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Biomedical experts are facing challenges in keeping up with the vast amount

of biomedical knowledge published daily. With millions of citations added

to databases like MEDLINE/PubMed each year, e�ciently accessing relevant

information becomes crucial. Traditional term-based searches may lead to

irrelevant or missed documents due to homonyms, synonyms, abbreviations,

or term mismatch. To address this, semantic search approaches employing

predefined concepts with associated synonyms and relations have been used

to expand query terms and improve information retrieval. The National Library

of Medicine (NLM) plays a significant role in this area, indexing citations in the

MEDLINE database with topic descriptors from the Medical Subject Headings

(MeSH) thesaurus, enabling advanced semantic search strategies to retrieve

relevant citations, despite synonymy, and polysemy of biomedical terms. Over

time, advancements in semantic indexing have beenmade, with Machine Learning

facilitating the transition from manual to automatic semantic indexing in the

biomedical literature. The paper highlights the journey of this transition, starting

with manual semantic indexing and the initial e�orts toward automatic indexing.

The BioASQ challenge has served as a catalyst in revolutionizing the domain of

semantic indexing, further pushing the boundaries of e�cient knowledge retrieval

in the biomedical field.
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1. Introduction

A vast amount of biomedical knowledge is published every day in the literature and

in structured resources like biomedical ontologies. It is a challenge for biomedical experts

to identify and process all the available knowledge. For example, 1.3 million citations were

added to MEDLINE/PubMed during 2018,1 which corresponds to more than two citations

per minute. In this context, the identification of articles relevant to a specific research topic

is very hard. Efficient access to relevant knowledge is crucial and simple term-based search

can retrieve irrelevant documents (e.g., due to homonyms) or miss relevant documents (e.g.,

due to synonyms, abbreviations, or term mismatch). Much effort has been made to address

this issue, including semantic search approaches that use predefined concepts which come

1 https://www.nlm.nih.gov/bsd/licensee/baselinestats.html
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with several associated synonyms and relations to other concepts.

The goal of semantic indexing is to use this semantic information

to improve the quality of information retrieval, e.g., through query

expansion. Toward this direction, the National Library of Medicine

(NLM) indexes citations in the MEDLINE database with topic

descriptors from the Medical Subject Headings (MeSH) thesaurus.

This semantic indexing process allows MEDLINE/PubMed to offer

advanced semantic search strategies, that can retrieve citations

relevant to a topic of interest, addressing issues such as synonymy

and polysemy of biomedical terms.

During the last years important advancements have been

achieved in the area of semantic indexing. In particular, the use

of Machine Learning has helped to move gradually from manual

to automatic semantic indexing in the biomedical literature. Since

2012, BioASQ has initiated a shared task for semantic indexing,

allowing leading teams in the field to advance their approaches

and improve significantly their performance. This performance

improvement has led to the adoption of fully automated indexing

by NLM since 2022. In this paper, the road of this transition is

presented: how manual semantic indexing has started, the first

efforts toward automatic indexing, and how the BioASQ challenge

has helped in the revolution of the domain.

2. Manual semantic indexing

2.1. How it all started

There are several very good references on the history of the

US National Library of Medicine (Miles, 1982; Blake et al., 1986;

Reznick and Koyle, 2017; NLM, 2023a) and one of these, A

History of the National Library of Medicine: The Nation’s Treasury

of Medical Knowledge by Miles (1982) goes into depth on how

indexing began and evolved. Figure 1 details important milestones

selected from these various references with regards to how indexing

at NLM started, matured, and evolved over time.

History tells us (Miles, 1982; NLM, 2023a) that the impetus for

developing a catalog and index of the medical literature may have

started as early as 1859 when John Shaw Billings was preparing his

thesis on the surgical treatment of epilepsy. A great deal of time

and effort was spent by Billings going through themedical literature

looking for what he needed. In 1874, Billings began preparing the

first index of the medical literature with the goal of making it easier

for him and others to find topics in themedical literature. This drive

to index themedical literature, provide information freely to others,

and expand access to the medical literature is still part of NLM’s

Mission Statement: “its mission of enabling biomedical research,

supporting healthcare and public health, and promoting healthy

behavior” (NLM, 2020). Billings enlisted fellow military medical

officers to spread the indexing effort across more people and to

index medical literature that he did not have access to Miles (1982).

To ensure uniformity, Billings provided detailed guidance on what

he wanted done and how it should be formatted (Miles, 1982).

Following the cholera epidemic of 1873 in the United States,

Billings was asked to put together a bibliography on all available

cholera literature of the day as part of an overall cholera review

that was being undertaken by the Army. In 1875, Billings published

his cholera bibliography. This bibliography on cholera provided

the first test of Billings’ indexing methodology and proved to

Congress and the medical community how useful an index of this

kind could be and was a precursor to the Index Medicus (NLM,

2020). In 1876, Specimen Fasciculus of a Catalogue of the National

Medical Library (US Library of the Surgeon-General’s Office, 1876)

was published, containing 72 pages of indexing covering Aabec

to Air and was sent to members of Congress and prominent

people in the medical community and was well-received (Miles,

1982). In 1879, Index Medicus was published (Index Medicus,

1879) and in 1880, Index-Catalogue was published (Greenberg and

Gallagher, 2009). The Index-Catalogue was only published in full

every 4 years, so during the interim years, the companion Index

Medicus was published with the preceding year’s updates. Both

publications were instrumental in setting the stage for what later

became the U.S. National Library of Medicine, how biomedical

indexing would be handled at NLM, and drive NLM’s mission

to disseminate biomedical information to as wide an audience

as possible. The Index Medicus continued being published until

2004 (NLM, 2022b).

In 1960, the MeSH Controlled Vocabulary was

published (NLM, 2010) providing indexers for the first time with a

limited set of 4,300 terms to be used when indexing the literature.

The controlled vocabulary provided for more consistency of

the final indexing and made searching for information easier.

MeSH continues to be updated and expanded as necessary as new

information or better understanding of the existing information

becomes available. The 2022 MeSH Vocabulary (NLM, 2023c)

now contains more than 30,000 Descriptors, over 300,000

Supplementary Concept Records (SCRs), and 76 Qualifiers (also

known as Subheadings).

By 1966, what we would today recognize as NLMMEDLINEr

indexing began (NLM, 2022b). MEDLINE indexing began with

new data entry and indexing standards with the goals of having

data indexed by humans, stored in a database, and easily retrievable

by librarians (at the time) and later be accessible by the public.

Indexing standards and storage requirements continue to change

over time as technology improves and NLM’s indexing focus

evolves and changes to keep up with the biomedical field.

In 1971, the One Millionth MEDLINE article was indexed.2

The exact date and PMID for the one millionth indexed article

is not identified in the various references, but a quick search in

PubMed/MEDLINE provides a close approximation of it likely

happening toward the end of January or the first part of February

1971. In 2022, just over 50 years later, we are closing in on the 30

millionth indexed article (PubMed Query: medline [sb]).

2.2. Obstacles on the way

For nearly 150 years, the NLM has provided access to

biomedical literature through the analytical efforts of human

indexers. Figure 2 shows the increasing number of articles indexed

by NLM from 151,635 articles in Fiscal Year (FY) 1965 to almost

1.3 million articles in FY 2021 (NLM, 2018a, 2022a,c). The

2 PubMed Query: 1965:1971/02/06[dcom] AND MEDLINE [sb] returns

1,000,339 (results June 27, 2022).
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FIGURE 1

NLM indexing milestones (1875–2022). The red lettered milestones highlight important turning points in the maturity of MEDLINEr indexing at NLM.

FIGURE 2

Citations added to MEDLINE® by fiscal year FY65–FY21.

exponential trend line in Figure 2 is shown in orange. During

this same timeframe, the number of indexed journals increased

from 2,241 in FY 1965 to 5,282 in FY 2021 (NLM, 2018a).

The volume and complexity of MeSH has also continued to

increase. Where the original 1960 MeSH Vocabulary contained

just 4,300 Descriptors, the 2022 MeSH Vocabulary (NLM, 2023c)

now contains 30,194 Descriptors. They are hierarchically organized

into a directed acyclic graph with 16 branches representing specific

areas of biomedical information which expands to 255,727 terms

when Entry Terms are also considered. There are also 317,992

terms for Supplementary Concept Records (SCRs) which balloons

to 706,836 SCRs when their Synonyms are added. 2022 MeSH

also contains 76 Qualifiers (also known as Subheadings), each

with rules as to what Qualifiers are allowed for each of the

30,194 Descriptors. There is also a myriad of indexing rules for

when to use Descriptors, which ones are required, which ones
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need to be coordinated with which other Descriptors, when is

it appropriate to use Qualifiers with Descriptors, etc. (NLM,

2018c).

This continual need for growth and ever-increasing complexity

along with flattening budgets all contributed to a backlog of 576,735

articles in PubMed R© that should be indexed but have not yet been

indexed (PubMed Query: inprocess[sb] on January 4, 2021) and the

average time to index for articles fully indexed by humans was 145

days in FY 2021 (NLM, 2023b).

3. Automatic semantic indexing before
BioASQ

3.1. How it started

The Semantic Web (Berners-Lee et al., 2001; Antoniou and van

Harmelen, 2008) is an effort to establish standards andmechanisms

that will allow computers to reason more easily about the semantics

of the Web’s resources (documents, data, services etc.), enabling

them and ultimately their users to share, locate, and integrate

resources more easily.

Following the popularity of the Semantic Web as a research

topic, the term “semantic” is now often used to denote technologies

that exploit resources with explicit, formally defined semantics. In

that context, the term semantic search engine refers to systems that

attempt to match queries to relevant information from structured

data (e.g., databases, taxonomies, ontologies), or systems that aim

to match queries to relevant documents or snippets by using

resources with formally defined semantics as a mediator (Dong

et al., 2008; Bast et al., 2016). In the latter case, queries and

documents may be automatically annotated with concepts from

taxonomies or ontologies to facilitate the matching of related

queries and documents that use synonymous, polysemous, or

semantically relevant terms, instead of (or in addition to) relying

on surface string-level matching (e.g., keyword matching). The

automated annotation of queries and documents with concepts

from taxonomies and ontologies can be performed by relying on

hierarchical classification algorithms.

Semantic search engines aim to surpass conventional search

engines (i) by producing better rankings of relevant information,

for example by matching queries to results at the conceptual level;

(ii) by reducing redundant results, for example by aggregating

results that express the same concepts; (iii) by increasing the

coverage of the results, for example by expanding queries with

semantically related terms; (iv) by presenting the results in a more

comprehensible manner, for example by allowing the results to be

grouped by the concepts of the query. In the biomedical domain,

search engines such as GoPubMed (Dietze et al., 2008), HubMed

(Eaton, 2006),3 ClusterMed,4 EBIMed (Rebholz-Schuhmann et al.,

2007), XplorMed (Perez-Iratxeta et al., 2007) addressed specialized

needs by processing biomedical literature in full text or abstracts

as these become available in PubMed. These engines employed

domain-specific background knowledge in the form of hierarchical

3 http://www.hubmed.org/

4 https://clustermed.info/

thesauri, ontologies, such as disease and gene ontology, and, hence,

qualified as semantic search engines. They typically exploited few

of the available domain-specific resources, however, whereas in

practice multiple resources of different types need to be combined.

There are also commercial solutions like OVID.5

3.2. Medical Text Indexer (MTI)

Toward this direction, the US National Library of Medicine

(NLM) established the Indexing Initiative project back in

1996 (Aronson et al., 1999; Mork et al., 2017). This cross-library

team’s mission was to explore indexing methodologies for ensuring

quality and currency of NLM document collections. The NLM

Medical Text Indexer (MTI) is the main product of this project.

The NLM Medical Text Indexer (MTI) combines human

NLM Index Section expertise and Natural Language Processing

technology to curate the biomedical literature more efficiently

and consistently. In 2002, MTI started being used to provide

indexing recommendations to the NLM indexers (Mork et al.,

2017). Figure 3 graphs MTI Precision and the accompanying usage

of MTI by the NLM indexers. Between 2007 and 2010, Precision

was a not very impressive 30%. The reason for this can be

found in how MTI initially provided indexing recommendations

to the indexers. The original idea was to provide a relatively

long list of potential indexing recommendations to the indexers

so that they could pick and choose what they wanted from

the list, so MTI was heavily balanced toward Recall. What we

found out from the indexers around 2010, was that this was

causing them to second guess their indexing and taking them

longer to index an article. The indexer wasn’t sure if the terms

were simply bad recommendations from MTI, or if they might

have missed something in the article, so they then had to go

back and review the article again. The solution to this was to

rebalance MTI toward a more even Recall/Precision mix and

this is easily seen in Figure 3 where the Precision goes up

almost immediately from 30 to 50%. MTI continued to improve

Precision through the years and as can be seen in the Figure 3

graph, indexer usage and acceptance of MTI increased along a

similar trajectory.

The increased acceptance and confidence in the MTI

indexing created the opportunity in 2011 for MTI to be

used as a First Line Indexer (MTIFL). The indexers noticed

that for a small set of journals, MTI performed very well,

and these journals were the first to be processed by MTIFL.

In Figure 6, you can see how much better performing

MTIFL was performing over the standard MTI processing

by looking at the purple line that appears in 2011. For the

first time, MTI indexing would be considered the same as

a novice indexer and simply revised by a more experienced

indexer. This was the first of many small steps toward fully

automatic indexing.

5 https://www.wolterskluwer.com/en/solutions/ovid
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FIGURE 3

MTI precision and indexer use 2007–2015.

3.3. BioASQ challenge

Since 2012 a dedicated shared task has been organized for

the automated semantic indexing of biomedical literature, in the

context of the annual BioASQ challenge (Tsatsaronis et al., 2015).

In the first year, BioASQ introduced two tasks, namely Task a, on

large-scale semantic indexing of biomedical literature, and Task b,

on biomedical semantic information retrieval, question answering,

and summarization.

Task a in particular, was built upon the standard procedure

of semantic indexing citations with topic descriptors from MeSH

at NLM. In particular, the participants were provided with titles

and abstracts of new biomedical articles written in English, as

they became available online and prior to their annotation with

MeSH labels by the MEDLINE curators. The participants were

then asked to employ their approaches to automatically annotate

these new articles with MeSH labels and submit their predictions to

BioASQ, that is to classify them into the topic classes provided by

MeSH. Later, when manual annotations became available for these

articles, they were used as ground-truth annotations to evaluate

the classification performance of participating systems. In order to

develop their systems, the participating teams were also provided

with a training dataset of older articles, where manual MeSH

annotations were already available at MEDLINE. In effect, this is an

extreme multi-label text classification task (XMTC), as each article

belongs to only some of the several thousand classes provided

by MeSH. The classes are also hierarchically organized and the

systems were required to assign the narrower labels applicable to

each document, as done by the MEDLINE curators.

Task a was structured into several weekly testsets, distributed

over a period of about 4 months, February to May, annually. The

testset, consisting of new, unclassified documents, was released

each Monday, and the participants had about twenty-four hours to

produce their predictions and submit their responses before some

manual annotations become available by the MEDLINE curators.

The weekly testsets were organized into three batches, running

for several weeks each, in total. In particular, in the first version

of Task a, each batch consisted of six testsets. For the remaining

nine annual versions, each batch consisted of five weekly testsets as

presented in Figure 4. During the course of the task, preliminary

results were published for early testsets, based on any manual

annotations already available, in order to let the participants know

how different versions of their systems perform and introduce

new ideas for the remaining testsets. The official results were

calculated after the course of the task, once a sufficient proportion

of documents in each testset received manual annotations by the

MEDLINE curators.

Distinct winning teams were announced for each batch

of Task a, considering the four best positions achieved by a

team in any of the testsets of that batch. The classification

performance of the systems participating in Task a was assessed

with a range of evaluation measures. These include variants

of standard information retrieval measures for multi-label

classification problems (e.g., precision, recall, f-measure, accuracy),

as well as measures that use the MeSH hierarchy to provide a more

refined estimate of the systems’ performance. The official measures

for identifying the winners of the task were the micro-averaged

F-measure (MiF) and the Lowest Common Ancestor F-measure

(LCA-F; Tsoumakas et al., 2009; Kosmopoulos et al., 2015).

3.4. Resources

In the context of the BioASQ challenge, a training dataset was

provided to the participants in order to develop their systems for

Task a. The final version of this dataset with documents that have

already been labeled by the expert indexers at NLM was produced

in 2022, for the tenth version of Task a. This training dataset

consists of 16,218,838 articles, from the PubMed Annual Baseline

Repository for 2022, annotated with 12.68 MeSH labels per article,

on average. In total, the dataset covers 29,681 distinct MeSH labels

out of the 30,213 descriptors available in MeSH 2022.
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FIGURE 4

The distribution of weekly Task a testsets into three batches over a period of about 4 months annually.

TABLE 1 Statistics on test datasets for the tenth version of Task a.

Batch Articles Annotated
articles

Labels per article

1 9,659 9,450 13.03

4,531 4,512 12.00

4,291 4,269 13.04

4,256 4,192 12.81

4,862 4,802 12.75

Total 27,599 27,225 12.72

2 8,874 8,818 12.70

4,071 3,858 12.38

4,108 4,049 12.60

3,193 3,045 11.74

3,078 2,916 12.07

Total 23,324 22,686 12.29

3 2,376 1,870 12.31

28 0 −

Total 2,404 1,870 12.31

Due to the early adoption of a new NLM policy for fully automated indexing, the third batch

finally consists of a single test set.

During the course of the tenth version of Task a, several weekly

testsets were provided to the participants, each consisting of some

thousands of unlabeled articles as presented in Table 1. Eventually,

after the participants submitted their responses, most of these

articles received manual labels by the NLM indexers, as shown

in Table 1, which were used for the evaluation of the predictive

performance of participating systems.

3.5. Evolution of approaches

A variety of alternative approaches have been proposed for

the automated semantic indexing of biomedical literature, in the

context of the BioASQ challenge, during the last 10 years.

During the first years of BioASQ, most approaches focused

on traditional methods, both in terms of representation as

well as in concept matching. In particular, during the early

TABLE 2 Examples of systems and approaches for task 10a.

System Approach

BERTMesh pecos, tf-idf, linear model, BertMesh, PubMedBERT,

multilabel attention head

NLM SentencePiece, CNN, embeddings, ensembles,

PubMedBERT

dmiip_fdu BertMesh, PubMedBERT, BioBERT, LTR, SVM

years, bag-of-words and TF-IDF representations were proposed

(Balikas et al., 2015), in contrast to most recent years, where

the approaches focus on neural word and paragraph embeddings

(Nentidis et al., 2022). For finding the relevant MeSH labels,

the trend moved from traditional machine learning approaches,

such as KNN, SVM, and Learning-to-Rank (Balikas et al., 2015),

toward Deep Networks and Attention Mechanisms (Nentidis et al.,

2022).

As a result, the most recent dominant approaches in this task,

were based on Deep Learning (DL) architectures. For example,

BERTMeSH by You et al. (2021) succeeded their previous approach

on label tree-based DL method of AttentionXML (You et al.,

2018). The latter came with two unique features: (1) a multi-

label attention mechanism with raw text as input, which allows

to capture the most relevant part of text to each label; and (2)

a shallow and wide probabilistic label tree (PLT), which allows

to handle millions of labels. BERTMeSH has two technologies:

(i) the state-of-the-art pretrained deep contextual representation,

Bidirectional Encoder Representations from Transformers (BERT),

which makes BERTMeSH capture deep semantics of full text.

(ii) A transfer learning strategy focusing on both full text in

PubMed Central (PMC) and title and abstract inMEDLINE, to take

advantage of both. In the same direction, the methods proposed

by the NLM team (Rae et al., 2021) rely on recommendations

from a Convolutional Neural Network (CNN) which are ranked

by a pre-trained transformer model (PubMedBERT) fine-tuned

on this task. Finally, the very successful approach “dmiip_fdu”

by the Fudan University team was based on a Learning-to-Rank

approach, where the component methods include both the above-

mentioned deep-learning-based BERTMeSH, as well as traditional

SVM-based methods.

The most recent participating systems along with their

corresponding approaches are listed in Table 2.
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3.6. Pushing systems performance

BioASQ offered the opportunity to the respective research

community to compete against each other as well as against

strong baselines, and hence helped to push the performance

of the participating systems significantly. Figure 5 presents the

improvement of the MiF scores achieved by both the MTI baseline

and the top performing participant systems through the 10 years

of the BioASQ challenge. The results of the task reveal that several

participating systems manage to outperform the strong baselines

in all test batches, considering either the flat or the hierarchical

measures. In particular, the best systems have improved by more

than 15 points during the 10 years. During BioASQ 8 and 9, the

system performance was almost stable with minor improvement.

The reason for this is the COVID-19 pandemic, which has

dominated the biomedical literature during these 2 years, and

has changed the distribution of the literature on various topics.

The development of deep neural networks for natural language

processing in the general domain during the last years has

contributed to the improvement of automatic indexing. BioASQ

allowed to channel this profuse methodological development into

biomedical semantic indexing. Although a slight trend toward

improved scores can be still observed in the results of the tenth

year, the task seems to have successfully completed its main goal,

concluding its life cycle.

3.7. Gradual improvement of semantic
indexing in NLM

Figure 6 shows the overall performance of MTI and different

variants of it from 2007 to 2022. Performance data beyond the

switchover in April 2022 to fully automatic indexing is not

comparable, so not included here. Recall is shown in red and goes

from 0.5163 to 0.8541, Precision is shown in blue and increases

from 0.3019 to 0.8646, F1 is shown in green and goes from 0.3810

to 0.8593.

The different variants of MTI indicate the methodical

progression toward fully automatic indexing. MTI First Line

Indexer (MTIFL) was in use from 2011 to 2020 and is shown in

purple with F1 going from 0.6399 to 0.7712. The MTIFL variant

started when indexers noticed that MTI performed very well on

a small subset of journals (originally only 14 journals). For the

first time, MTI was treated the same as a junior indexer where

the MTI indexing was reviewed by a more senior indexer. MTI

Comment On (MTIC) started in 2017 but statistics were not

tracked until 2020. It is shown in light green with F1 0.9742–

0.9931. MTIC included the title of the article being commented

on to enrich the usually terse text of articles commenting on

another article. MTIC replaced the practice of just copying over

the indexing from the originating article. MTI Review (MTIR) was

in use from 2017 to 2022 and is shown in light blue with F1 of

0.8874–0.8752. MTIR was the staging area to see how journals

performed using theMTIAutomatic indexing algorithm (described

next). Indexers would review every article indexed by MTIR only

using the title and abstract (as opposed to the full text of an article

which they normally indexed from) to evaluate the MTIR indexing.

This provided a realistic review of how the automatic indexing

would perform for each journal. Finally, MTI Automatic (MTIA)

started in late 2019 and is shown in light red with F1 going from

0.9924 to 0.9871. MTIA is like MTIR except that for MTIA, there

is no complete indexer review of the articles. For MTIA, indexers

only review a small sample of the articles to ensure quality and

completeness of the indexing. MTIR provided the most accurate

measure of how well MTI performed since the vast majority of

MTIA results are notmanually reviewed. This small sampling of the

MTIA results likely contributes to the false boost in performance of

MTIA over MTIR that we see in Figure 6. MTIA and MTIC are

still being used until transition is complete to the next generation

of MTI which is discussed in Section 4.2.

In 2013, the first BioASQ Challenge—Large-scale Online

Biomedical Semantic Indexing (Ngomo and Paliouras, 2013) took

place. For the first time the MTI development team knew of and

was able to collaborate with researchers from around the world

all focused on the same task of Biomedical Semantic Indexing.

The Challenge provided a mechanism to highlight MTI on an

international stage and more importantly, opened the window

to research being done or initiated due to the Challenge in

this domain. This research from the BioASQ Semantic Indexing

Challenge has helped improve MTI over its entire 10-year span.

Two major changes made to MTI that were inspired by the work

presented at the challenges are Vocabulary Density (Mork et al.,

2014) and Learning to Rank (Mao and Lu, 2013; Zavorin et al.,

2016), which we present below.

The potential for MTI improvement using journal-specific

data was discussed by Tsoumakas et al. (2013) during the first

BioASQ workshop. In MTI, this approach was called Vocabulary

Density (Mork et al., 2014) based on our findings that on average,

only 999 unique MeSH Headings of the 27,149 available in

2014 MeSH were used per journal in the 6,606 journals in our

Corpus. 83.81% of the used MeSH Headings were found in 500

or fewer journals and 271 MeSH Headings were only found in

a single journal. This tendency of the MeSH vocabulary to be

centered around specific journals allowed us to develop rules

for adding or removing MeSH Descriptors based on their recent

past performance. Each year we update the Vocabulary Density

information by looking at how frequently each MeSH Descriptor

has been used by each journal over the previous 5 years. Limiting

the timeframe to 5 years keeps the information current and in line

with indexing policy. An example of how we use this is for the

journal Cryobiology (0006252), we see that over the last 5 years, not

surprisingly, the MeSH Descriptor Cryopreservation was indexed

for 88.95% of articles, so MTI can with fairly high confidence,

suggest this term even if there is no indication that it would be

appropriate in the Title and Abstract. Implementing this simple

approach led to a statistically significant 4.44 percentage points

improvement in Precision.

The task of MEDLINE semantic indexing can be formulated as

a ranking problem: given a new citation, can we find those MeSH

Headings that are the most relevant to this citation? In the first

BioASQ Workshop, Mao and Lu (2013) discussed how they were

able to apply the Learning-to-Rank (Mao and Lu, 2013; Zavorin

et al., 2016) methodology to biomedical indexing. Learning-to-

Rank was used to improve MTI performance by reevaluating the

final list of recommendations being made by MTI to help move

more relevant terms closer to the top of the list and less relevant

terms lower down in the list. Two classes of MeSH Descriptors saw
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FIGURE 5

The micro f-measure (MiF) achieved by systems across di�erent years of the BioASQ challenge. For each test set the MiF score is presented for the

best performing system (Top) and the MTI, as well as the average micro f-measure of all the participating systems (Avg).

FIGURE 6

Performance of MTI and variants of it from 2007 to 2022. MTIFL, MTI First Line indexer; MTIR, MTI Review; MTIA, MTI Automatic; MTIC, MTI

Comment On.
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a significant performance boost using Learning-to-Rank. Historical

Checktags (e.g., History, Eighteenth Century) and “as Topic”

Descriptors (e.g., Randomized Controlled Trials as Topic). In

both cases, prior to Learning-to-Rank, MTI performed so poorly

that the terms were not suggested. With the Learning-to-Rank

methodology added to MTI, there was significant improvement

from not recommending any of these terms, to 86.49% Precision for

Historical Checktags, and 69.56% Precision for “as Topic” terms.

Asmentioned above, through the yearsMTI incorporated some

of the advancements discussed in the yearly BioASQ workshops.

Not all advancements were incorporated into MTI mainly due to

limited resources of MTI, but also due to the added complexity

of MTI. While the BioASQ Challenge focused on indexing

MeSH Descriptors, MTI was also indexing MeSH Subheadings,

Supplementary Concept Records, and Publication Types so all

changes to MTI had to be carefully added.

4. The road ahead

4.1. Fully automatic semantic indexing is
here

NLM moved to fully automatic indexing in early April

20226 (NLM, 2021). As mentioned in Section 3.7, by

January 4, 2021, there was an indexing backlog of 576,735

articles and an average time to index of 145 days. NLM

was able to eliminate the backlog and reduce the overall

time to index an article to <24 h with the move to fully

automatic indexing.

Fully automatic indexing has been in the works for several

years as NLMgradually improved and expanded theMTI algorithm

and validated automatic indexing. In the fall of 2015, NLM

automatically re-indexed all 2,011,000 OLDMEDLINE records

to add additional MeSH Headings and complete a project that

mapped OLDMEDLINE Other Term (OT) subject headings to

MeSH Headings (NLM, 2015). In 2017, the automatic indexing of

Comment On articles (MTIC) began, as mentioned in Section 3.6.

In 2018, NLM added a new attribute to the XML MedlineCitation

tag “< MedlineCitation Status = “MEDLINE” IndexingMethod =

“Automated” Owner = “NLM” >” identifying whether an article

had been indexed without MTI support (empty attribute), Curated

MTI results by a human indexer (Curated), or fully automatic

MTI indexing (Automated) for all articles in MEDLINE (NLM,

2018b). The updated XML tag allowed researchers to selectively

use or ignore articles in MEDLINE that were fully and/or partially

automatically indexed. In late 2019, NLM started fully automatic

indexing (MTIA) for eight journals as a pilot project. The

success of the pilot allowed NLM to expand the effort to include

automatically indexing 40% of the journals in 2021, and then

to move to 100% of the journals being automatically indexed in

April 2022.

6 Frequently Asked Question about Indexing for MEDLINE (website):

https://www.nlm.nih.gov/bsd/indexfaq.html.

4.2. What lies ahead

The NLM Medical Text Indexer (MTI) continues to be

improved and expanded using the latest technology. The next

generation of MTI (MTIX) has been developed from the beginning

as a Machine Learning/Deep Learning program, presented by Rae

et al. (2021) at the 2021 BioASQ workshop. MTIX is being

developed in the National Center for Biotechnology Information

(NCBI) division of NLM where it will be integrated directly into

the PubMed Data Management System (PMDM; Gollner and

Canese, 2017). This direct integration into the PMDM data flow

will eventually allow new articles uploaded from a publisher to be

immediately automatically indexed before the article even shows up

in PubMed. There are several efforts continuing to be worked on in

the MEDLINE 2022 project (NLM, 2021), including expanding the

identification of genes, proteins, and chemicals. The move from the

existing MTIA to the new MTIX is planned for Fall 2023.

Despite the important advancements achieved in semantic

indexing so far, there is still a lot of room for improvement

in terms of specific challenges still persisting in the field. For

example, new MeSH descriptors, introduced during the extension

of the MeSH thesaurus through annual updates (Nentidis et al.,

2021), are not covered by training datasets developed based

on previous annotations. As a result, state-of-the-art systems

for semantic indexing, relying on supervised machine learning,

can not handle these specific labels. These include emerging

descriptors, representing topics that were previously not present in

the literature, such as the COVID-19 pandemic, or new descriptors

introduced to update the current views and priorities in the

biomedical domain, as regards the indexing of the literature.

The new MTIX system has been designed to be more adaptive

so that it can easily handle new journals, new MeSH terms, and

any MeSH term drift that might occur. MTIX uses the journal

descriptors (MeSH terms that describe what a journal is about,

e.g., Veterinary Medicine) to train groups of like journals, so new

journals will by default be indexed based on their journal descriptor

training group until the next timeMTIX is fully retrained. Both new

MeSH terms and any MeSH term that has drifted from its meaning

would be handled in the same way. NLM has established a team

of experienced in-house curators that will manually index a small

set of articles that involve new MeSH terms (or drifted terms) to

provide MTIX with a set of validated indexed articles to train with.

The new training sets will include both true positive occurrences

of the new/drifted MeSH terms and any false positive examples the

curators can identify, so that MTIX has a more balanced training

set to work with. Experiments are ongoing to determine exactly

how many examples of each new/drifted MeSH term are needed

to ensure the best training for MTIX.

To ensure that MeSH indexing continues to be the quality

product that it is, NLM has the team of experienced curators review

and re-index specific types of articles and random samples of the

automatic indexing. Any corrections made by the curators are fed

back into improving MTIA and corrected on any affected articles.

Journals where chemicals, genes, and proteins are more frequently

found are targeted in this review due to MTIA not doing as well

with them. The random sample of 100 (at time of writing) daily

articles is chosen from any remaining articles from across the daily

processing. This set of 100 articles statistically provides an adequate
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random sampling for daily review. NLM is continuing to evaluate

this number to ensure that we cover the literature and will adjust as

the results of these evaluations and user feedback dictate.

Still, the ever-expanding information needs of domain experts

suggest that further extensions of semantic indexing would be

useful in several directions, even beyond scientific literature and/or

MeSH descriptors. This includes indexing other types of documents

such as clinical trials, healthcare-project summaries, biomedical

patents, and clinical reports, as well as indexing in other languages

beyond English (Rodriguez-Penagos et al., 2020; Gasco et al., 2021;

Miranda-Escalada et al., 2022). In addition, indexing with certain

types of labels is another interesting direction, which may also

require labels from different vocabularies such as the SNOMED-

CT (Donnelly et al., 2006; Miranda-Escalada et al., 2022; Lima-

López et al., 2023) or the UMLS (Bodenreider, 2004). In these

directions, annotated data are usually scarce or missing, raising

the need for novel methods, beyond supervised learning, such as

weakly supervised, few-shot, and zero-shot learning for emerging

or fine-grained descriptors (Mylonas et al., 2020; Nentidis et al.,

2020).
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