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ABSTRACT
The optimal controlis the process of finding a control strategy that extreme some performance

Received index for a dynamic system (partial dif_ferential equation_n) over the class,_ of admissibi lity. The
present work deals with a problem of fixed boundary with a control manipulated in the structure
2511072021 of the partial differential equation. An attractive computational method for determining the
optimal control of unconstrained linear dynamic system with a quadratic performance index is
Revised presented. In the proposed method, the difference between every state variable and its initial
12/03/2023 conditionis represented by a finite - term polynomial series. This representation leadsto a system
of linear algebraic equations which represents the necessary condition of optimality. The linear
algebraic system is solved by using two approaches namely the variational iteration method and
Accepted the minimization approach forunconstrained optimization problem with estimation of gradient
05/04/2023 and Hessian matrix. These approaches are illustrated by two application examples.
Published KEYWORDS: Optimal control problems, linear distributed parameter systems, variational
30/09/2023 method, approximate solutions, polynomial based approximation. i
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INTRODUCTION controllability of nonlinear partial differential

Determining the optimal control of linear,
distributed parameter models of dynamic
systems is one of the principals "state space"
design problems. The challenge is to find the
optimal trajectories of the control and
associated state giving the best tradeoff between
performance and cost of the control. Toward
this end, variational methods can be used to
determine the optimality condition as a two-
point boundary value problem. The optimal
controller construction using Pontryagin’s
minimum principle is presented in [5]. The
control of linear partial differential equations
can be found in [1], on the extension of

equations is presented in [7]. Different based
functions are referred to in [6] to approximate
the control and state variables such as the
Fourier functions, Chebyshev functions, Walsh
functions, etc. In this paper one can understand
that we mean by formulation of the problem the
following concepts: the general description of
the problem, the assumptions that needed for
holding the problem or to make the problem
well defined, the state parameterization, the
approximation of the performance index, the
approaches of the solution, and finally the
discussion of the results.
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Description of the Problem

The basic idea of optimal control problem
involves finding the control function u(x,t) and
the corresponding state function w(x,t) in the
suitable rectangular region Q that minimize the
quadratic  performance index J, where
J=wJ, tw,], , where ®,, m,are positive
weighting factors, and Ji, J» represent two
quadratic functionals as shown in details next.
The main optimal control problem is:

o7 Jg (wix, t),u(x,t), x,t)

MinJ(u(x,t)) = Mi

UeILT (ubx.) uaILrJ]Q + 07 5 (W(X, 1), u(x, ), X, t) @)
where the region of the solutionis:

Q={(x,t)| xe[0,d],te[0,T], T>0} (2)

and the control input function u(x,t) is assumed
to belong to the class of admissible controls
which denoted by U:

ueU={u(x,tu(,)el,[Q] } (3)
subject to the operator:
Wi (X ) =L(W(X, 1), Wy (X, 1), Wiy (X B U, ). %1 (4)
with the initial condition:
w(x,0) =g (X) , 0<x<d (5)
together with the boundary conditions: (6)-(7)
aW(0,t)+ B, (0,)=F, (), 0<t<T  (6)
aW(d, 1)+ B, (d, ) =F, (1), 0<t<T  (7)
with the final state:
w(X,T) =0,(X), 0<x<d (8)

where the functions fi(t), f2(t), @,(X),o,(x)

are suitable smooth given functions. Now, to
make the problem is well defined one needs the
following hypotheses and assumptions:
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MATERIALS AND METHODS

Hypotheses and Basic Assumptions
The main problem (1) — (8) holds when the
following assumptions satisfied:
1. L is a linear operator defined on its domain
space D(L) as follows:

L:D(L) =W, xU; € Ly(Q) - R(L)=W, xU; c Ly (Q)

()
With

D(L) =L,(9Q) (10)

2. The inner product in L, () is defined by:

<SW,L,W, > o= w(x,1).w,(x,1) dQ (11)

where w, (x,t), w,(x,t)e D(L).
3. The normin L,(€) is defined by:

||W||L2(Q) = <W,W>

where w(x,t)e D(L)

The function w(x,t) is assumed to be a

smooth function of its independent variables

X, t.

The final time state is assumed to be fixed.

6. The initial and the boundary conditions are
assumed to be compatible up to some order.

7. The main quadratic functional J(u(x,t)) in (1)
is assumed to be continuous and strictly
convex on the compact admissible control
space U.

8. The first objective function J; is defined as a
functional by:

(12)

o

d 2 2 2
)=y - HLz(Q)ﬂl 2|l o slvl 0 (13)

where the norm is given in (12). The above
performance index (13) can be explained as
follows:

d d
Jlw,ul=pg<w-w",w-w= > (g

(14)
TH2 <Wy, Wy >, () TH3<U,U>,(q)
or another form of Eq. (11) is:
iy T 0
W= m[(W(X,I) ?(X’t» (w(x.t) WT % 40 (15)
O\ Wy (X, 1) Wy (X,8) [+rs{u(x, 1) u(x,t)
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Thus, the quadratic form of above Eg. (15)
is:

d
iw,ul=| ul[w(x,t)—w2 (x,t)]2 , i (16)
A +pp [wy () +pgu(x,b)]

9. The given function wd(x,t) in (13), (14),
(15), (16) respectively, is the desired state
and for the stability point of view, the
steady state of the state function and the
control function may be inserted in the first
objective function J;.

10. An important point of view is the addition
of the wy(x,t) term to the first objective
function Ji is very useful to ensure that the
solution w(x,t) will go to the desired
solution such as the steady state solution
for all values of the spatial variable x not
only at the boundary points when one take
only the w(x,t) terminJ; [8].

11. By substituting the bilinear form (11) into
the quadratic functional (16), the Eq. (16)
becomes:

d d
Jl[w,u]:}j “1[W(x’t)‘wz(x't)]2 |oxat(17)
00 | +pp [wy (x, D +pzfu(x,1)]

12. The second objective functionJ, is defined
as a functional in the norm (12) by:

1
Blwul=2 | Lww[f ] f Ll o) (18)

where f is a given function represents the
nonhomogeneous part of the PDE (4) or right-
hand side of it (if it is existing). J; is defined as
a functional in the inner product (bilinear) form
(11) by:

3w, u]=%< LW ) LW,0) >y -<F L) > Ly (L19)

the above performance index (19) can be
explained as follows:

J ,:1[@mmmwmmTummume]m
ol %Limmw@manMKmﬂ (20

Thus, the quadratic form of above functional
(20) is:

Jo[w,ul =3 |
o

[Lwx,t),u(x ) -
2[F(x,1) . L(w(x,t),u(x,t)

13. The linear operatorsL in Eq. s (18) - (21) is
taken from the parabolic PDE:

w, (X,t)=aw (X, )+Bu(x,t) +f(x,t) (22)

or one can rewrite Eq. (22) in operator form as
follows:

L(w(x, 1), u(x,t)) = f(x,1) (23)
where the linear operator L is defined by:
2
L(w, u):%—a 0 VZV
ot OX

by substituting the linear operator (24) into the
quadratic functional (21), where the bilinear

—pu (24)

form <L(W,u),L(w,u)>Lz(Q) is  defined
basically in (11), by using Eg. (23), the
quadratic form (21) becomes:
Td 2 2
JZ[W,U]zljj ow _ aa—\;\l—ﬁu
200 ot OX
; 22 (25)
W W
—2(F(x,1)) {E_ aaX—Z—Bquxdt

14. The symmetry property of the linear
operator L is satisfied with respect to the
chosen inner product (bilinear form) (11) in
Lo(Q2), assuming that the non-degeneracy
property of the linear operator L is also
satisfied in Lo(Q) then from [4] one can
define the functional J; in the form of Eq.
(18) or equivalently in the form of Eqg.
(19).

15. Using Eq. (17) and Eg. (25), the main
performance index (1) can be written as:
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MinJ(u(x,t)) =
ueU

g [woe - wl (.0

(,Ol 2
+Ho {%} +pg[ux, Hf
Min | [6w 2w

2
uel o aBu]

ot 6)(2
ow  o*w
—Z(f(X,t))[at— Q.axz—ﬁuj

. (26)

+ My

Where, o,,0,,u,,1,, 1, are suitable weighting
and presence factors respectively.

State Parameterization
The optimal control problem can be converted
to an optimization problem by approximating
the state and the control functions by their bases
functions, this procedure converts the PDE in
infinite dimensional problem into a finite
dimensional optimization problem as in the
following computational algorithm:
Step 1: Construct the Ritz sequences of bases
functions for the state function w(x,t), and for
the control function u(x,t) respectively as
follows:
nl
Wn1(X,t)=G(x, t)+ _ZlaiGi(X,t) (27)
where G(x,t) is a function satisfies the non-
homogeneous initial and the compatible
boundary conditions given in Egs. (5) - (7)
respectively, and G;(x,t), i=1,..,n;, is a
complete sequence of bases functions (a set of
linearly independent functions). Next for the
control functionu(x,t):
n2

u,, (X t)=N(x,t)+ lel b, N,(x,t) (28)
where N(x,t) is a function satisfies the non-
homogeneous initial condition for the control
function, and Nj(x,t), j=1,.,n, is a complete

sequence of bases functions (a set of linearly
independent functions).

Step 2: Choose a suitable number n; of Ritz
bases functions G, (x,t), i=1,..,n, in L,(Q)
such that G,(x,t)=0, for i=1,..,n,on the
corresponding homogenous initial and boundary
conditions of the state function, and choose a
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suitable number n, of Ritz bases functions
N;(x,t) j=1,.,n, in L,(Q) such that

N;(x,t)=0, for j=1,.,n, the

corresponding homogeneous initial condition
for the input control function, and substitute
these bases functions into the approximate
functions w_(x,t), u,,(t) given in Egs.
(27), (28) respectively with the important
conditions:

on

Ll'ﬂ? w (X, t)=w(x,t) (29)
|n_2im u,, (X t)=u(x,t) (30)

Step 3: Taking the partial derivatives of Eq.
(27) with respectto t and x respectively as
follows:

0 0 Mmoo

W D=—260 0+ izzlaiaGi(x,t) (31)

0 0 o9
&Wnl(x,t)=a—XG(x,t)+ Elaia_xGi(X't) (32)
o? o? o5
aX_ZWnl(th) = aX—ZG(X,t) + Elai aX—ZGi(X,t) (33)

Approximation of the Performance index
Step_4: Substitute Egs. (27), (28), and the
corresponding partial derivatives (31) - (33) into
Eqg. (26) with some arrangement to get:

p][(s(x,m ”éa‘G‘(x‘t)j—w“(x,t)}
o, w{%e(x,m "Z‘algG‘(x‘l)}
C i=1 )

2 2
+, {N(x,t)JrEb‘Nj(x‘t)]

dQ

“““““

[éG(x,l)f aa—zzG(x,t)fﬁN(x,t)

at 0OX
) i

+3a, [gG‘(x,t)— @256, (34)

~EbpN,000)

+ o,

[‘ie(x,t)- a[)—ZG(x,[)—ﬁ N(x,t)i
ot ox

2 (o) | +£ [gG,(x,t)—a.;(—ZG‘(x,t)

éb,u} N, (1)

where f(x,t) is a given function different from
one problem to another.
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Solvability of the Problem

Due to the minimization of multi-objective
optimization problem one can use two different
approaches for solving this problem as follows:

Variational Approach

In this approach to find the approximate optimal
control u(x,t), and the corresponding
approximate solution of state function w(x,t)
one has to find the critical points of the
performance index functional given in Eq. (34)
for suitable given weighting and presence

factors o,,o,,u,,u,,u,, of the following
functional:

J[a,b] = 31 [, b]+ w,d,[4,b] (35)
Where,

d=(ay,...ap), b=(by,....by) (36)

since both functionals Ji, J, are of quadratic
type, a linear algebraic solvable system is to be
solved for d@,b and hence the approximate

solution will be obtained. The full description of
the method is given next as follows:

Step _5: Differentiate the functional J[d,b]
given in above Eg. (35) with respect to the
parametersa,'s, p=1..,n; and equal the

resulting equations to zero to find the critical
points of the functional (34):
dJ[E,b] _

2a, 0, p=1..m (37)

Remark (1): For the main functional J[a,b]

givenin Eq. (35) to assume its minimum at the

points (a;,a,,..,8,) it is necessary that the

derivative of itwithrespect to a,'s, p=1..,n;

is equal to zero, (i.e., (38))
o[, b] _ aJl[é,b]+w28J2[é,b]=0
0ap oap oay

. p=l.ng (38)

e
oa,

0=

241 Gp(x,t) He(x,m EaiGi(x,t)J—wd(x,t)}

i=1
nl
o] +2u, a%GP(X‘t)[a%G(X’t)Jr iglaia—(’axGi(x,t)}
+0
(39)

A
o

52
2[6tGp(x,t)—aaszp(x,t) j a0

0

0 02
[mG(x,t)— aaXZG(x,t)—ﬁN(x,t)]
+ 7

nl P 52
+a; —Gi(x,t)—a—zGi(x,t)
i-1 (ot ox

n2
__zlbj(ﬁ N (x,0)-F(x, 1)
j=

Step 6: Differentiate the functional J[é,B]
given in above Eq. (35) with respect to the
parametersb,'s, gq=1..,n,; and equal the

resulting equations to zero to find the critical
points of the functional (35):

dJ[a,b]
ob

0, g=1..,ny (40)
q

Remark (2): For the functional J[@,b] given

in Eq. (35) to assume its minimum at the points
(by,by,..,b,,) itisnecessary that the derivative

of it with respect to b,'s, g=1..,n, isequal
to zero. i.e: (41)

0J[a,b] o 6J1[5,5]+w a3,[8,b] _

0. q=l..n (41
1 2 2
ab, ob, ab, (41)

aJ[a,B]_O_
oby
11(0) + 12 (0)
4 psNq(x,t)[N(x,t)+Elijj(x,t):l
i
2
60— a2 606 - BN, (42)

[ at ox? o

Q

nl ] @2
+ 0y ZBNq(X,t) +i§iai EGi(X,t)*aanGi(X,l)

n2
_ _zlbj(p, N0 D)~ (x, )
e
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Step 7: Rearranging above Egs. (39), (42) for
ap's, p=1..,n; and for by’s, q=1..,n, to getn x
n system of algebraic equations CA=D, for the
unknowns A =[ay,ay,...an ,by,by...b, 17, where
n=n; +n, as follows: For p=1,2,..,n1,i=12,.,
ng, n1+1,.., n1+no,

mGp(x,t) Gi(x,t) + J

ejp (X, 1) = 2031( 0 0
—G,(x, 1) —G;(x,t
H2 = Gp(xt) — Gi(x)

2
+2®2[§Gp(X,t)—ocaax—sz(x,t)J. (43)

2

0 0
(aGi(X,t)— aa)(—zGi(X,t)—BNj(X,t)]

kp(x,t) =

1y Gp(x, 1) wi(x, 1) -
20.)1 ule(X,t) G(X,t)—

0 0
—G,(x,t) —G(x,t
M2 — o )6x (x,1)

44)
) 02 (
[aGp(X,t)—aax—ZGp(X,t)J
+2w; f(x,t)—(%G(x,t)—
02
a—5 G(X,1) =BN(x, 1))

OX
For g = ni+1,.., ni+nz , i= 1,2,.., n;, m+1,..,
ni+ny.

eiq (%,1) = 201u3(Ng (X, )N;(x,1) )
+2m7 BNg (X, 1)
) 02 (45)
aGi(X,t)— O(aX—ZGi(X,t)—BNj(X,t) J

and

kq (%, 1) =201u3(Ng (X, ) N(x,1) )
+20; BNg (x,t)

HCHE (46)
82

a—ZG(x,t)—BN(x,t))

0

0
(5 G- ”

77

using the Eqgs. (43) — (46) the n x n system of
algebraic equations CA=D with C is n x n
constant matrix defined as:

[Td
”ell(x, t) dxdt

00
Td

¢ =| [[ean(xt) dxct
00

Td

[[erp(x,t) dxdt -

00
Td

[ean(x.t) dxdt -
00

Td ]
[Jenn (x,t) dxdt

00
Td

[ [egn (x,t) dxdt
00

(47)

Td T
[[em(xtydxdt - [[eg(x,t) dxdt
00 00 ]

Td

[ Jen(x.t) dxdt
00

and the right-hand side nx1 vector D is defined
by:

d
fk,(x,t) dxdt
[e]

Ot—-

k., (x,t) dxdt

o=—2Q

(48)
K, (X, 1) dxdt

k., (x,t) dxdt

Ot—-
ot—-4 ow—maO—-

O=—20a

Step 8: By using MATLAB program for the
linear n x n algebraic system, one can solve the
problem for n= ni;+n; unknown parameters
a,'s, p=1.,n; and b,'s, q=1..,n,, as will

be show in illustrative examples next.

Minimum Approach

Optimization problems represent finding
parameters that minimize or maximize an
objective function with or without satisfying
constraints. A search for extremum (a minimum
or maximum) of a scalar valued function is an
optimization problem, it is nothing else than the
search for the zeros of the gradient of that
function. There are two types of optimization
problems, these are constrained optimization
and unconstrained optimization [9], in this work
only unconstrained optimization is deal with.
The minimization approach for unconstrained
optimization problem with estimation of
gradient and Hessian matrix is to find the
optimal control ueU that minimize the

performance index J(u(X,t)) subject to w(x,t)

is the solution of the problem (22) and this
approach is continuous until the optimized
solution of the problem (1) — (8) is achieved.
In optimization, Quasi-Newton methods are
algorithms for finding local maxima or minima
of functions, these methods are based on
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Newton's method to find the stationary point of
a function when the gradient is zero.

Newton's method assumes that the function can
be locally approximated as a quadratic in the
region around the optimum and uses the first
and second derivatives to find the stationary
point. In higher dimensions Newton's method
uses the gradient and the Hessian matrix of
second derivatives of the function to be
minimized. In Quasi-Newton methods, the
Hessian matrix does not be computed. The
Hessian is updated by analyzing successive
gradient vector instead. Quasi-Newton methods
are a generalization of the secant method to find
the root of the first derivative for
multidimensional problems. One of the chief
advantages of Quasi-Newton methods over
Newton's method is that the Hessian matrix
does not need to be inverted. It is usually an
estimate of the inverse matrix directly [2].

RESULTS AND DISCUSSIONS

All the above details of the explained methods
will be applied to the following two simulation
problems. Each problem will be solved by using
the two explained approaches as follows:

Illustrative Problem I
Consider the Main optimal control problem Eqg.
(2) or equivalently Eq. (26):

MinJ(u(x,t)) = Min (013 +0,3;) (49)

with the weight factors m1= w,= 0.5 and the first

objective function Ji as in Eg. (16) is the
functional:
Jp(w(x, t),u(x,t)) =
I b 0 0 -wix O | (50)
ol + ug[u(x vl

with the presence factors pi= psz= 0.5, p=0, and
the second objective function J; as in Eq. (25)
is:

Jo(w(x,t),u(x,t)) =
L[w (%, 1) ~awy (x,) = Bu(x,H
ol = [FO ). [wi (X, 1) —aw g (x, 1) = Bu(x, )]

]}m °

where the region of the solution is
Q=1{x1] xe[0,1,te[0,1}, and
f(x,t)=2wd (x,t), o=Pp=1.

Subject to:

Wi (X, D) =Wy (X, 1) + 2WI(x, )+ ux,t) onQ  (52)
with the initial condition:
w(x,0) =0 0<x<1 (53)

together with boundary conditions:

w(O,t)=0,  0<t<1 (54)
w(1,t)=0, o<t<1 (55)
with the final state is:
w(x,1) =—0.6146 x(x -1), 0<x<1 (56)
and the desired state is:
we(x,t)=t’x(1-x) (57)

The solution steps are:
Stepl: From (27) set

W (X, 1)=G(X,1)+ %l;aic;i(x,t) with n, =5 where
i=1

G(x,t) =0, Gi(x, t)=tx@-x)[t],

G,o(x,t) =tx(1-x)[tx], Ga(xt)=tx1-x)[t>x],

G4(x, 1) = tx(1—x)[t?x2], Gg(x,t) = tx (1 - x)[t? x°]

Thus,

5
w5 (X, )= _Zlai Gi(x,t) (58)

-
whereG;(x,t)=0, i=1,.5 on the corresponding
homogeneous conditions of the given initial and
boundary conditions (53) — (55), and no
restrictions are given on the solution at the final
state (56) at t = 1. And from (28) set

2
Uno (X, )= N(x, )+ nijNj(x,t) with  n, =5
=1

where N(x,t)=0 |, Np(x,t) = tx(L-x)[t],
No(x,t) =tx@—x)[tx],  Nz(x.t)=tx@-x)[t>x],
N, (X, 1) = tx(L—x)[t2x2], Ng(x,t) = tx(1—x)[t>x°]
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thus,
5
us(x,t)= ijNj(x,t) (59)
=1
Step2: Define the linear operator L by:
L(w,u) = W (X, t)—aWyy (X, 1) —u(x,t) onQ  (60)

where the conditions (9) — (12) are held for this
problem. To find the classical solution w(x,t)
which means continuous function in the closed
domain Q and satisfy the PDE (60) in the open
domain Q and is equal to zero on the boundary
0Q,Vu(x,t)e U which is given in Eq. (3),
and f(x,t)=2w’(x,t).

Results of Variational Approach

The problem of finding the approximate optimal
control u(x,t) and the corresponding
approximate solution of the state function w(x,t)
is converted to find the critical points of the
functional (35), set ni = ny = 5 this means:
d=(ay,a,,a3,34,a5) ,b=(by,by,b3,by,b5)

(61) and differentiate the functional (35) with
respect to @ by using Eq. (38) with p=1,..,5to0
get Egs. (43) and (44) and differentiate the
functional (35) with respect to b by using Eq.
(41) with g=1,...,5 to get Egs. (45) and (46). All
above leads to a system of nxn dimension with
Egs. (47) and (48) and finally using step 8 of
the computational algorithm for finding the
approximate solutions to obtain the values of

a, b as shown next in tables after the

explanation of applying the second approach to
the same illustrative problem | for the sake of
comparison.

Results of Minimum Approach

The details are explained in 6.2, with setting n;
=n, =5and using Eq. (61).

Remark (3): Not only the result values of &,
b for two approaches are shown next but also

the result values of a, b of applying Quasi —

Newton method to illustrative problem | and
illustrative problem Il are also listed in the
Tables 1 and 2 of results to enrich the
comparison details of the modified approaches.

Table 1: The Approximate Values of a , b for Illustrative Problem

| of Egs. (49) - (57)

Parameter ~ Variational Minimum I(\?:v?/i(i);
name approach  approach method
a1 0.1030 0.1031 0.1031
az 0.0652 0.0641 0.0653
as 0.0368 0.0366 0.0359
a4 -0.1143 -0.1113 -0.1125
as 0.0008 - 0.0007 - 0.0002
b1 - 0.3340 -0.2924 - 0.3063
b2 0.8771 0.7023 0.8418
bs -0.1750 -0.2760 -0.3744
b4 -1.8910 - 1.3405 -1.3947
bs 1.2053 0.9202 0.9026

Table 2: The Absolute Error of the Four Functionals Constructing the
Illustrative Problem | of Egs. (49) - (57).

Functional Variational Minimum (’\Qluaa—
name approach approach ewton
method

Ji 1.3912x104  4.6397x10° 4.6463x10°

J5 1.7090x10+4 1.7078x104 1.7092x104

Ja 2.6193x10° 2.6198x10-° 2.6186x10°

Main J 4.0839x107 9.7867x106 9.7881x106
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Figures 1 and 2 demonstrate the values of the J1
and J2 functions for illustrative Problem | using
the First and Second approaches, as well as the
Quasi-Newton method. Figure 3 displays the
approximations and desired solutions in the
variational, minimum, and Quasi-Newton
approaches, respectively. Figure 4 presents the
main J values for illustrative Problem | using
the First and Second approaches, along with the
Quasi-Newton method.
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Figure 1: J1 values of illustrative problem | for First and second Figure 2: J2 values of illustrative problem | for First and second
approachesand Quasi-Newton method respectively. approachesand Quasi-Newton method respectively
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Figure 3: J3 values of illustrative problem | for First and second Figure 4: Main J values of illustrative problem | for First and second
approachesand Quasi-Newton method respectively approachesand Quasi-Newton method respectively.
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Ilustrative Problem 11
Consider the Main optimal control problem Eqg.
(2) or equivalently Eq. (26):

Min J(u(x, 1)) = Min (0J, +o,J,)  (62)
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with the weight factors m1= w,= 0.5 and the first
objective function J; as in Eq. (16) is the
functional:

Jp(w(x, 1), u(x, 1)) =

st -wexof g oce o Joo (63
Q

with the presence factors pi= ps= 0.5, u=0, and
the second objective function J; as in Eq. (25)
is:

Ja(w(x,1),u(x, 1)) =

[%[wt(x,o—ocwxx(x,t)—ﬁu(x,t)]2

ol = [FO ). [wi (1) —aw ey (x,1) = Bu(x, )]
where the region of the solution is
Q={xt)| xe[0,1],te[0,05]}, and f(x,t)=0,
a=X(x-1) p=1. Subject to:

] o 69

Wi (X, 1) = X(X —1) Wy (X, 1)+ u(Xx,t) onQ (65)
with the initial condition:
w(x,0) =0, 0<x<1 (66)
together with boundary conditions:
w(0,t)=t*, 0<t<05 (67)
w(l,t)=0,  0<t<05 (68)
with the final state:
w(x,0.5) =0, 0<x<1 (69)
and the desired state is:
we(x,t) = t* (1-x) (70)
The solution steps are:
Stepl: From (27) set
W1 (X, 1) = G(X, 1)+ %l:aiGi(x,t) with n,=5

i=1
where G(x,t) =0, Gy(x,t) =tx(@1-x)[t],
G, (x,t) =tx(1-x)[tx], G3(x.t) = tx(1-x)[t2x],
G4(x, 1) = tx(1—x)[t?x2], Gg(x,t) = tx (1 - x)[t? x°]

Ws (X, )= iai G;i(x,1) Where

i=1

Thus

Gi(x,t)=0, i=1,.50n the corresponding
homogeneous conditions of the given initial and
boundary conditions (66) — (68) and no
restrictions are given on the solution at the final
state (69) at t = 0.5 and from (28) set

2
Upo (X,1)= N(X,t)+ anij(x,t) with n, =5 where
j=1

N(x,t) =0, Np(x,t) =tx(1-x)[t],
Ny (X, t) = tx (L —x)[tx], N3 (x,t) = tx (L— x)[t?x] ,
N4 (x,t) = tx(L—x)[t?x2], N5 (x,t) = tx (1-x)[t*x°] as

5

in Eq. (59) Thus us(x,t)= X b;Nj(x,t)
j=1

Step2: Define the linear operator L by:

L(w,u) =w; (X,1)=X(X =)Wy (X, t)—-u(x,t) onQ (71)
Results of Variational Approach
The explanation of the first approach of
illustrative problem Il is typical the same as
explained in illustrative problem I.

Results of Minimum Approach
The explanation of the second approach of
illustrative problem Il is typical the same as
explained in illustrative problem I.

d b

Table 3: The Approximate Values of for Illustrative Problem

11 of Egs. (62) - (70).

Parameter | Variational | Minimum S:ﬁé;
name approach approach method
a1 -0.4373 -0.4062 -0.4169
a2 0.4616 0.3667 0.3583
as 2.2624 2.1910 2.1516
as -5.4233 -5.0502 -4.9142
as 2.6245 2.4655 2.5230
b1 0.6906 0.7545 0.6317
b2 -2.1003 -3.6014 -4.6038
b3 -2.9774 1.8418 7.6747
bs -10.9517 -1.0861 5.0385
bs 61.2323 31.2719 5.4363

Table 4: The Absolute Error of the Four Functionals Constructing the
lllustrative Problem Il of Egs. (62) - (70).

Functiona  Variational Minimum 8:3;;]
I name approach approach method
J1 4.4686x10° 4.4970x10° 4.5286x10°
J2 2.8957x107 2.8020x107 2.8652x107
J3 2.8827x10° 2.9024x10% 2.9166x10*°
MainJ 1.3042x10° 1.3087x105 1.3194x10%
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Figures 5, 6, 7, and 8 demonstrate the values of
the J1, J2, J3 functions, and the main J values,
respectively, for illustrative problem Il using the
first and second approaches and Quasi-Newton
methods.

Figure 5: J1 values of illustrative problem Il for First and second
approachesand Quasi-Newton method respectively.
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Figure 6: J2 values of illustrative problem Il for First and second
approachesand Quasi-Newton method respectively.
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Figure 7: J3 values of illustrative problem Il for First and second
approachesand Quasi-Newton method respectively.
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Figure 8: Main J values of illustrative problem 11 for First and second
approachesand Quasi-Newton method respectively

Main J values in variational approach

Main J values

Main J value in minimum approach

Main J Value

Main J values

CONCLUSIONS

We obtained good approximate solutions and
accepted error values for the control problems
with fixed boundaries using the firstand second
approaches, as we compared them with the
quasi-Newton method. In all the problems we
solved, we utilized a small number of basis
functions, typically five or fewer, and achieved
satisfactory results. However, it is worth noting
that the solution approaches can be further
improved by incorporating a greater number of
basis functions. All the problems we tackled
demonstrated a high degree of agreement in
their solutions. The general structure of
functional (35) may vary or take on a different
form from one problem to another, depending
on changes in the form of Equation (22).

Disclosure and Conflicts of Interest: The
authors advertise that they have no conflicts of
interest.

REFERENCES

[1] Akkouche A., Maidi A., Aidene M., "Optimal
Control of Partial Differential equations Based on the
Variational Iteration Method", Computers and

Noncommercial4.0 International License.

Copyright © 2023 Al-Mustansiriyah Journal of Science. This work licensed under a Creative Commons Attribution“\i_si



Hameed and Zaboon

Approximate Solutions for Optimal Control of Fixed Boundary Value Problems Using Variational and Minimum Approaches

2023

[2]

3]

[4]

5]

EIC O

A. S. Hameed and R. A. . Zaboon, “Approximate Solutions for Optimal Control of Fixed
Boundary Value Problems Using Variational and Minimum Approaches”, Al-Mustansiriyah

Mathematics with Applications Journal, vol. (68), pp.
622-631, (2014).

Broyden C. G., "Quasi-Newton Methods", in Murray
W., (ed.). Numerical Methods for Unconstrained
Optimization. Academic Press. pp. 87 — 106, (1972).
Krstic M., Smyshlyaev A., "Boundary Control of
PDEs a Course on Back-stepping Designs ", The
Society for Industrial and Applied Mathematics,
Philadelphia (2008).

Magri F., "Variational Formulation for Every Linear
Equation”, Int.J. Engng Sci., vol. (12) pp. 537-549,
(1974).

Maidi A., Corriou J. P., “Open loop Optimal
controller Design using variational Iteration

Journal of Science, vol. 34, no. 3, pp. 72-85, Sep. 2023.

[6]

[7]

(8]

[9]

Method”, Applied Mathematics and computations,
pp. 8632 —8645, (2013).

Nagurka M. L., Wang S. k., "A Chebyshev based
State Representation for linear Quadratic Optimal
Control", J. of dynamic systems, Measurements, and
Control, vol. (115), no. (1), (1993).

Rubio J. E."The optimal control of an excitable
neural fiberin nonlinear wave process in Excitable
Media" Plenum press, New York (1991).

Krstic M., Smyshlyaev A., "Boundary Control of
PDEs a Course on Back-stepping Designs ", The
Society for Industrial and Applied Mathematics,
Philadelphia (2008).

Scales L. E., ‘"Introduction to Non-linear
Optimization", MacMillan, New York, (1985).

"""

85



