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The potential for artificial selection at the community level to improve ecosystem 
functions has received much attention in applied microbiology. However, 
we  do not yet understand what conditions in general allow for successful 
artificial community selection. Here we  propose six hypotheses about factors 
that determine the effectiveness of artificial microbial community selection, 
based on previous studies in this field and those on multilevel selection. In 
particular, we emphasize selection strategies that increase the variance among 
communities. We  then report a meta-analysis of published artificial microbial 
community selection experiments. The reported responses to community 
selection were highly variable among experiments; and the overall effect size was 
not significantly different from zero. The effectiveness of artificial community 
selection was greater when there was no migration among communities, and 
when the number of replicated communities subjected to selection was larger. 
The meta-analysis also suggests that the success of artificial community selection 
may be  contingent on multiple necessary conditions. We  argue that artificial 
community selection can be a promising approach, and suggest some strategies 
for improving the performance of artificial community selection programs.
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Introduction

Artificial community selection is conceptually similar to crop breeding (Figure 1A). A 
selection line contains multiple ecological communities, which are propagated for a number of 
transfers. At each transfer, a proportion of communities within a selection line would be chosen 
to “reproduce,” i.e., to establish the next generation of communities. Selection of communities 
with extreme values of particular traits (e.g., greater respiration rate) to contribute to the next 
generation may result in heritable changes in community traits (Goodnight, 2000; Swenson 
et al., 2000b). In experimental studies, the artificial selection treatments are usually accompanied 
with random-selection or no-selection controls (Supplementary Figure S1). Successful artificial 
selection will manifest itself if a target community trait is changed to a greater magnitude under 
artificial selection than under control treatments (Swenson et al., 2000a,b). Typical examples of 
target community traits include higher capacity of degrading particular pollutants (Swenson 
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et  al., 2000a) and facilitation of host plant growth (Swenson 
et al., 2000b).

Artificial community selection has recently attracted much 
attention in applied microbiology. One possible reason is that many 
ecological functions can only be  performed by multiple-species 
microbial communities. For example, decomposition of many 
complex organic materials may require combined actions of 
different enzymes secreted by different microbial taxa (Wolfaardt 
et al., 1994; Wagner-Döbler et al., 1998; Hubert et al., 1999). Also 
importantly, many microbes are difficult to isolate and to grow as 
pure cultures (Alain and Querellou, 2009; Overmann et al., 2017). 
Due to these challenges, implementing artificial selection on 
microbial communities could be  a promising alternative to 
bottom-up assembling of communities. The success of artificial 
community selection cannot be taken for granted (Arora et al., 2020; 
Sánchez et al., 2021). A line of recent research has addressed what 
selection strategies may promote the efficiency of community 
selection; for example, it was suggested that migration 
(contamination) among communities should be  avoided; and 
selection intensity should not be very high (Arias-Sánchez et al., 
2019; Xie et  al., 2019; Chang et  al., 2021; Xie and Shou, 2021). 

However, a more comprehensively understanding of the 
determinants of the effectiveness of community selection is 
still lacking.

Successful high-level selection usually requires overcoming the 
impacts of individual-level natural selection, as suggested by the 
“tragedy of the commons” (Rankin et al., 2007; MacLean, 2008; Anten 
and Vermeulen, 2016). Multilevel selection studies suggested a 
number of conditions that may increase the power of high-level 
selection. For example (within-species) group selection is expected to 
be more effective when heritable variance among groups, relative to 
within groups, is greater (Leigh Jr, 2000; Wade, 2016). This could 
be interpreted as the latter fueling individual-level natural selection 
that may oppose group-level selection. It was also suggested that faster 
frequency of group selection increases its effectiveness, as individual-
level natural selection would override group selection if group 
“longevity” is much larger compared with individuals (Levins, 1970). 
Multilevel selection theory suggests high-level selection may 
be  powerful (Griffing, 1981; Goodnight, 1990a,b; Goodnight and 
Stevens, 1997). Experimental studies, particular crop breeding 
programs, demonstrated the potential for high-level selection to 
effectively change organism phenotypes (Wade, 1977; McCauley and 

FIGURE 1

(A) Artificial community selection workflow. The source microbial communities can be obtained from natural environments or by artificial assembly. 
One selection line consists of multiple communities (here each test tube represents a community). The communities are propagated for multiple 
cycles, and those with extreme values of particular traits are chosen to “reproduce.” (B) Suggested selection strategies for improving the effectiveness 
of artificial community selection.
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Wade, 1980; Wade, 1980, 1982; Goodnight, 1985; Goodnight, 1990a,b; 
Wade and Goodnight, 1991; Craig and Muir, 1996).

Here we  formulize a series of hypotheses regarding the 
effectiveness of artificial microbial community selection, as a summary 
and extension of previous studies in this field. We then conduct a 
meta-analysis of published experiments, to examine whether artificial 
microbial community selection programs are generally promising and 
test several specific hypotheses regarding how particular selection 
strategies may influence the effectiveness of artificial 
community selection.

The hypotheses

Hypothesis 1. Artificial selection of microbial communities is more 
effective when the target phenotype is a trait expressed by 
microbes rather than their host animals or plants. For example, 
selection on the respiration rate of microbial communities can 
be more effective than that on the leaf greenness of their host 
plants. This is because, in the former case, heritable variation of 
the trait under selection originates entirely from the microbial 
communities, whereas in the latter case, such variation may 
be only partially attributable to the microbes.

Hypothesis 2. Artificial community selection is more effective 
when the variance among communities, relative to that within 
communities, is greater. This is a simple extension of knowledge 
of group selection (Leigh Jr, 2000; Wade, 2016). This leads to a 
suggestion that including more diverse source communities in 
artificial community selection programs could improve 
its effectiveness.

Hypothesis 3. Artificial community selection is more effective 
when the number of communities per selection line relative to the 
number of individuals in a community is larger. This could 
increase the variance among communities relative to within 
communities, and thus increase heritable variation in the trait 
under selection (Traulsen and Nowak, 2006). Moreover, the effect 
of drift would be less important relative to selection when the 
number of communities within selection lines is larger. The 
number of communities is amenable to manipulation in 
experimental studies, but the number of individuals within a 
community may not. Thus, a testable prediction of this hypothesis 
is that the effectiveness of community selection is overall greater 
in experiments with a larger number of communities per 
selection line.

Hypothesis 4. Migration among communities reduces the 
effectiveness of selection by decreasing variance among 
communities, similar to that gene flow reduces the effectiveness 
of group selection by reducing the variance among groups (Slatkin 
and Wade, 1978; Wade, 1982; Leigh Jr, 1983). Migration among 
communities takes place in the “migrant pool” approach in 
artificial microbial community selection programs, where 

communities chosen as “parent” communities are mixed before 
seeding the next generation of communities (Swenson et  al., 
2000b; Raynaud et al., 2019). This hypothesis predicts that this 
“migrant pool” strategy would have poorer performance than the 
“propagule” approach where no migration among communities 
is allowed.

Hypothesis 5. The effectiveness of selection is positively correlated 
with the intensity of selection for short-term selection, and they 
are expected to exhibit a negative correlation in long-term 
selection. This is because short-term selection acts on the existing 
genetic variation among communities within selection lines, while 
long-term selection also relies on newly generated genetic 
variation. Under weaker selection, a larger number of 
communities can contribute to the subsequent generations, which 
in turn accumulate more new mutations available for selection. 
The intensity of artificial selection is typically manipulated by the 
proportion of communities selected, and smaller selected 
proportion corresponds to higher intensity of selection. 
We  suggest that weaker selection combined with longer-term 
artificial selection (more rounds of community propagation and 
selection) would cause more substantial changes in 
community traits.

Hypothesis 6. Community selection is more efficient at faster 
frequencies of community selection and propagation, relative to 
the recruitment of individual organisms within communities. 
Artificial community selection takes place only when it was 
carried out artificially, and organisms may reproduce more than 
one generation during a single community selection cycle; and 
we need to notice that lower-level natural selection takes place all 
the time as long as individual organisms have differential rates of 
reproduction and survival. Thus lower-level natural selection 
would limit the success of community selection to a larger extent 
when community “longevity” is greater. This logic is the same as 
that the power of group selection is increased by more frequent 
group-level selection (Levins, 1970).

The meta-analysis

Meta-analysis methods

We compiled experimental studies for the meta-analysis in April 
2023 by searching in the Web of Science for research articles published 
from year 1936 to 2023, using the following keywords: (bacteria* OR 
microbi*) AND (communit* OR ecosystem*) AND (“artificial 
selection”) NOT (natur* OR male* OR female* OR m?n OR wom?n 
OR intelligence), while refining for the direction of Microbiology or 
Environment Sciences Ecology research. There were 52 articles 
associated with these keywords, from which we  screened for 
experiments suitable for our analysis. We  also included several 
publications not captured by the search, particularly those referred to 
by Chang et al. (2021) and Sánchez et al. (2021). The following criteria 
were used to choose individual articles for the meta-analysis. First, the 

https://doi.org/10.3389/fmicb.2023.1257935
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yu et al. 10.3389/fmicb.2023.1257935

Frontiers in Microbiology 04 frontiersin.org

study system should be  multiple-species microbial communities 
(species richness >3), rather than single-species cultures or highly 
simple communities. Second, there must be both artificial selection 
treatments and appropriate control (random or no-selection lines) 
treatments of comparable sizes of the selection lines, for which data of 
community-level phenotype values at the end of study were available. 
Third, the communities must have been propagated for over 3 
transfers. One individual article could include more than one 
independent selection experiments (one particular artificial selection 
regime and a control regime would constitute one experiment). A total 
of 13 experiments from seven publications were finally included in our 
analysis (Supplementary Figure S2; Table 1, and see more details in 
Supplementary Tables S1, S2). The control treatments in all the 13 
experiments were random-selection lines.

We obtained the mean and standard deviation values of 
community traits for the control and artificial selection lines at the end 
of each experiment. Community traits studied in those experiments 
included microbial biomass, microbial respiration rate, activity of 
certain enzymes, capacity of degrading certain materials (which may 

be measured as how the end products support the growth of particular 
reference microbial strains), or growth performance of host animals or 
plants (e.g., eclosion time of host insets, or leaf greenness of host 
plants) (Table 1). For articles of which raw data were not available, 
we  extracted data based on graphs, using Getdata graph Digitizer 
version 2.2.6. We  calculated the effect size as a natural logarithm 
transformed response ratio, lnRR = ln /X Xa c( ) for each experiment 
that selected for increased phenotype values (“high lines”), and 
− ( )ln /X Xa c  for that selected for decreased phenotype values (“low 
lines”), where Xa and Xc  were mean values of community phenotype 
(e.g., total biomass) of the artificial selection lines and controls at the 
end of the selection experiment, respectively. The phenotype data were 
all original measurements, but not transformed data (imagine an 
experiment reporting pH values, the calculation should be based on 
H+ concentration, but not pH). Variance of effect size was calculated as 

Var = SD SDc c c a a aN X N X2
2 2 2( ) ( )




+ ( ) ( )





/ / , where SDc was 

the standard deviation of the community phenotype values among the 
control lines, SDa for the artificial selection lines, and Nc and Na 

TABLE 1 Summary of artificial community selection experiments included in the meta-analysis.

Experiment Target 
phenotype

Migration No. 
communities 
per selection 

line

Selected 
proportion

No. 
selection 

lines

Effect 
size 

(lnRR)

Variance in 
effect size

Swenson et al. 

(2000a)

Degradation of 

3-chloroaniline

Yes 15 0.2 4 0.001784 0.002274

Blouin et al. (2015) CO2 emissions Yes 30 0.1 6 0.317321 0.000303

Wright et al. (2019): 

experiment 1, 9 days

Chitinase activity Yes 30 0.1 1 0.040445 0

Raynaud et al. 

(2019): migrant 

pool, high line

Microbial biomass Yes 30 0.1 1 −0.04832 0

Raynaud et al. 

(2019): propagule, 

high line

Microbial biomass No 10 0.1 3 −0.01706 0.000303

Raynaud et al. 

(2019): migrant 

pool, low line

Microbial biomass Yes 30 0.1 1 0.081569 0

Raynaud et al. 

(2019): propagule, 

low line

Microbial biomass No 10 0.1 3 0.140848 0.000303

Arora et al. (2020): 

high sugar

Host insect eclosion 

time

No 3 0.33 10 −0.00301 0.0001

Arora et al. (2020): 

low sugar

Host insect eclosion 

time

No 3 0.33 10 0.01507 4.67E-05

Chang et al. (2020): 

amylolytic activity

Amylolytic activity No 24 0.16 1 0.494901 0

Chang et al. (2020): 

cross-feeder

Degradation of 

cycloheximide

No 92 0.25 1 2.202364 0

Jacquiod et al. 

(2022): high line

Host plant leaf 

greenness

Yes 20 0.15 3 0.019776 0.000303

Jacquiod et al. 

(2022): low line

Host plant leaf 

greenness

Yes 20 0.15 3 −0.0114 0.000303
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represented the number of selection lines under the control and 
artificial selection treatments, respectively. When standard errors (SE) 
were reported, standard deviation was calculated as SD = SE sqrt∗ ( )X
. For studies where the SD or SE was not given, the missing variance 
was substituted with the median of the given lnRR variances (Corrêa 
et al., 2012).

Although a number of factors may influence selection effect size, 
information about some of them cannot be obtained or evaluated (e.g., 
the variance among source communities and the number of individual 
organisms within communities). We were able to obtain information 
about the following attributes from the 13 experiments, and study 
their relation with the effect size of artificial selection: microbial vs. 
host phenotype, presence of migration among communities (migrant 
pool vs. propagule approach), size of selection lines (average number 
of communities per selection line), and selected proportion (i.e., 
percentage of communities chosen to “reproduce” at each transfer) 
(Table  1). Those four factors were defined as moderators in the 
following analysis. We  used the “metafor” package 3.8-1 from R 
version 4.2.3 for statistical analysis (Viechtbauer, 2010; R Core Team, 
2023). The main effects of the four moderators were examined using 
a “rma” model with maximum likelihood method; and we performed 
deletion test for the significance of each main effect, comparing the 
4-variable model with models excluding single moderators. 
Interaction effects were not considered due to the relatively small 
sample size (n = 13).

The robustness of the detected moderator effects was examined by 
sensitivity analyses of any disproportionate effects of single, 
independent experiments. Sensitivity analyses were carried out for 
every moderator variable that showed a significant effect on the effect 
sizes (“leave-one-out” function in the “metafor” package) (Viechtbauer, 
2010; R Core Team, 2023). We extracted the means and confidence 
intervals (CIs) of the effect sizes and compared them to the model for 
the non-excluded studies. Those experiments whose CIs did not 
include the mean of the non-excluded model were identified as having 
a disproportionate effect and needed to be excluded.

Meta-analysis results

A total of 13 effect sizes of artificial microbial community selection 
were included in this meta-analysis. Those effective size values ranged 
from −0.0483 to 2.2023. Eight out of the 13 effect sizes were positive 
(Table 1). The mean effect size was 0.2488 ± 0.3172 (95% confidence 
interval), which was not significantly different from zero (p = 0.1241, 
n = 13). We were able to test for the importance of four factors for the 
effect size of artificially selection experiments: microbial vs. host 
phenotype, migration, community number and selected proportion. 
Figure  2 shows the relationship between effect sizes and the four 
moderators. Among those four moderators, community number and 
the presence of migration were statistically significant predictors 
(Table  2). In the 4-variable model, specifically, effective size was 
smaller in experiments with migration among communities, relative 
to no migration (p < 0.0001; estimated difference in intercepts: 
−0.3828 ± 0.1397); and was greater in experiments with larger 
community numbers per selection line (p < 0.0001; estimated slope: 
0.0246 ± 0.0029). Effect size did not significantly differ between 
experiments that targeted microbial phenotypes vs. host phenotypes 
(p = 0.9847; estimated difference in intercepts: −0.0018 ± 0.1819), and 

did not significantly change with selected proportion (p = 0.1488; 
estimated slope: 0.7950 ± 1.0792).

The sensitivity analysis did not suggest excluding any effect size 
from analysis (Supplementary Table S3). However, we note that an 
extremely large effect size, 2.2024 (Chang et al., 2020: cross-feeder) 
differed substantially from the others that ranged from −0.0483 to 
0.4949. When this particular experiment was excluded from analysis, 
the overall effect size was 0.0862 ± 0.0879, marginally non-significantly 
different from zero (p = 0.0546, n = 12); and the results from analysis 
regarding the moderator effects were not qualitatively different from 
the above analysis (Supplementary Table S4).

Discussion

Improvement of ecological functions driven by microbes often 
require community-level manipulation (Swenson et al., 2000b; Day 
et al., 2011; Mueller and Sachs, 2015; Doulcier et al., 2020). However, 
artificial selection at the community level may not always lead to 
desirable responses. Theoretical and experimental work is needed to 
figure out what conditions may generally increase the efficiency of 
artificial community selection (Sánchez et al., 2021). The hypotheses 
formulized in the present study are within this line of effort 
(Figure 1B).

Well-designed artificial microbial community selection 
experiments are still scarce; in particular, a number of studies lacked 
appropriate control treatment, i.e., random-selection or no-selection 
lines that have comparable community numbers as artificial selection 
lines. Results of our meta-analysis should certainly be interpretated 
with caution, particularly because of the small sample size. These effect 
sizes were highly variable; and the mean value was not significantly 
different from zero, though 8 out of 13 experiments showed positive 
effective sizes. It is certainly possible that the small sample size (n = 13) 
has limited statistical power to detect significant overall effect here.

While not able to test all the hypotheses outlined above in this 
article, our meta-analysis addresses the importance of four factors 
supposedly relevant to the success of artificial community selection. 
The effectiveness of artificial selection was greater when there is no 
migration among communities within selection lines, and the 
community number per selection line is larger. Both of those factors 
may increase the variance among vs. within communities (the 
operational unit of artificial selection). There was no significant 
difference between experiments that targeted microbial phenotypes 
and those targeted host phenotypes; and selected proportion was not 
a significant predictor for effect size of artificial selection experiments. 
We were unable to extract quantitative information about phenotypic 
variance among communities, or that within communities, from the 
published experiments, nor information about selection frequency on 
the scale of generation numbers of organisms (selection frequency 
measured on the basis of absolute time units was available). Thus, our 
Hypothesis 2 and 6 cannot be tested here. Experimental studies, but 
not meta-analyses, might be more appropriate for testing those two 
hypotheses, as variance among communities and selection frequency 
may be  manipulated in a particular experiment, but may not 
be comparable across different study systems.

There was one outstandingly large effect size, 2.2023 (with the 
remaining ones ranging from −0.0483 to 0.4949); this effect size 
value corresponds to artificial selection being 8.05-fold (e2.2023–1) 
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more effective than random selection in altering community 
phenotypes. This experiment selected for greater capacity of 
degrading the antifungal cycloheximide (Chang et al., 2020: cross-
feeder experiment). The design of this experiment was consistent 

with several hypothesized conditions for successful artificial 
community selection. In particular, it was distinct from the other 
experiments by having a combination of large size of selection lines 
(community number per selection line) and large selected 

FIGURE 2

(A) Relationship between effect size of artificial community selection experiments and four moderators. Effect size values are mapped to point color 
on the selected proportion-community size plot, with point shape defined by two categorial moderators (microbial vs. host phenotype, and presence 
of migration among communities). (B–E) Relationships between effect sizes and single moderators.
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proportion (Figure 2A). Moreover, the target trait was one expressed 
by microbes but not hosts. Community size was expected to 
be relatively small (microbes grown in 500 μL of 0.2% citrate-M9 
media with 200 μg/mL cycloheximide which was resource-poor and 
unlikely to support large population sizes). There was not migration 
among communities. It may also be true that the initial variance 
among communities was large: 12 environmental samples as source 
communities. This suggests a possibility that an “Anna Karenina” 
principle may apply to artificial community selection: “success 
actually requires avoiding many separate possible causes of failure” 
(Diamond, 1999). Thus, multiple factors that may determine the 
effectiveness of artificial community selection should be studied in 
a more comprehensive manner in future. An alternative, 
non-mutually exclusive, explanation for the success of this particular 
experiment is that responses to selection are usually large when 
organisms are faced with novel environments; this is because genetic 
variation with great fitness effects is available when organisms are 
poorly adapted to the environment. And adaptation usually 
decelerates over time due to diminishing-returns epistasis (de Visser 
et al., 1999; Bell, 2007; Kassen, 2014). Therefore, experiments that 
select for faster degradation of novel pollutants may show large effect 
size. Note that this cannot be always true; an experiment selecting 
for degradation of 3-chloroaniline observed very weak response to 
selection (Table 1; Swenson et al., 2000a).

In conclusion, we suggest that artificial community selection could 
be a promising approach to improving ecological functions, although the 
success of artificial community selection may be contingent on certain 
conditions, or a combination of multiple conditions. It pays off to figure 
out the conditions that enhance the effectiveness of community-level 
selection; and future studies that carefully examine knowledge of 
multilevel selection may provide valuable insights into the recipe of 
successful artificial community selection.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

S-RY: Formal analysis, Investigation, Writing—original draft. 
Y-YZ: Formal analysis, Writing—original draft. Q-GZ: 
Conceptualization, Formal analysis, Funding acquisition, Investigation, 
Project administration, Supervision, Writing—original draft.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by the National Natural Science Foundation of China 
(32371687, 31725006), the 111 project (B13008), and the Fundamental 
Research Funds for the Central Universities of China.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1257935/
full#supplementary-material

SUPPLEMENTARY TABLE S1

Summary of published articles captured by our literature search.

SUPPLEMENTARY TABLE S2

Detailed information about the studies used in our meta-analysis.
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SUPPLEMENTARY TABLE S4

Significance test for moderators analyzed in this meta-analysis with an 
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A graphical illustration of the artificial selection (A) random-selection control 
(B) and no-selection control (C) The random-selection protocol chooses a 
proportion of communities randomly (regardless of their traits) to contribute 
to the next generation of communities. Under the no-selection control, 
every community would contribute to one offspring community at each 
round of community propagation.

TABLE 2 Significance test for moderator effects analyzed in the meta-analysis, based comparisons between a model including the main effects of all 
the four moderators and those with single moderators excluded.

df ΔAIC ΔBIC Chi-squared p

Microbial vs. host phenotype (1, 5) 1.9997 2.5646 0.0004 0.985

Community number (1, 5) −38.3207 −37.7558 40.3208 <0.001

Migration (1, 5) −13.1709 −12.6059 15.1709 <0.001

Selected proportion (1, 5) 0.0497 0.6147 1.9503 0.163

ΔAIC, ΔBIC, and Chi-squared represent the changes in the Akaike information criterion and Bayesian information criterion, and the statistics of the likelihood ratio tests.
Significant p-values (p < 0.05) are in bold.
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SUPPLEMENTARY FIGURE S2

Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) 
diagram that shows an overview of the study selection process for our meta-
analysis.

SUPPLEMENTARY FIGURE S3

Relationship between effect sizes of experiments and the four moderators 
after an outstandingly large effect size (Chang et al., 2020): cross-feeder) 
was excluded.
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