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The optimal control is the process of finding a control strategy that extreme some performance 
index for a dynamic system (partial differential equation) over the class of  admissibility. The 
present work deals with a problem of fixed boundary with a control manipulated in the structure 
of the partial differential equation. An attractive computational method for determining the 
optimal control of unconstrained linear dynamic system with a quadratic performance index is 

presented. In the proposed method, the difference between every state variable and its initial 
condition is represented by a finite - term polynomial series. This representation leads to a system 
of linear algebraic equations which represents the necessary condition of optimali ty. The linear 
algebraic system is solved by using two approaches namely the variational iteration method and 
the minimization approach for unconstrained optimization problem with estimati on of gradient 
and Hessian matrix. These approaches are illustrated by two application examples. 
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 ةصالخلا
التحكم الأمثل هو عملية البحث عن استراتيجية تحكم تقوم بتحسين مؤشر أداء معين لنظام ديناميكي )معادلة تفاضلية جزئية( عبر 

قديم   كمحالتمع    ةددمحفئة من الحالات المسموح بها. يتناول العمل الحالي مشكلة حدود   في هيكل المعادلة التفاضلية الجزئية. يتم ت

لمقترح،    زيممحسابي   أسلوب لتحديد التحكم الأمثل لنظام ديناميكي خطي غير مقيد مع مؤشر أداء رباعي الشكل. في الأسلوب ا
الفرق بين كل متغير حالة وحالته الابتدائية بواسطة سلسلة متعددة الحدود. يؤدي هذا التمثيل إلى نظام من المعادلات  يتم تمثيل 

فاضل  تينق يرطيتم حل النظام الجبري الخطي باستخدام    للأمثلية.الضروري    الجبرية الخطية التي تمثل الشرط لت ا قة  ، وهما طري
المرجعي ومصفوفة هيسيان. توُضح هذه  للمدى  المقيدة مع تقدير  غير  التحسين  مشكلة  حالة  من  للتقليل  والطريقة  التكراري 

 .من خلال مثالين تطبيقيين  قطرال

 

INTRODUCTION 

Determining the optimal control of linear, 

distributed parameter models of dynamic 

systems is one of the principals "state space" 

design problems. The challenge is to find the 

optimal trajectories of the control and 

associated state giving the best tradeoff between 

performance and cost of the control. Toward 

this end, variational methods can be used to 

determine the optimality condition as a two-

point boundary value problem. The optimal 

controller construction using Pontryagin’s 

minimum principle is presented in [5]. The 

control of linear partial differential equations 

can be found in [1], on the extension of 

controllability of nonlinear partial differential 

equations is presented in [7]. Different based 

functions are referred to in [6] to approximate 

the control and state variables such as the 

Fourier functions, Chebyshev functions, Walsh 

functions, etc.  In this paper one can understand 

that we mean by formulation of the problem the 

following concepts: the general description of 

the problem, the assumptions that needed for 

holding the problem or to make the problem 

well defined, the state parameterization, the 

approximation of the performance index, the 

approaches of the solution, and finally the 

discussion of the results. 
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Description of the Problem 

The basic idea of optimal control problem 

involves finding the control function u(x,t) and 

the corresponding state function w(x,t) in the 

suitable rectangular region Ω that minimize the 

quadratic performance index J, where 

2211 J+J=J   , where 21 ,  are positive 

weighting factors, and J1, J2 represent two 

quadratic functionals as shown in details  next. 

The main optimal control problem is: 










+


= 




d
)t,x),t,x(u),t,x(w(J

)t,x),t,x(u),t,x(w(J
Min))t,x(u(JMin

22

11

UuUu
 (1) 

where the region of the solution is:  

 0>T],T,0[t,]d,0[x|)t,x( =  (2) 

and the control input function u(x,t) is assumed 

to belong to the class of admissible controls 

which denoted by U:  

 ][L.),(.u|)t,x(uUu 2 =  (3) 

subject to the operator:  

)t,x),t,x(u),t,x(w),t,x(w,)t,x(w(L)t,x(w xxxt =  (4) 

with the initial condition:  

dx0,)x()0,x(w 0 =  (5) 

together with the boundary conditions: (6)-(7) 

T t  0,)t(f)t,0(w)t,0(w 1x11 =+  (6) 

T t  0,)t(f)t,d(w)t,d(w 2x22 =+  (7) 

with the final state: 

dx0,)x()T,x(w 1 =  (8) 

where the functions f1(t), f2(t), )x(,)x(
10

  

are suitable smooth given functions. Now, to 

make the problem is well defined one needs the 

following hypotheses and assumptions: 

 

MATERIALS AND METHODS 

Hypotheses and Basic Assumptions  

The main problem (1) – (8) holds when the 

following assumptions satisfied:  

1. L is a linear operator defined on its domain 

space D(L) as follows:  

)(LUW)L(R)(LUW)L(D:L 222211 =→=  (9) 

With 

)(L)L(D 2 =  (10) 

2. The inner product in )(L2   is defined by: 





= d)t,x(w).t,x(ww,w

21)(L21 2
 (11) 

where
 

)L(D)t,x(w),t,x(w
21

 . 

3. The norm in )(L2   is defined by:  

=


w,ww
)(L2

 (12) 

where )L(D)t,x(w                                                

4. The function w(x,t) is assumed to be a  

smooth function of its independent variables 

x, t. 

5.  The final time state is assumed to be fixed. 

6. The initial and the boundary conditions are 

assumed to be compatible up to some order. 

7. The main quadratic functional J(u(x,t)) in (1) 

is assumed to be continuous and strictly 

convex on the compact admissible control 

space U. 

8. The first objective function J1 is defined as a 

functional by: 

2

)(L3
2

)(Lx2

2

)(L

d
11

22
2

uwww]u,w[J


++−=  (13) 

where the norm is given in (12). The above 

performance index (13) can be explained as 

follows: 

)(L3)(Lxx2

)(L
dd

11

22

2

u,uw,w

ww,ww]u,w[J





++

−−=
 (14) 

or another form of Eq.  (11) is: 
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Thus, the quadratic form of above Eq.  (15) 

is:  

 
   















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−
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d

)t,x(u)t,x(w
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]u,w[J

2
3

2
x2

2d
1

1  (16) 

9. The given function wd(x,t) in (13), (14), 

(15), (16) respectively, is the desired state 

and for the stability point of view, the 

steady state of the state function and the 

control function may be inserted in the first 

objective function J1. 

10. An important point of view is the addition 

of the wx(x,t) term to the first objective 

function J1 is very useful to ensure that the 

solution w(x,t) will go to the desired 

solution such as the steady state solution 

for all values of the spatial variable x not 

only at the boundary points when one take 

only the w(x,t) term in J1 [8]. 

11. By substituting the bilinear form (11) into 

the quadratic functional (16), the Eq.  (16) 

becomes:     

 
   

dtdx

)t,x(u)t,x(w

)t,x(w)t,x(w
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
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−
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12. The second objective function J2 is defined 

as a functional in the norm (12) by: 

2

)(L

2
2

2)(2L
)u,w(L.f)u,w(L

2

1
]u,w[J


−=


 (18) 

where f is a given function represents the 

nonhomogeneous part of the PDE (4) or right-

hand side of it (if it is existing).  J2 is defined as 

a functional in the inner product (bilinear) form 

(11) by: 

)(L)(L2 22
)u,w(L,f)u,w(L),u,w(L

2

1
]u,w[J  −=  (19) 

the above performance index (19) can be 

explained as follows: 

( ) ( ) 
( ) 



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
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2
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Thus, the quadratic form of above functional 

(20) is: 
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13. The linear operators L in Eq. s (18) - (21) is 

taken from the parabolic PDE: 

)t,x(f)t,x(u)t,x(w)t,x(w
xxt

++=  (22) 

or one can rewrite Eq.  (22) in operator form as 

follows: 

)t,x(f))t,x(u),t,x(w(L =  (23) 

where the linear operator L is defined by: 

u
x

w

t

w
)u,w(L

2

2

−



−




=  (24) 

by substituting the linear operator (24) into the 

quadratic functional (21), where the bilinear 
form 

)(L2)u,w(L),u,w(L



 

is defined 

basically in (11), by using Eq.  (23), the 

quadratic form (21) becomes:  
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14. The symmetry property of the linear 

operator L is satisfied with respect to the 

chosen inner product (bilinear form) (11) in 

L2(Ω), assuming that the non-degeneracy 

property of the linear operator L is also 

satisfied in L2(Ω) then from [4] one can 

define the functional J2 in the form of Eq.  

(18) or equivalently in the form of Eq.  

(19). 

15. Using Eq.  (17) and Eq.  (25), the main 

performance index (1) can be written as: 
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(26) 

Where, 
32121

,,,,   are suitable weighting 

and presence factors respectively.
  

State Parameterization 

The optimal control problem can be converted 

to an optimization problem by approximating 

the state and the control functions by their bases 

functions, this procedure converts the PDE in 

infinite dimensional problem into a finite 

dimensional optimization problem as in the 

following computational algorithm:
 

Step 1: Construct the Ritz sequences of bases 

functions for the state function w(x,t), and for 

the control function u(x,t) respectively as 

follows:  


=

+=
1n

1i
ii1n )t,x(Ga)t,x(G)t,x(w  (27) 

where G(x,t) is a function satisfies the non-

homogeneous initial and the compatible 

boundary conditions given in Eqs.  (5) - (7) 

respectively, and 1i n,..,1i),t,x(G =  is a 

complete sequence of bases functions (a set of 

linearly independent functions). Next for the 

control function u(x,t):    


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where N(x,t) is a function satisfies the non-

homogeneous initial condition for the control 

function, and 2j n,..,1j,)t,x(N =  is a complete 

sequence of  bases functions (a set of linearly 

independent functions).  

Step 2: Choose a suitable number n1 of Ritz 

bases functions 1i
n,..,1i,)t,x(G =  in )(L

2
   

such that 1i
n,..,1ifor,0)t,x(G == on the 

corresponding homogenous initial and boundary 

conditions of the state function, and choose a 

suitable number n2 of Ritz bases functions 

2j n,..,1j)t,x(N =   in )(L
2
  such that 

2j
n,..,1jfor,0)t,x(N ==  on the 

corresponding homogeneous initial condition 

for the  input control function, and substitute 

these bases functions into the approximate 

functions )t(u,)t,x(w
2n1n

 given in Eqs.  

(27), (28) respectively with the important 

conditions: 
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Step 3: Taking the partial derivatives of Eq.   

(27) with respect to t and x respectively as 

follows: 
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Approximation of the Performance index 

Step 4: Substitute Eqs.  (27), (28), and the 

corresponding partial derivatives (31) - (33) into 

Eq.  (26) with some arrangement to get: 
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(34) 

where f(x,t) is a given function different from 

one problem to another. 
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Solvability of the Problem
   

Due to the minimization of multi-objective 

optimization problem one can use two different 

approaches for solving this problem as follows: 

Variational Approach 

In this approach to find the approximate optimal 

control u(x,t), and the corresponding 

approximate solution of state function w(x,t)  

one has to find the critical points of the 

performance index functional given in Eq.  (34) 

for suitable given weighting and presence 

factors 
32121

,,,,  , of the following 

functional:  

]b,a[J]b,a[J]b,a[J 2211


+=  (35) 

Where, 

)b,...,b(b,)a,,...a(a 2n11n1 ==


 (36) 

since both functionals J1, J2 are of quadratic 

type, a linear algebraic solvable system is to be 

solved for b,a


and hence the approximate 

solution will be obtained. The full description of 

the method is given next as follows:  
  
  

 
Step 5: Differentiate the functional ]b,a[J


 

given in above Eq.  (35) with respect to the 

parameters 1p n...,,1p,s'a =  and equal the 

resulting equations to zero to find the critical 

points of the functional (34): 

1
p

n,...,1p,0
a

]b,a[J
==






 (37) 

Remark (1): For the main functional ]b,a[J


  
given in Eq.  (35) to assume its minimum at the 

points )a..,,a,a( 1n21  it is necessary that the 

derivative of it with respect to 1p n,..,1p,s'a =   

is equal to zero, (i.e., (38)) 

1
p

2
2

p

1
1

p

n,..,1p,0
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(39) 

                   

Step 6:  Differentiate the functional ]b,a[J


 

given in above Eq.  (35) with respect to the 

parameters 2q n,...,1q,s'b = ; and equal the 

resulting equations to zero to find the critical 

points of the functional (35): 

2
q

n,...,1q,0
b

]b,a[J
==






 (40) 

Remark (2): For the functional ]b,a[J


  
given 

in Eq.  (35) to assume its minimum at the points 

)b,..,b,b( 2n21  it is necessary that the derivative 

of it with respect to 2q n..,,1q,s'b =  is equal 

to zero. i.e: (41)  
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Step 7: Rearranging above Eqs.  (39), (42) for 

1p n...,,1p,s'a =  and for 2q n,...,1q,s'b =
 
to get n × 

n system of algebraic equations CA=D, for the 

unknowns T
n21n21 ]b,..,b,b,a..,,a,a[A

21
= , where 

21 nnn +=  as follows:  For p=1,2,.., n1 , i= 1,2,.., 

n1, n1+1,.., n1+n2.  
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(44) 

For q = n1+1,.., n1+n2 , i= 1,2,.., n1, n1+1,.., 

n1+n2: 
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and 
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(46) 

using the Eqs.  (43) – (46) the n × n system of 

algebraic equations CA=D with C is n × n 

constant matrix defined as:  
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and the right-hand side n×1 vector D is defined 

by: 
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(48) 

Step 8: By using MATLAB program for the 

linear n × n algebraic system, one can solve the 

problem for n= n1+n2 unknown parameters 

1p n..,,1p,s'a =  and 2q n..,,1q,s'b = , as will 

be show in illustrative examples next.  

Minimum Approach 

Optimization problems represent finding 

parameters that minimize or maximize an 

objective function with or without satisfying 

constraints. A search for extremum (a minimum 

or maximum) of a scalar valued function is an 

optimization problem, it is nothing else than the 

search for the zeros of the gradient of that 

function. There are two types of optimization 

problems, these are constrained optimization 

and unconstrained optimization [9], in this work 

only unconstrained optimization is deal with. 

The minimization approach for unconstrained 

optimization problem with estimation of 

gradient and Hessian matrix is to find the 

optimal control Uu  that minimize the 

performance index ))t,x(u(J subject to w(x,t) 

is the solution of the  problem (22)  and this 

approach is continuous until the optimized  

solution of the problem (1) – (8)  is achieved.  

In optimization, Quasi-Newton methods are 

algorithms for finding local maxima or minima 

of functions, these methods are based on 
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Newton's method to find the stationary point of 

a function when the gradient is zero. 

Newton's method assumes that the function can 

be locally approximated as a quadratic in the 

region around the optimum and uses the first 

and second derivatives to find the stationary 

point. In higher dimensions Newton's method 

uses the gradient and the Hessian matrix of 

second derivatives of the function to be 

minimized. In Quasi-Newton methods, the 

Hessian matrix does not be computed. The 

Hessian is updated by analyzing successive 

gradient vector instead. Quasi-Newton methods 

are a generalization of the secant method to find 

the root of the first derivative for 

multidimensional problems. One of the chief 

advantages of Quasi-Newton methods over 

Newton's method is that the Hessian matrix 

does not need to be inverted. It is usually an 

estimate of the inverse matrix directly [2].  

RESULTS AND DISCUSSIONS  

All the above details of the explained methods 

will be applied to the following two simulation 

problems. Each problem will be solved by using 

the two explained approaches as follows: 

Illustrative Problem I 

Consider the Main optimal control problem Eq.  

(1) or equivalently Eq.  (26): 

( )2211
UuUu

JJMin))t,x(u(JMin +=


 (49) 

with the weight factors ω1= ω2= 0.5 and the first 

objective function J1 as in Eq.  (16) is the 

functional: 
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with the presence factors μ1= μ3= 0.5, μ2=0, and 

the second objective function J2 as in Eq.  (25) 

is: 
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  where the region of the solution is 

 ]1,0[t,]1,0[x|)t,x( = , and 

)t,x(w2)t,x(f d= , α=β=1. 

Subject to:  

++= on)t,x(u)t,x(w2)t,x(w)t,x(w d
xxt  (52) 

with the initial condition: 

1x00)0,x(w =  (53) 

together with boundary conditions:  

1 t  0,0)t,0(w =  (54) 

1 t  0,0)t,1(w =
 (55) 

with the final state is: 

1x0,)1x(x6146.0)1,x(w −−=  (56) 

and the desired state is:  

)x1(xt)t,x(w 2d −=  (57) 

The solution steps are: 

Step1: From (27) set 


=
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1n
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1
=  where  
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Thus, 
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1i
ii5 )t,x(Ga)t,x(w  (58) 

where 5,.,1i,0)t,x(G i == on the corresponding 

homogeneous conditions of the given initial and 

boundary conditions (53) – (55), and no 

restrictions are given on the solution at the final 

state (56) at t = 1. And from (28) set  


=

+=
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1j
jj2n )t,x(Nb)t,x(N)t,x(u  with 5n

2
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where 0)t,x(N =  ,               ]t[)x1(xt)t,x(N1 −= ,                      

]xt[)x1(xt)t,x(N2 −= ,    ]xt[)x1(xt)t,x(N 2
3 −= ,       

]xt[)x1(xt)t,x(N 22
4 −= , ]xt[)x1(xt)t,x(N 32

5 −=   



Hameed and Zaboon Approximate Solutions for Optimal Control of Fixed Boundary Value Problems Using Variational and Minimum Approaches 2023 

 

79 

 

thus, 


=

=
5

1j
jj5 )t,x(Nb)t,x(u  (59) 

Step2: Define the linear operator L by:
     

−−= on)t,x(u)t,x(w)t,x(w)u,w(L xxt     (60) 

where the conditions (9) – (12) are held for this 

problem. To find the classical solution w(x,t) 

which means continuous function in the closed 

domain Ω and satisfy the PDE (60)  in the open 

domain Ω and is equal to zero on the boundary 
U)t,x(u,   which is given in Eq.  (3), 

and )t,x(w2)t,x(f d= . 

Results of Variational Approach 

The problem of finding the approximate optimal 

control u(x,t) and the corresponding  

approximate solution of the state function w(x,t)  

is converted to find the critical points of the 

functional (35), set  n1 = n2 = 5 this means: 

)b,b,b,b,b(b,)a,a,a,a,a(a 5432154321 ==


                                    

(61) and differentiate the functional (35) with 

respect to a


 by using Eq.  (38) with p=1,..,5 to 

get Eqs.  (43) and (44) and differentiate the 

functional (35) with respect to b


 by using Eq.  

(41) with q=1,...,5 to get Eqs.  (45) and (46). All 

above leads to a system of n×n dimension with 

Eqs.  (47) and (48) and finally using step 8 of 

the computational algorithm for finding the 

approximate solutions to obtain the values of  

a


, b


as shown next in tables after the 

explanation of applying the second approach to 

the same illustrative problem I for the sake of 

comparison.  

Results of Minimum Approach  

The details are explained in 6.2, with setting n1 

= n2 = 5 and using Eq.  (61).  

Remark (3): Not only the result values of  a


,  

b


  for two approaches are shown next but also 

the result values of  a


,  b


of applying Quasi – 

Newton method to illustrative problem I and 

illustrative problem II are also listed in the 

Tables 1 and 2 of results to enrich the 

comparison details of the modified approaches.  
 

 

 

Table 1:  The Approximate Values of  
a


,  
b


 for Illustrative Problem 

I of Eqs.  (49) - (57) 

Parameter 

name 

Variational 

approach 

Minimum 

approach 

Quasi – 

Newton 

method 

a1 0.1030 0.1031 0.1031 

a2 0.0652 0.0641 0.0653 

a3 0.0368 0.0366 0.0359 

a4 - 0.1143 - 0.1113 - 0.1125 

a5 0.0008 - 0.0007 - 0.0002 

b1 - 0.3340 - 0.2924 - 0.3063 

b2 0.8771 0.7023 0.8418 

b3 - 0.1750 - 0.2760 - 0.3744 

b4 - 1.8910 - 1.3405 - 1.3947 

b5 1.2053 0.9202 0.9026 

 
Table 2: The Absolute Error of the Four Functionals Constructing the 

Illustrative Problem I of Eqs. (49) - (57). 

Functional 

name 

Variational 

approach 

Minimum 

approach 

Quasi – 

Newton 

method 

J1 1.3912×10-4 4.6397×10-5 4.6463×10-5 

J2 1.7090×10-4 1.7078×10-4 1.7092×10-4 

J3 2.6193×10-5 2.6198×10-5 2.6186×10-5 

Main J 4.0839×10-7 9.7867×10-6 9.7881×10-6 

 

Figures 1 and 2 demonstrate the values of the J1 

and J2 functions for illustrative Problem I using 

the First and Second approaches, as well as the 

Quasi-Newton method. Figure 3 displays the 

approximations and desired solutions in the 

variational, minimum, and Quasi-Newton 

approaches, respectively. Figure 4 presents the 

main J values for illustrative Problem I using 

the First and Second approaches, along with the 

Quasi-Newton method. 
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Figure 1: J1 values of illustrative problem I for First and second 

approaches and Quasi-Newton method respectively. 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 2: J2 values of illustrative problem I for First and second 

approaches and Quasi-Newton method respectively 
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Figure 3: J3 values of illustrative problem I for First and second 

approaches and Quasi-Newton method respectively 

 

 
 

 
 

 

 
 

 

 

 

Figure 4: Main J values of illustrative problem I for First and second 

approaches and Quasi-Newton method respectively. 

 

 
 

 

Illustrative Problem II  

Consider the Main optimal control problem Eq. 

(1) or equivalently Eq. (26): 

( )
2211

UuUu
JJMin))t,x(u(JMin +=


 (62) 
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with the weight factors ω1= ω2= 0.5 and the first 

objective function J1 as in Eq. (16) is the 

functional: 

    







+−

=




d)t,x(u)t,x(w)t,x(w

))t,x(u),t,x(w(J

2
3

2d
1

1

 (63) 

with the presence factors μ1= μ3= 0.5, μ2=0, and 

the second objective function J2 as in Eq.  (25) 

is:  

 

  
















−−−

−−

=




d
)t,x(u)t,x(w)t,x(w.)t,x(f

)t,x(u)t,x(w)t,x(w

))t,x(u),t,x(w(J

xxt

2
xxt2

1

2

 (64) 

  where the region of the solution is 
 ]5.0,0[t,]1,0[x|)t,x( = , and 0)t,x(f = , 

α= x(x-1)  β=1. Subject to: 

+−= on)t,x(u)t,x(w)1x(x)t,x(w xxt  (65) 

 
with the initial condition: 

1x0,0)0,x(w =  (66) 

 together with boundary conditions: 

5.0 t  0,t)t,0(w 2 =  (67) 

5.0 t  0,0)t,1(w =  (68) 

with the final state: 

1x0,0)5.0,x(w =  (69) 

and the desired state is: 

)x1(t)t,x(w 2d −=  (70) 

The solution steps are: 

Step1: From (27) set 


=

+=
1n

1i
ii1n )t,x(Ga)t,x(G)t,x(w  with 5n

1
=  

where 0)t,x(G = ,       ]t[)x1(xt)t,x(G1 −= , 

]xt[)x1(xt)t,x(G2 −= , ]xt[)x1(xt)t,x(G 2
3 −= , 

]xt[)x1(xt)t,x(G 22
4 −= , ]xt[)x1(xt)t,x(G 32

5 −=  

Thus 
=

=
5

1i
ii5 )t,x(Ga)t,x(w  Where 

5,.,1i,0)t,x(G i == on the corresponding 

homogeneous conditions of the given initial and 

boundary conditions  (66) – (68) and no 

restrictions are given on the solution at the final 

state (69) at t = 0.5 and from (28) set  


=

+=
2n

1j
jj2n )t,x(Nb)t,x(N)t,x(u  with 5n

2
=  where 

0)t,x(N = , ]t[)x1(xt)t,x(N1 −= , 

]xt[)x1(xt)t,x(N2 −= , ]xt[)x1(xt)t,x(N 2
3 −= ,

]xt[)x1(xt)t,x(N 22
4 −= , ]xt[)x1(xt)t,x(N 32

5 −=  as 

in Eq. (59) Thus 
=

=
5

1j
jj5 )t,x(Nb)t,x(u  

Step2: Define the linear operator L by: 

−−−= on)t,x(u)t,x(w)1x(x)t,x(w)u,w(L xxt  (71) 

Results of Variational Approach 

The explanation of the first approach of 

illustrative problem II is typical the same as 

explained in illustrative problem I. 
 

Results of Minimum Approach 

The explanation of the second approach of 

illustrative problem II is typical the same as 

explained in illustrative problem I. 

Table 3:  The Approximate Values of  
a


,  
b


 for Illustrative Problem 

II of Eqs.  (62) - (70). 

Parameter 

name 

Variational 

approach 

Minimum 

approach 

Quasi – 

Newton 

method 

a1 - 0.4373 - 0.4062 - 0.4169 

a2 0.4616 0.3667 0.3583 

a3 2.2624 2.1910 2.1516 

a4 - 5.4233 - 5.0502 - 4.9142 

a5 2.6245 2.4655 2.5230 

b1 0.6906 0.7545 0.6317 

b2 - 2.1003 -3.6014 - 4.6038 

b3 -2.9774 1.8418 7.6747 

b4 -10.9517 - 1.0861 5.0385 

b5 61.2323 31.2719 5.4363 

 
Table 4: The Absolute Error of the Four Functionals Constructing the 

Illustrative Problem II of Eqs.  (62) - (70). 

Functiona

l name 

Variational 

approach 

Minimum 

approach 

Quasi – 

Newton 

method 

J1 4.4686×10-5 4.4970×10-5 4.5286×10-5 

J2 2.8957×10-7 2.8020×10-7 2.8652×10-7 

J3 2.8827×10-6 2.9024×10-6 2.9166×10-6 

Main J 1.3042×10-5 1.3087×10-5 1.3194×10-5 
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Figures 5, 6, 7, and 8 demonstrate the values of 

the J1, J2, J3 functions, and the main J values, 

respectively, for illustrative problem II using the 

first and second approaches and Quasi-Newton 

methods. 
 

Figure 5: J1 values of illustrative problem II for First and second 

approaches and Quasi-Newton method respectively.  

 

 
 

 
 

 
 

 

 

 

 

Figure 6: J2 values of illustrative problem II for First and second 

approaches and Quasi-Newton method respectively. 
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Figure 7: J3 values of illustrative problem II for First and second 

approaches and Quasi-Newton method respectively. 

 

 

 

 
Figure 8: Main J values of illustrative problem II for First and second 

approaches and Quasi-Newton method respectively 

 

 

 

 CONCLUSIONS 

We obtained good approximate solutions and 

accepted error values for the control problems 

with fixed boundaries using the first and second 

approaches, as we compared them with the 

quasi-Newton method. In all the problems we 

solved, we utilized a small number of basis 

functions, typically five or fewer, and achieved 

satisfactory results. However, it is worth noting 

that the solution approaches can be further 

improved by incorporating a greater number of 

basis functions. All the problems we tackled 

demonstrated a high degree of agreement in 

their solutions. The general structure of 

functional (35) may vary or take on a different 

form from one problem to another, depending 

on changes in the form of Equation (22). 
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