rpm 

 

Ball size range 

 

20-90 mm 

 

Thickness of body and liners 1500 mm 

Liner material Plastic 

 

Therefore, the acoustic signal is first recorded at different 

times (based on retention time and under different feed rates) 

while the mill operates before and after the ball charge. In the 

meantime, the output product of the ball mill is sampled, and 

after sieve analysis, the distribution of ground particle size is 

obtained. Then, the outliers of the recorded acoustic signal are 

removed using a method based on quantum computation and 

sparse representation. In the next step, the relationship between 

the audio signal and ground particle size distribution is 

obtained using least square regression, processing the sound 

signal and extracting its helpful features, such as the maximum 

frequency component. By applying this model, the load and 

ground particle size ball mill can be effectively controlled. In 

this study, after identifying the ball mill system using an 

acoustic signal, an electronic control device was also built and 

tested. According to the test results, the presented method 

improved the wet ball mill efficiency of the Lakan lead-zinc 

processing plant. The sections of the article are organized as 

follows. In section 2, the proposed method is entirely 

explained. In section 3, the results and practical tests are 

presented, and conclusions are given in section 4. 

II. Proposed Method  

In this part, all the steps of the proposed method will be 

explained in detail. The proposed plan includes modeling and 

a ball mill control scheme. The modeling steps and ball mill 

control flowcharts are shown in Fig. 1 and Fig. 2, respectively. 

First, the system modeling is done using the steps in Fig. 1. 

Then, using the steps in Fig. 2, the ball mill is controlled. The 

central parts of the proposed method include removing outliers 

with the adaptive quantum basis, extracting features from the 

audio signal using the Fourier transform, using the PCA 

method to select the central part, and modeling based on the 

least squares. 

According to Fig. 1, the first step is acoustic signal 

acquisition. In the next step, removing outliers and noise is 

performed on the signal to reduce the modeling error. The 

proposed method to remove noise is as follows: first, a basis 

(dictionary) is created using the input signal. To separate the 

primary information and noise, the desired signal is projected 

onto the dictionary. After obtaining the coefficients in the 

dictionary domain, the denoised signal is reconstructed. In the 

next step, the Fourier transform of the denoised signal is 

calculated. Then, several essential features are extracted from 

the Fourier transform. To reduce the dimensions of the features, 

the PCA-based method is used in the next step. Finally, using 

the least squares method, the relationship between particle size 

distribution and acoustic signal is obtained as a system model. 

In Fig. 2, the ball mill system is controlled using the model 

obtained at this step. In the following sections, the different 

steps will be explained. 

A. Denoising Scheme 

Since ball mills are applied in industrial environments, the 

received acoustic signals contain noise and outlier points. One 

of the most critical parts of the ball mill control is the noise 

removal step. If the acoustic signal is not correctly denoised, it 

can cause errors in the control system. There are different 

methods to remove outliers and noise in the signal. Signal 

decomposition is one of the most common methods of noise 

removal. For this purpose, methods based on Fourier, Wavelet, 

and SVD are usually used [13-15]. These methods use a fixed 

basis to represent the signal and noise removal.  In this paper, 

we used the denoising method, which is based on an adaptive 

basis. Recently, quantum computing has been used in various 

fields. Reconstructing geological images and removing noise 

is one of its most important applications [16-18]. In this article, 

the signal is denoised by changing in the idea proposed in [18]. 

In the proposed method, the discrete version of the 

Schrodinger equation in quantum computation is used to build 

an adaptive basis or dictionary. Therefore, this method has the 

advantage of calculating the transformation compatible with 

the desired acoustic signal. Another reason for using this 

method is that it can eliminate most common noises in 

industrial environments, because of its adjustable parameters 

[18]. It should be noted that in this study, we have used the 

idea of [18], only to create a dictionary. The rest of the 

algorithm, which concerns noise elimination, is the innovation 

of this article. 

B. Construction of Quantum Adaptive Basis (Dictionary) 

The stationary Schrodinger equation in quantum mechanics 

(a quantum particle with energy E and in potential V(r)) is 

as follows: 

−
ℏ2

2𝑚
∇2𝜑 = −𝑉(𝑟) + 𝐸𝜑 

                     

(1) 
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Fig. 1. Modeling flowchart of the proposed method 

 

 

Fig. 2. Control flowchart of the proposed method 

where 𝑚 is the quantum particle mass, ℏ/2𝜋 is the reduced 

Planck's constant, and ∇2  is the Laplacian operator. This 

equation determines the wave function 𝜑(𝑟)  regarding 

spatial coordinates. To use this equation (in making the 

dictionary and signal denoising), the desired signal is 

considered a potential 𝑉(𝑟).  Assuming a constant potential 

and a wave function with a periodicity of L, the answer to the 

Schrodinger equation will be in the following form: 

𝜑(𝑟) = 𝐴𝑒𝑥𝑝(𝑖
√2𝑚(𝐸 − 𝑉)

ℏ
𝑟) 

                            

(2) 

where 𝐴 is the amplitude. According to (2), by discretizing 

the space with 𝑁  values, we will get 𝑁  answers, and  the 

frequency of the wave function will depend on √𝐸 − 𝑉. To 

use this equation to construct an adaptive basis, the desired 

signal is replaced by the potential 𝑉(𝑟) .  Therefore, it is 

necessary to create the discrete version of the Schrodinger 

equation.  In operator form, (1) will be as follows : 

𝐻𝜑 = 𝐸𝜑. (3)                             

where  𝐻 = −
ℏ2

2𝑚
∇2 + 𝑉 is called the Hamiltonian operator. 

By replacing 𝑦(𝑡)  (acoustic signal) with the size of 𝑁 

instead of 𝑉(𝑟), the size of  H will be 𝑁 × 𝑁 . When the 

discrete definitions of derivative and Laplacian are inserted, 

(3) will be as follows: 

(∇𝜑)𝑡 = 𝜑(𝑡 + 1) − 𝜑(𝑡) 

(∇2𝜑)𝑡 = 𝜑(𝑡 + 1) − 2𝜑(𝑡) + 𝜑(𝑡 − 1) 

 

 

Thus (𝐻𝜑)𝑡 = −
ℏ2

2𝑚
(𝜑(𝑡 + 1) − 2𝜑(𝑡) +

𝜑(𝑡 − 1) + 𝑦(𝑡)𝜑(𝑡)) 

⇓ 

 (𝐻𝜑)𝑡 = (𝑦(𝑡) + 2
ℏ2

2𝑚
)𝜑(𝑡) −

ℏ2

2𝑚
𝜑(𝑡 + 1) −

ℏ2

2𝑚
𝜑(𝑡 − 1). 

 

                        

(4) 

 

 

The simpler form of (4) is as follows: 

 (𝐻𝜑)𝑡 = ∑ 𝐻(𝑡, 𝑠)𝜑(𝑠)𝑡+1
𝑠=𝑡−1  for 𝑡 =

1,2,3, … , 𝑁. 

⇓ 

𝐻(𝑡, 𝑠) =

{
 
 

 
 𝑦(𝑡) + 2

ℏ2

2𝑚
 𝑓𝑜𝑟 𝑡 = 𝑠

−
ℏ2

2𝑚
 𝑓𝑜𝑟 𝑠 = 𝑡 + 1 𝑎𝑛𝑑 𝑡 = 𝑠 − 1

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

                

                      

(5) 

Therefore, the Hamiltonian matrix will be in the following 

form: 

𝐻 =

[
 
 
 
 𝑦(1) + 2

ℏ2

2𝑚
−

ℏ2

2𝑚
0

−
ℏ2

2𝑚
⋱ −

ℏ2

2𝑚

0 −
ℏ2

2𝑚
𝑦(𝑁) + 2

ℏ2

2𝑚]
 
 
 
 

. 

 

 

   (6) 

 

According to (3), eigenvectors of the Hamiltonian matrix can 

be computed for different values of 𝐸, and they form a basis 

in the Hilbert space. This matrix has 𝑁 eigenvectors, which 

are represented by 𝜑𝑖. These eigenvectors form a basis, which 

is called a dictionary in this article. It should be noted that one 

of the problems of the Schrodinger equation is the localization 

of the basis, which is caused by the Anderson localization 

phenomenon [19].  To solve this problem, the input signal is 

first smoothed using a Gaussian filter [18]. Then, the 

dictionary is made from the smoothed signal. The desired 

audio signal will have a sparse representation in this dictionary. 

Using this method, the noisy and non-noisy parts are separated, 

and the signal will be denoised.  In the following, the idea of 

sparse representation will be expressed.  

C. Sparse Representation Model 

Recently, the sparse model has been used in various 

applications such as reconstruction and noise removal [20-21]. 

In this model, 𝝋 = [𝜑1, … , 𝜑𝑁] represents the dictionary, 𝜑𝑖 

is the dictionary atom with the unit norm, and 𝒚 represents 

the vectorized signal. In sparse representation, it is assumed 

that the desired signal can be represented by a small number of 

dictionary atoms. The 𝒚 signal can be represented as follows: 

𝒚 = 𝝋𝛽 =∑ 𝜑𝑖
𝑁

𝑖=1
𝛽𝑖 

 

(7)                      

where 𝛽 will be the sparse representation of 𝒚 in 𝝋, if it 

contains a few non-zero coefficients. The problem of finding 

β is formulated as follows: 
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𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽   ‖𝒚 − 𝝋𝛽‖2
2  subject to  ‖𝛽‖0 ≤ 𝑠 (8)                     

where ‖𝛽‖0  means the number of non-zero elements of 𝛽 

and 𝑠  is sparsity. Matching Pursuit (MP) method is 

commonly used to solve the above problem [20]. This method 

starts with finding the atom that best matches the signal. The 

error in this step is defined as follows: 

𝐸𝑖 = 𝑚𝑖𝑛𝛼‖𝛼𝜑𝑖 − 𝒚‖ (9)                              

where 𝛼 is a scalar. The above problem is solved using 𝛼∗ =

〈𝒚, 𝜑𝑖〉, and the index of the best match is calculated as 𝑖0. 

Then, the residual signal 𝒓  is calculated, and this process 

continues until the desired accuracy is reached.  The MP 

algorithm to achieve a sparse representation of a signal is 

shown in Table 2.  

After calculating the sparse representation of the signal in the 

dictionary space, the denoised signal is obtained using  𝒚̂ =

𝝋𝛽. The steps of the proposed denoising algorithm are shown 

in Table 3.  According to (6), the size of the Hamiltonian matrix 

is 𝑁 × 𝑁 . If the size of the input signal is large, the 

computational complexity in dictionary construction will be 

very high. Therefore, in these cases, the input signal is divided 

into different patches, and the algorithm of Table 3 is executed 

on each patch. In addition to reducing the computational 

complexity, this method will also solve the problem of lack of 

memory. It should be noted that in this article, the parameters 

are set as 
ℏ2

2𝑚
= 0.4, 𝜂 = 0.2, and 𝜎 = 5. 

 

D. Fast Fourier Transform and Feature Extraction  

Fast Fourier transform is a method that computes the DFT 

(Discrete Fourier Transform) of a sequence [22]. It reduces the 

computations needed for 𝑁  points from 2𝑁2  to 2𝑁𝑙𝑜𝑔2𝑁 . 

Fourier analysis converts a signal from its original (often time) 

to the frequency domain. In this part, the fast Fourier transform 

of the denoised audio signal and the power spectrum are 

calculated. In Fig. 3, one sample of acoustic signal at different 

sampling times is shown along with their frequency spectrum. 

According to Fig. 3, at each sampling time, one component of 

the power spectrum is considerably different energy than the 

others. Therefore, the amplitude and frequency of this 

component are selected as the feature extracted from this 

sample. Two essential features of the time domain, i.e., 

maximum and minimum sound intensity, are also used as 

extracted features. Therefore, four features extracted from the 

acoustic signal are considered candidates. In the next step, by 

reducing the dimensions of the features, they are converted 

into two main features. 

 

 

 

 

TABLE 2 

MATCHING PURSUIT ALGORITHM  

1. 𝒓 = 𝒚, 𝛽1 = 0, 𝑧 = 1 

2. 𝒘𝒉𝒊𝒍𝒆 (𝒓 > 𝜂) 𝒅𝒐 

3. 𝐸𝑖 = 𝑚𝑖𝑛𝛼‖𝛼𝜑𝑖 − 𝒚‖ 

4. 𝑖0 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑖𝐸𝑖 

5. 𝛽𝑖
𝑧 = {

𝛽𝑖
𝑧−1:   𝑖 ≠ 𝑖0

𝛽𝑖
𝑧−1 + 〈𝒓,𝜑𝑖〉:   𝑖 = 𝑖0

 

6. 𝒓 = 𝒚 − 𝝋𝛽𝑧 
7. 𝑧 = 𝑧 + 1 

8. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

9. 𝛽 = 𝛽𝑧−1 

 

 

TABLE 3 

 PROPOSED DENOISING ALGORITHM 

Input:  𝒚 (Noisy Signal), 
ℏ2

2𝑚
, 𝜂, 𝜎 

1- Smooth the input acoustic signal with a Gaussian filter 

2- Compute the Hamiltonian matrix using (6) 

3- Calculate the eigenvectors of the 𝐻 matrix (get 𝜑𝑖) 
4- Consider the 𝜑𝑖  vectors as a dictionary of atoms and 

normalize them (get 𝝋) 

5- Get sparse representation 𝛽  using the MP algorithm 

(Table 2) 

6- Reconstruct the denoised signal using  𝒚̂ = 𝝋𝛽 

Output: 𝒚̂ (Denoised Signal) 

E. Dimension Reduction Method 

One essential tool to reduce the data dimensions is 

representation in principal component space [23]. Since the 

goal of this article is to model the ground particle size versus 

sound characteristics, data dimensions should be reduced after 

extracting the features. During the operation of the ball mill, 

the output product is sampled at different time intervals, and 

the audio signal is also recorded simultaneously. After sieve 

analysis, a particle size is assigned to each sampling time. 

Considering that the values of the variables were extracted 

from the sound at different sampling times, the data matrix size 

will be 𝑀 ×𝑁, where 𝑀 is the number of observations, and 

𝑁  is the number of extracted features.  To reduce the 

dimensions of the extracted features according to Table 4, the 

covariance matrix of the data is first calculated. Then, the 

eigenvectors of the covariance matrix are extracted. This 

matrix is called 𝑉. Finally, new data is formed by the product 

of  X and 𝑉.  In the next step, these data are used for modeling. 

Using this method, the principal components of the data are 

computed, and the dimension of the features is reduced. 

F. Modeling Based on Least Squares Regression 

In this part, the method of least squares in identifying the ball 

mill system is briefly reviewed. This method, while being 

simple, is good enough to control the ground particle size and 

ball mill load based on practical tests.  

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Frequency_domain
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(a) 

 

(b) 

 

(c) 

Fig. 3. An example of an acoustic signal with a length of 4.5 

seconds.  (a) signal in the time domain, (b) Power spectrum 

components, (c) Power spectrum in decibels (dB) 

The sum of the errors caused by the measurement and 

definition of the structure is indicated by 𝑒𝑡 . In the least 

squares method, the goal is to estimate the parameters so that 

the sum of squared error (∑𝑒𝑡
2) is minimized [24].  

TABLE 4 

 DIMENSION REDUCTION ALGORITHM 

Input: Data Matrix 𝑋𝑀×𝑁 

1- Compute the covariance of the matrix 𝑋𝑀×𝑁 : 

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑐𝑜𝑣(𝑋) 
2- Extract the eigenvectors of the covariance matrix: [𝑉, 𝐷] =

𝑒𝑖𝑔(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥) 
3- Show the new data in principal component space: 𝑌 = 𝑋 ∗

𝑉 

Output: Data Matrix 𝑌𝑀×𝑝 in Principal component space where 𝑝 <

𝑁 

 

In this method, a linear structure for the relationship between 

input and output is in the following form: 

𝑦𝑡 = 𝑢𝑡
𝑇𝜃 + 𝑒𝑡 (10)                                  

where 𝑦𝑡 is the output at 𝑡, θ is vector parameters, and 𝑢𝑡 is 

a vector containing system information. In this method, S =

∑𝑒𝑡
2 must be minimized to calculate θ. Therefore, the linear 

regression equation for all sampling times is as follows: 

{

𝑦1 = 𝑢1
𝑇𝜃 + 𝑒1

𝑦2 = 𝑢2
𝑇𝜃 + 𝑒2
⋮

𝑦𝑁 = 𝑢𝑁
𝑇𝜃 + 𝑒𝑁

 

 

                              

(11) 

 The equation (11) will be in the following form: 

𝑦 = 𝑈. θ + 𝑒; 

{
 
 

 
 
𝑦𝑁×1 = [𝑦1 𝑦2  … 𝑦𝑁]

𝑇

𝑈𝑁×𝑝 = [𝑢1 𝑢2  …  𝑢𝑁]
𝑇

𝑒𝑁×1 = [𝑒1 𝑒2  … 𝑒𝑁]
𝑇

𝜃𝑝×1 = [𝜃1 𝜃2  … 𝜃𝑝]
𝑇

 

 

                                

(12) 

Therefore, θ̂ (estimated parameters) is calculated as follows: 

𝑆 = ∑ 𝑒𝑡
2𝑁

𝑡=1 = [𝑦 − 𝑈. 𝜃]𝑇[𝑦 − 𝑈. 𝜃]=𝑦𝑇𝑦 −

𝜃𝑇𝑈𝑇𝑦 − 𝑦𝑇𝑈𝜃 + 𝜃𝑇𝑈𝑇𝑈𝜃 

⇓ 

𝜕𝑆

𝜕𝜃
= −2𝑈𝑇𝑦 + 2𝑈𝑇𝑈𝜃 

⇓ 

θ̂ = (𝑈𝑇𝑈)−1. 𝑈𝑇y. 

 

 

 

                       

(13) 

Inverting (𝑈𝑇𝑈) , when det (𝑈𝑇𝑈)  is close to zero, can 

cause errors in θ̂ calculation [25].  In this case, it is called an 

ill-posed matrix.  Therefore, alternative methods should be 

used to calculate the inverse of (𝑈𝑇𝑈). In this article, the 

singular value decomposition (SVD) method is used to solve 

this problem. The summary of the SVD method is shown in 

Table 5. The singular value decomposition of  𝑈 is as follows 

[15]: 

𝑈𝑁×𝑝=𝑃𝑁×𝑁𝑅𝑁×𝑝𝑄𝑝×𝑝 (14)                           

where 𝑃 and 𝑄 are orthonormal matrices with the following 

characteristics: 

𝑃𝑇𝑃 = 𝑃𝑃𝑇 = 𝐼𝑁×𝑁 

𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼𝑝×𝑝 

                                      

(15) 

And matrix 𝑅 is in the following form: 
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𝑅 = [
𝜎𝑝×𝑝

0(𝑁−𝑝)×𝑝
]
𝑁×𝑝

=

[
 
 
 
 
𝜎1
0
⋮
0

0
𝜎2
⋮
0

… 0
… 0
⋱
…

⋮
𝜎𝑝

𝟎 ]
 
 
 
 

𝑁×𝑝

. 

 

 

       

(16) 

Equation 12 can be written in the following form: 

𝑃𝑇.(𝑦 = 𝑈. θ + 𝑒)⇒ 𝑃𝑇𝑦 = 𝑃𝑇𝑈𝜃 + 𝑃𝑇𝑒 

𝑈 = 𝑃𝑅𝑄 ⇒ 𝑃𝑇𝑦 = 𝑃𝑇𝑃𝑅𝑄𝜃 + 𝑃𝑇𝑒 

                                 

(17) 

Where 𝑃𝑃𝑇 = 𝐼  and  assuming 𝑦∗ = 𝑃𝑇𝑦 , , 𝑒∗ = 𝑃𝑇𝑒 , 

 𝜃∗ = 𝑄𝜃, (17) can be written in the following form: 

𝑦∗ = 𝑅𝜃∗ + 𝑒∗.                             

(18) 

To calculate 𝜃∗, equation (18) is expanded as follows: 

[
 
 
 
 
 
 
𝑦1
∗ {

𝑦1
∗

𝑦2
∗

⋮
𝑦𝑝
∗

𝑦2
∗ {

𝑦𝑝+1
∗

⋮
𝑦𝑁
∗𝑁 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝜎1 0 … 0
0 𝜎2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎𝑝
0 0 0 0
0 0 0 0 ]

 
 
 
 
 

[

𝜃1
∗

𝜃2
∗

⋮
𝜃𝑝
∗

] +

[
 
 
 
 
 
 
𝑒1
∗

𝑒2
∗

⋮
𝑒𝑝
∗

}𝑒1
∗

𝑒𝑝+1
∗

⋮
𝑒𝑁
∗
} 𝑒2

∗

]
 
 
 
 
 
 

. 

⇓ 

{
𝑦1
∗ = 𝜎𝑝×𝑝𝜃

∗ + 𝑒1
∗

𝑦2
∗ = 𝑒2

∗  

 

 

 

 

       

(19) 

Therefore, 𝜃∗ = (𝜎−1𝑦1
∗)  and using 𝜃 = (𝑄𝑇𝜃∗) , 𝜃  is 

calculated. Consequently, for modeling using the least squares 

method, the information matrix 𝑈  is first calculated at 

different sampling times. The model parameters are estimated 

using the SVD method. 

 

III. Practical Tests and Results 

In this part, the experiments for modeling purposes were 

designed based on the factorial method and relative response 

time [26]. According to the previous description, for modeling 

the relationship between ground particle size and acoustic 

signal, before and after ball charging, the output (ground 

particles) of the ball mill is sampled at different times, and the 

acoustic signal is also recorded. Each sample is dried in the 

laboratory, and the sieve analysis is performed. In this section, 

the ASTM (American Standard Test Sieve Series) series and 

the Wet Sieve Analysis method are used for PSD (Particle Size 

Distribution) analysis. 𝐷80  is a characteristic diameter 

extracted from PSD and will be used in this section. Therefore, 

in the laboratory, 200 grams of the sample was separated, and 

the rest was stored as an archive. The representative sample 

was sieved on several different sieves. The material left on the 

first sieve should not be less than 10% of the total sample. If 

there is no load on it, a smaller sieve should be selected.  

 

 

TABLE 5 

 SVD METHOD  
Input: Matrix 𝑈 

1- Calculate the SVD of 𝑈: 𝑈 = 𝑃𝑅𝑄. 

2- Calculate 𝑦∗ = 𝑃𝑇𝑦 and get  𝑦1
∗. 

3- Calculate 𝜃∗ = (𝜎−1𝑦1
∗). 

4- Calculate 𝜃 = (𝑄𝑇𝜃∗). 

Output: 𝜃 

 

Then, the amount of the remaining materials on each sieve is 

weighed, and the numbers are placed in a table along with the 

sieve number. Finally, graphs are drawn based on the data of 

the 80% of the material passed through the sieve, and the 

results are interpreted. Fig. 4 shows the sampling and analysis 

steps, respectively, in the plant and the laboratory. In the next 

part, the optimal load of the ball mill will be selected through 

sieve analysis for a better release of minerals. 

A. Sieve Analysis Results 

For a better release of each mineral, it is necessary to grind 

the input load to a specific size. In the studied plant, this value 

is in the range of 110 to 120 microns. Therefore, the feed rate 

is optimal when the ball mill can grind it to the intended size 

range. This range is specific to this factory, due to the 

specifications of its available facilities, and can be different in 

other places. The ground particle size results for different feed 

rates, before and after ball charging, are shown in Table 6, 

Table 7, and Fig. 5.  Feed rate changes have a direct effect on 

retention time. If the feed rate increases, the retention time will 

decrease. With the rise in the feed rate, the retention time will 

be reduced, and less grinding will be done on the materials. 

Consequently, the output particle size will be coarser. 

According to the tests done in this part, the retention time was 

estimated to be between 8 and 15 minutes. Therefore, the 

sampling time of 42 minutes was selected based on the Nyquist 

theorem and retention time [27]. According to the Nyquist 

theorem, the signal sampling frequency should be chosen so 

that the vital signal data cannot be disturbed. During this time, 

it is expected that the output will reach stability in all different 

input tonnages. Also, all the data resulting from the grinding 

steps  and fluctuations (used in modeling) can be seen in the 

output samples. According to Fig. 5, before the ball charging, 

a peak is observed in the 20t/h graph. It shows that this cargo 

is relatively large for the ball mill available in the factory, and 

the power of the ball mill to grind the load is small.   

As a result, the output of the ball mill in the mentioned 

tonnage has a coarser particle size than other tonnages; 

therefore, the value of 20t/h is the critical value.  Also, it can be 

concluded that the ball mill shows a better grinding 

performance at low tonnages.  
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Fig. 4. Sampling and sieve analysis steps  

Therefore, the corresponding ground particle size curves are 

always downward over time. This process continues until the 

particles soften, and gradually, the curves become horizontal. 

Unlike the other charts, the 10t/h chart has less fluctuation and 

smaller particle size. As a result, it is better for the release of 

minerals. After charging new balls, the changes in all input 

tonnages decreased. In the previous chart, the feed rate of 20t/h 

is considered a critical feed rate due to the coarseness of the 

output particles even after the stability time. Compared to the 

other charts, the 10t/h chart has less fluctuation and a smaller 

particle size. Therefore, according to the analysis and 

requested size range, the optimal feed rate for the ball mill is 

10t/h. 

B. Spectral Analysis Results 

In this part, to investigate the sound signal behavior at 

different feed rates, the signal power spectrum was calculated 

using (20) and (21).  In the mentioned equations, 𝑌(𝑘) is the 

FFT of 𝑌(𝑡) (acoustic signal), and 𝑁 is the signal dimension. 

Also, equation (21) calculates the power in decibels (dB).  

𝑃𝑜𝑤𝑒𝑟 =
1

𝑁
∑|𝑌(𝑘)|2
𝑁

𝑘=1

 

                            

(20) 

𝑃𝑜𝑤𝑒𝑟(𝑑𝐵) = 20𝑙𝑜𝑔10(
1

𝑁
∑|𝑌(𝑘)|2)

𝑁

𝑘=1

 

                                

(21) 

Fig. 6 shows the power spectrum for three different feed rates, 

including 5t/h, 10t/h, and 20t/h. In this figure, the top row 

shows the components of the power spectrum, and the bottom 

row is the power spectrum in decibels (dB). According to Fig. 

6, in the feed rate of 5t/h, the power spectrum is in a higher 

frequency range than the other two feed rates. In this load, the 

amplitude of power components is also more extensive than 

the other two loads. The reason is that when the feed rate is 

low, balls hit the mill body more frequently, and consequently, 

the intensity and frequency of the produced sound will be 

higher. 

TABLE 6 

 PSD ANALYSIS (𝐷80 RESPONSE BEFORE BALL 

CHARGING (MICRON)) 

Feed Rate 

Time 

(min) 

5t/h 10t/h 15t/h 20t/h 

3.5 769 685 705 580 

7 710 660 689 490 

10.5 673 539 576 510 

14 500 450 476 570 

17.5 439 386 410 620 

21 370 330 378 640 

24.5 310 285 303 665 

28 280 240 279 650 

31.5 235 186 234 680 

35 215 165 195 615 

38.5 198 143 168 570 

42 160 120 135 580 

 
TABLE 7 

PSD ANALYSIS (𝐷80 RESPONSE AFTER BALL 

CHARGING (MICRON)) 

Feed Rate 

Time (min) 5t/h 10t/h 15t/h 20t/h 

3.5 340 321 334 510 

7 290 276 289 473 

10.5 257 245 259 435 

14 276 227 246 450 

17.5 220 214 229 439 

21 210 196 210 439 

24.5 203 184 201 432 

28 198 181 193 424 

31.5 192 168 175 412 

35 181 152 167 406 

38.5 162 131 143 393 

42 143 112 127 387 

 In the feed rate of 20t/h, due to the high load of the machine, 

the sound resulting from the collision of the balls with the load 

is muffled.  Therefore, in this case, the frequency of the power 

spectrum is shallow, and the amplitude is less than in the 

previous point. In the feed rate of 10t/h, the signal's frequency 

is in the middle band, and the amplitude of the power spectrum 

is also lower. This means that the mill is working normally, 

and the frequency and intensity of the sound are also suitable. 

Therefore, the summary of this part of the studied ball mill is 

as follows: 

- The frequency range of the power spectrum for all cases is 

from 100 to 1300 Hz. 

- If the feed rate is low, the sound power spectrum will be at 

higher frequencies, which is in the range of 700 to 1300 Hz. 



213                Controlling the Ground Particle Size… /Kalantari, et al 

 

(a) 

 

(b) 

Fig. 5. PSD Analysis (Ground particle size (𝐷80) graph).  

(a) before ball charging, (b) after ball charging 

- If the feed rate is high (critical), the sound power spectrum 

will be at low frequencies, which is in the range of 100 to 300 

Hz. 

- If the feed rate is standard, the sound power spectrum will be 

in the middle frequencies and the range of 300 to 700 Hz. 

Therefore, according to the results and the frequency range 

obtained for the sound, the feed rate of the ball mill can be 

divided into three states: standard feed rate, low feed rate, and 

critical feed rate. 

 

C. Modeling Based on Least Squares 

As mentioned in the previous sections, four features 

(including the maximum and minimum sound intensity in the 

time domain, and the amplitude and frequency of the 

maximum power spectrum components) are extracted as 

candidates from the acoustic signal in different time intervals. 
 

According to Table 4, two features (i.e., the maximum and 

minimum sound intensity in the time domain) were ignored 

due to their low change interval. The reason is that to reduce 

the dimensions of the features (Table 4), the PCA-based 

method has been used. In this method, characteristics with 

more changes are considered more important in modeling. On 

the other hand, according to the obtained results, the range of 

changes in maximum and minimum sound intensity is tiny. 

The remaining two features used for modeling included the 

amplitude (𝐴𝑚 ) and frequency (𝑓𝑚 ) of the most significant 

component of the power spectrum.   

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Fig. 6. Acoustic power spectrum at different feed rates 

 (a),(b) low feed rate ( 5t/h) , (c),(d) standard feed rate 

(10t/h), (e),(f) high feed rate (20t/h) 

In this article, the goal is to find a model that shows the 

relationship between the ground particle size and the audio 

signal. To achieve this goal, 𝐴𝑚 and 𝑓𝑚 are extracted from 

sound in all sampling time intervals. Then, the ratio 𝑓𝑚/𝐴𝑚 is 

innovatively used as a feature extracted from the sound. Sound 

is the result of vibration. This ratio can physically express the 

amount of vibration resulting from the collision of the balls 

with the ore. Using this feature, critical and standard 

conditions of the mill can be identified. According to the 

amount of vibration created in the ore, the normal and vital 

conditions of the mill will be determined, and a specific sound 

frequency range will be produced. In section 3.1, the ground 

particle size for all samples has been extracted using sieve 

analysis. Therefore, according to section 2.4, a mathematical 

model can be obtained by putting the ground particle size on 

the Y-axis and the feature value on the X-axis.  In this study, 

the least squares method based on polynomials has been used.  

The polynomial degree selection is one of the primary 

challenges in modeling. It should be noted that the purpose of 

modeling is not to predict the output for the given data; instead, 

it is to predict the outcome of the unseen data. A model that 

makes reasonable predictions on new unseen data has 

generalization ability. A simple and effective method to 

determine if a model can be generalized is to divide the original 

data into a training set and a test set. Therefore, 80% of the 

data is used for training and 20% for model testing. After 

polynomial modeling with different degrees, the value of 

RMSE is calculated using (22). In this equation, 𝑌𝑖  is the 

actual value of the data, and 𝑌̂𝑖 is estimated by the model.  

𝑅𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑁

𝑖=1

 

 

(22) 

                                 

Then, the RMSE diagram is drawn for the training and test 

data in different degrees in polynomial equations. Finally, the 

degree with the lowest RMSE value in the test data is selected 

as the most preferable one.  In Fig. 7, the model validation is 

done for the data before and after the ball charging. According 

to this figure, degrees 2, and 3 are reasonable choices. Given 

the trade-off between simplicity and accuracy, degree 2 is 

chosen for modeling. 

The modeling results for the feed rate of 10t/h before and after 

ball charging are shown in Fig. 8 and Table 8. Using this model, 

the ground particle size is estimated based on the feature value 

extracted from the sound. Therefore, the control plan (Fig. 2) 

of the ball mill will be as follows:  

- First, the optimal feed rate (i.e., 10t/h) is set, based on the 

previous results.  

- Then, the mill sound signal is recorded every 3.5 minutes, 

after the retention time (15min).  

- After the noise removal process, the features and the sound 

power spectrum are extracted.  
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(a) 

 

(b) 

Fig. 7. Model validation chart  

(a) before ball charging, (b) after ball charging 

  

- Using the extracted features, the ground particle size is 

calculated.  

- If the calculated ground particle size is 10% different from 

the desired one and the sound power spectrum is not in the 

middle-frequency range, the feed rate value should be changed. 

 

D. Built-in Control Device 

Fig. 9 shows installing the microphone and adjusting the feed 

rate to the ball mill in the Lakan lead-zinc processing plant. 

The microphones are installed in a place closest to the bottom 

of the mill. In this article, a BY-M1 BOYA condenser 

microphone was used for recording the sound. 

Due to the high quality and sensitivity of the condenser 

microphones, more details of the signal are recorded, and the 

sampled signal can be used to diagnose the working conditions 

of the ball mill.  

 

 

 

 (a) 

 

(b) 

Fig. 8. Modeling based on least squares before and after ball 

charging in feed rate 10t/h 

(a) before ball setting, (b) after ball charging 

 

 
TABLE 8 

The identified model in Fig. 8 

Before Ball Charging: 

𝑓(𝑥) = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3,  𝑝1 = 1.859, 𝑝2 =

−182.1,  𝑝3 = 339.6 

RMSE= 54.97 

 

After Ball Charging: 

𝑓(𝑥) = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3,  𝑝1 = −4817, 𝑝2 =

1029,  𝑝3 = 276.9 

RMSE= 22.99 

 

 

The control plan proposed in this article (Fig. 2) can be 

implemented in two ways. One is to use a computer and 

connect a microphone to it so that the received signal can be 

analyzed using the proposed method in MATLAB software. 

Using this method, the ground particle size is calculated, and 

the feed rate is changed if needed. In the other way, a unique 

device is made using an Arduino microcontroller (Fig. 10 

shows different parts of the manufactured device). In the 

mentioned circuit, the received audio signal is first amplified 

using an analog amplifier. In the next step, the signal is 

transferred to the microprocessor. Then, the signal is denoised, 

and features are extracted. After that, the ground particle size 

is estimated using the extracted models in Fig. 8, and the sound 

power spectrum is also calculated. If the ground particle size 

and sound power spectrum condition are not ideal (according 

to 3.2), the buzzer starts making sounds, and the control switch 

is turned on to change the feed rate. In this article, both 

methods were practically implemented. In the first method, the 

cost of implementation and construction is high, but the data 

processing power is much higher than in the second method.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9. Installing the microphones near the mill floor and 

adjusting the input feed rate. (a) Location of microphones, (b) 

Microphone installation in the plant, and (c), (d) Setting the 

feed rate 

 

However, in the second method, the manufactured device is 

portable and, hence, cost-effective due to its small dimensions. 

The fabricated device can reduce the energy consumption of 

the ball mill. Also, by adjusting the optimal feed rate, the 

average size of ground products can be decreased and set in the 

appropriate range. In the proposed control system, since the 

ball mill load is standard, ball mill energy consumption will be 

optimal. Optimal load control will also increase the ball 

charging time. Therefore, a smaller number of balls will be 

used. Consequently, the system designed in this article will 

increase the efficiency of the ball mill in practice. As explained 

in the introduction section, the studied ball mill liner is made 

of plastic. Metal liners produce a lot of noise, and distort the 

sound resulting from the collision of the balls with the particles. 

But plastic liners do not make noise due to their elasticity. 

Therefore, the received sound will result from the impact of 

the material with the balls. Hence, one of the limitations of the 

proposed method is that the liners must be plastic to minimize 

the error. Because of the fact that nowadays, plastic liners are 

primarily used in ball mills, the presented method will not have 

severe limitations. One of the most essential points in the 

designed system is repeatability. To achieve it, the identified 

model should be updated as the system parameters change. For 

this purpose, in the new device version, the modeling process 

is done in different time frames. Using this method, the model 

is continuously updated. To do so, the output ground particles 

are analyzed using a CAMSIZERX2  device. Particle size 

distribution data (i.e., D80) is sent to the device online. Then, 

the modeling process is done based on the least square error 

method, and the model will be updated.  
 

IV. Conclusion 

In this study, an innovative combined method was 

implemented to control the ground particle size and load of the 

ball mill. In this method, the relevant modeling was first done 

using both the acoustic signal and the ground particle size 

diagram. 

 

             (a) 

 

 (b) 

 

 

(c) 

Fig. 10. Prototype of the ball mill control device. 

 (a) schematic of the device, (b) a digital circuit, (c) a 

prototype of the manufactured device 

 

To do so, the output (ground particles of the ball mill) was first 

sampled, and the acoustic signal acquisition process was also 

performed. After the sieve analysis, the ground particle size 

diagram was drawn. In the next step, using the new method of 

quantum adaptive basis, the acoustic signal outliers were 

removed. Then, the Fourier transform of the signal and the 

power spectrum were calculated. Four features, namely the 

maximum and minimum values of the sound in the time 

domain, and the maximum of the power spectrum component 

(amplitude and frequency), were extracted from the acoustic 

signal. In the next step, a PCA-based method was applied to 

reduce the dimension of the features. Finally, the regression 

model between sound signal and ground particle size was 

obtained using the least squares method. This model is also 

used to control the ball mill. The resulting model can detect the 

ground particle size and load status (standard, low, high) by 

recording the sound of the ball mill, when in operation. In this 

article, all the steps of the proposed method were practically 

tested on the ball mill of the Lakan lead-zinc processing plant. 

Also, a device that controls the ground particle size and ball 

mill load was built. According to the results, the optimal feed 

rate for the ball mill is 10t/h. In this case, the size of the ground 

particles is suitable (110-120 microns), and the sound power 

spectrum is 300-700 Hz. It should be noted that the optimal 
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feed rate obtained in this article is only specific to the studied 

ball mill. That is, the optimal feed rate in other factories might 

be different, and it must be calculated using the proposed 

scheme. According to the analysis and results of the study, the 

proposed control plan will reduce the energy consumption of 

the ball mill and increase the ball charging time. Therefore, the 

proposed method will increase efficiency in this factory. The 

authors of this article aim to measure the amount of energy and 

the number of balls saved in this process for their future 

research. Also, the modeling of more complex ball mill 

systems will be investigated in the following study. 
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