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Cross-sectional Ct distributions
from qPCR tests can provide an
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Background: SARS-CoV-2 PCR testing data has been widely used for COVID-19

surveillance. Existing COVID-19 forecasting models mainly rely on case counts

obtained from qPCR results, even though the binary PCR results provide a

limited picture of the pandemic trajectory. Most forecasting models have failed

to accurately predict the COVID-19 waves before they occur. Recently a model

utilizing cross-sectional population cycle threshold (Ct—the number of cycles

required for the fluorescent signal to cross the background threshold) values

obtained from PCR tests (Ct-based model) was developed to overcome the

limitations of using only binary PCR results. In this study, we aimed to improve on

COVID-19 forecasting models using features derived from the Ct-based model,

to detect epidemic waves earlier than case-based trajectories.

Methods: PCR datawas collectedweekly at Northeastern University (NU) between

August 2020 and January 2022. Campus and county epidemic trajectories were

generated from case counts. A novel forecasting approach was developed by

enhancing a recent deep learning model with Ct-based features and applied in

Su�olk County and NU campus. For this, cross-sectional Ct values from PCR

data were used to generate Ct-based epidemic trajectories, including e�ective

reproductive rate (Rt) and incidence. The improvement in forecasting performance

was compared using absolute errors and residual squared errors with respect to

actual observed cases at the 7-day and 14-day forecasting horizons. The model

was also tested prospectively over the period January 2022 to April 2022.

Results: Rt curves estimated from the Ct-based model indicated epidemic waves

12 to 14 days earlier than Rt curves from NU campus and Su�olk County cases,

with a correlation of 0.57. Enhancing the forecasting models with Ct-based

information significantly decreased absolute error (decrease of 49.4 and 221.5 for

the 7 and 14-day forecasting horizons) and residual squared error (40.6 and 217.1

for the 7 and 14-day forecasting horizons) compared to the originalmodel without

Ct features.

Conclusion: Ct-based epidemic trajectories can herald an earlier signal for

impending epidemic waves in the community and forecast transmission peaks.

Moreover, COVID-19 forecastingmodels can be enhanced using these Ct features

to improve their forecasting accuracy. In this study, we make the case that public

health agencies should publish Ct values along with the binary positive/negative

PCR results. Early and accurate forecasting of epidemic waves can inform public

health policies and countermeasures which can mitigate spread.
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Introduction

The COVID-19 pandemic created an unprecedented situation

where large-scale PCR testing has been performed to identify cases

who were suspected to be infected with the virus. The results from

such widespread testing have also helped better understand the

epidemiological aspects of this disease and adapt public health

interventions to reduce the spread of the virus. Current approaches

for outbreak surveillance rely mainly on SARS-CoV-2 PCR testing

results to estimate case counts and test positivity rates (1).While

real-time or near real-time monitoring at the local and national

levels can help detect changes in patterns of the pandemic and

inform public health decisions, this approach, however, does not

allow public health agencies sufficient lead time to prepare for

upcoming surges. Public health agencies need to gain access

to data predicting the evolution of the pandemic as early as

possible in order to plan for surges and adapt healthcare capacities

accordingly (2).

Concerted efforts from academia, industry, and government

have been made to develop predictions at different forecasting

horizons. Notably, these efforts have led to development of

the COVID-19 Forecast Hub, which provides up-to-date data

of COVID-19 cases, deaths, and hospitalizations in the US,

in coordination with the Centers for Disease Control and

Prevention (CDC) (3). Most of these forecasting initiatives use

various compartmental models (4, 5) a modeling technique where

populations are clustered into various compartments such as

susceptible, infectious, and recovered, with flow patterns being

simulated between them. However, almost all these compartmental

models rely mainly on the binary (i.e., positive/negative) test

results and provide a limited picture of the pandemic trajectory

(6). Case-series trajectories, based on incidence rates alone, can

exhibit biases due to variations in testing demand and supply,

population sampling and reporting delay (7, 8). Most forecasting

models currently available on the Forecast Hub have struggled

to consistently predict COVID-19 waves before they occur (3).

The ensemble model which combines the top performing models,

developed by experts in the field, was unable to detect any of the

variant waves in the US. This model has shown “low reliability”

in predicting COVID-19 waves and is no longer used (9).

These findings highlight the tremendous challenge of predicting

COVID-19 surges with forecasting models using the binary

test outcomes.

Recently, Hay et al. (6) have shown that using population

cross-sectional viral load distributions, measured by PCR cycle

thresholds (Ct—the number of cycles required for the fluorescent

signal to cross the background threshold), can overcome

common biases in epidemic trajectory estimates that are seen

when using case series data alone. Additional studies have

corroborated this observation and showed that the models with

Ct information correlated to case counts (10) and can be used

to better predict epidemic growth rates (11, 12). In this study,

we further corroborate that Ct-based model-derived epidemic

trajectories, such as incidence and reproduction number (Rt),

can detect epidemic waves earlier than case-based trajectories,

and that COVID-19 forecasting models can be enhanced using

these Ct features to improve their forecasting accuracy of

disease incidence.

Materials and methods

qPCR data preparation

During the first couple years of the pandemic, the Life

Science Testing Center (LTSC) conducted routine PCR screening

of students, faculty and staff at Northeastern University using the

TaqPathTM COVID-19 Combo Kit. In this study, PCR data were

retrospectively analyzed from samples collected between August

2020 and January 2022, and prospectively up to April 2022.

Deidentified.eds files from the PCR runs were analyzed to obtain

the Ct values from all screened samples during the defined period.

According to the TaqPathTM COVID-19 Combo Kit Instructions

for Use, a sample was considered positive for SARS-CoV-2 if two

or more of the three gene targets (N, S and ORF1ab) were detected

(Ct ≤ 37). Samples where only one gene target was detected (Ct

≤ 37) were considered as inconclusive (13). Ct denotes the cycle

threshold - the number of cycles required for the fluorescent signal

to cross the background threshold). The data flow and processing

steps are depicted in Figure 1A.

Incidence for NU campus and Su�olk
county case-series

Daily campus COVID case-count was determined through

counting the number of unique positive samples (adjusting for re-

testing) per day. Since the data was de-identified, these campus

case-counts were not adjusted for different samples taken from

the same individual or for re-infection. Incidence per 100,000

population was calculated by dividing cases per day or week by the

total campus population as of 2019 (14). COVID-19 cases in Suffolk

county, where the university campus is located, were obtained from

a publicly available database (15). Incidence per 100,000 population

was calculated by dividing the county positive cases by the county’s

total population based on census numbers as of April 2020 (16).

Ct-based model to determine inferred
incidence estimates

Incidence curves were created using the Ct values from the

PCR screening tests performed on campus according to the

methodology developed by Hay et al. (6). Only the N-gene Ct

values from the TaqPath COVID-19 Combo Kit were selected to

be included in the Ct-based model. Based on their run dates,

the samples were considered as weekly occurrences. We used a

Gaussian process model from the virosolver R-package (17) the

weekly Ct-distributions to infer the incidence rates and followed

the recommended parameters for the Gaussian process model.

In the initial phase of the study, we retrospectively analyzed the

epidemic trajectories from the Ct-based model for early detection

of incidence trends of the campus and county from the samples

collected between August 2020 to January 2022. In the next phase,

we prospectively monitored the ability of the Ct-based model for

early indicators of uptick in incidence trends in NU and Suffolk

county on a weekly basis from January 2022 until April 2022.
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FIGURE 1

(A) Study design showing data flow and processing; (B) Weekly Ct value distribution represented by each boxplot. The orange line represents the

rolling median of the weekly Ct distribution; (C) Incidence rates predicted from Ct-based model (magenta), campus case counts (green), and Su�olk

County case counts (blue); (D) Rt estimates derived from Ct model inferred incidences (magenta), or campus (green) and Su�olk County case counts

(blue).

Estimating time varying reproduction
number (Rt)

The three incidence trajectories: (a) Ct-based model derived

estimates, (b) campus positive samples, and (c) county case-

series, were smoothed by a 14-day moving average. The effective

reproduction number (Rt) was derived from these three incidence

trajectories, using the R-package EpiEstim (18) (Figure 1A). The

EpiEstim package estimates the effective reproduction number of

an epidemic, given the incidence time series and the serial interval

distribution. We used a parametric serial intervention method

with a mean serial interval of 6.14 and standard deviation of 3.96

following recommended parameters, and a 14-day sliding window.

Lagged correlation analysis between
Ct-based model Rt curves, campus
case-based Rt curves, and county
case-based Rt curves

Due to the time dependent nature of the Rt curves,

pairwise lagged correlation was assessed to estimate the Spearman

Correlation Coefficients and the lag or lead times between the 3

Rt curves: Ct-based model, campus case-based, and county case-

based. Transmission peaks were identified when the Rt estimates

were>1. Transmission peaks in the Ct-based model Rt curves were

mapped to subsequent transmission peaks detected in the campus

and county Rt curves. The number of days between the Ct-based

model peak and the corresponding presumptive subsequent peak

in the campus and county curves was calculated. The median time

to campus and county peak from a Ct-based model Rt peak was

then estimated.

Neural relational autoregressive model
(β-AR) and Ct-enhanced β-AR (Ct-β-AR)

β-AR is a case count forecasting model that was published

by Facebook/Meta (19), one the best performing COVID-19

forecasting models at the time. The β-AR model requires two types

of inputs: (a) time dependent data including symptom survey,

mobility, doctor visits, total PCR tests per state, vaccination and

masking policy, and weather, which are modeled by the recurrent

neural network (RNN) part of the overall model and (b) confirmed

COVID-19 cases variable is the only time independent input, which

feeds into the autoregressive (AR) part of the model. We enhanced
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the β-AR model using features derived directly from PCR Ct values

(measures of central tendency and dispersion) and from the Ct-

based epidemiological model above [Hay et al] (incidence and Rt).

Each feature was measured weekly in accordance with the β-AR

model measurement frequency.

Determining accuracy of Ct- β-AR to real
incidence rates using RMSE and AE

We assessed performance of Ct- β-AR and β-AR from October

2020 to December 2021, by comparing the predictions at the 7-

and 14-day forecast horizons to real incidence rates. To measure

the performance, we calculated the root mean square error (RMSE)

and mean absolute error (AE) by the following formula:

RMSE =

√

(xpredicted − xactual)2

study period

AE = |xpredicted − xactual|

where xactual was the actual case count on a particular day and

xpredicted was the predicted case count for the same day. The

difference between Ct-β-AR and β-AR models for their RMSE and

AE values were statistically assessed using the paired Wilcoxon

signed rank sum test.

Results

Data cohort with PCR results description

A total of 1,608,562 valid samples, collected between August

2020 and April 2022, were included in the analysis. Among those

samples, 47,194 (2.93%) samples tested positive for SARS-CoV-2,

and 17,677 (1.1%) samples were identified as inconclusive. Over the

study period, the median N-gene detectable Ct value was around

28 with a minimum of 5 and a maximum of 40 and a skewness of

−5.69. During the wild-type (initial Wuhan) (Aug 2020–Jan 2021)

N = 154; Alpha (Jan 2021–Jun 2021) N = 7,216; Delta (Jul 2021–

Dec 2021)N= 11,790; andBA.1 Omicron (Jan 2022–Mar 2022)N=

21,715 surges, samples tested positive with an approximate median

Ct=28 across waves and varying skewness of −9.07, −7.38, −5.13,

−3.22, respectively. The Ct distributions over time are shown in

Figure 1B.

Ct-based and Case-count derived epidemic
metrics were highly comparable

The predicted incidence rates, derived from either Ct-based

model on campus data, Campus case count data or Suffolk County

cases counts (Figure 1C) were very similar in terms of epidemic

trends throughout the duration (Aug 2020 to Jan 2022). Upsurges

in incidence were observed around the same periods for the 3

incidence trajectories, including when the wild-type variant was

dominant as well as during the Alpha, Delta, and Omicron variant

waves. The trajectories also demonstrated similar intervening

troughs between the observed waves. The incidence waves were

also relatively similar in size, apart from the first Omicron wave,

where the Ct-based incidence wave was much larger than the

other two trajectories. The three incidence rate patterns were also

consistent with publicly available data for Massachusetts state (20)

showing that the predicted values were in agreement with the

local epidemic incidence rates. The effective reproduction number

(Rt) estimates for the 3 corresponding incidence trajectories were

also very similar throughout the period analyzed (Figure 1D). We

observed that major Rt peaks noted at the beginning of a variant

wave generally matched across the 3 trajectories, especially between

the Ct-based and county Rt trajectories. The synched Spearman

Correlation Coefficient between the three Rt curves (Ct-based vs.

Campus case count vs. County case count) was 0.57 demonstrating

that the Ct-based epidemic trajectory was highly comparable to the

case-count derived epidemic trajectories (Campus and County),

considering the duration analyzed (18 months) and a 3-way

synched correlation.

Ct-based model predictions preceded case
counts-derived estimates

Once we established that the Ct-based model was able to

accurately mirror the epidemic trends, we proceeded to determine

if the Ct-based model was able to portend impending surges

over case-count derived models, and if so, how early could our

model predict. Lagged correlation analysis of the Rt estimated

curves showed that the Ct-based model had a 12-day lead time

as compared to the Campus case count estimates and a 14-

day lead time as compared to County case count estimates,

with lagged Spearman correlation coefficients of 0.38 and 0.59

respectively. Analysis of the Rt trend peaks showed that Ct-

based model peaks preceded the corresponding case counts-

derived Rt peaks by a median lead time of 11 days for, both,

the county (Figures 2A, B) and campus estimates (Figures 2C, D).

Interestingly, prospective monitoring of the Rt trends showed

that the Ct-based model derived Rt trajectory was able to detect

an upcoming peak around week 4 of March 2022 which was

not yet uncovered in, both, the case counts based Rt trajectories

(Figure 3A). Upon further monitoring, it was discovered that the

Ct-based model predicted peak was, indeed, followed by a peak

in actual Campus and County case-counts after 2 weeks (week

2 of April 2022) which was due to the Omicron surge (BA.2)

(Figure 3B).

Ct-β-AR model significantly improved
forecasting estimates

Over the time duration analyzed (October 2020 to December

2021), the Ct-β-AR model provided statistically significant lower

AE at both forecasting horizons; 7 days (p-value < 0.001)

(Figures 4A, B) and 14 days (p-value < 0.001) (Figures 4C, D).

In addition, the mean AE values comparing Ct- β-AR vs. β-AR

models were 273.4 vs. 322.8 and 679.6 vs. 901.1 for the 7 and 14-

day forecasting horizons, respectively. Similarly, the RMSE was

also significantly lower (p-value < 0.001) comparing Ct- β-AR
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FIGURE 2

(A) Rt trends showing peaks for Ct-based model derived estimates (magenta), with subsequent peaks in Rt trends derived from county cases (blue);

(B) Lead times (in days) between Ct model-derived Rt peaks and county Rt peaks, with median lead time (red dashed line). (C) Rt trends showing

peaks for Ct model-derived estimates (magenta), with subsequent peaks in Rt trends derived from positive tests on campus (green); (D) Lead times (in

days) between Ct-based model derived Rt peaks and campus Rt peaks, with median lead time (red dashed line).

FIGURE 3

Prospective monitoring of the Rt trajectories showed (A) Rt trends with an early uptick (red arrow) in Ct model-derived estimates (magenta) around

24 March 2022, while the other two trajectories, including Rt trends derived from county cases (blue), and positive tests on campus (green) are flat;

(B) Later upticks noted in Rt trends derived from county cases (blue), and positive tests on campus around 15 April 2022.

vs. β-AR with RMSE values of 366.3 vs. 406.6 and 828.8 vs.

1045.9 for the 7 and 14-day forecasting horizons, respectively.

Regardless of which analytical method was used, RMSE or AE,

enhancing the model with Ct features reduced the error to the real

incidence value and provided more accurate forecasting than the

β-AR model.

Discussion

In this study, we demonstrate that Ct-derived information from

routine PCR testing can detect epidemic waves earlier than case-

based trajectories, and by doing so, provides an earlier indication of

upcoming COVID-19 waves in the community. We took the β-AR
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FIGURE 4

(A) Comparing trends of 7-day horizon absolute errors for Ct-β-AR (red) and β-AR (blue) models; (B) Comparing distributions of 7-day horizon

absolute errors for Ct-β-AR (red) and β-AR (blue) models; (C) Comparing trends of 14-day horizon absolute errors for Ct-β-AR (red) and β-AR (blue)

models; (D) Comparing distributions of 14-day horizon absolute errors for Ct-β-AR (red) and β-AR (blue) models.

forecasting model which uses deep learning and autoregression to

produce weekly forecasts up to a 4-week horizon and enhanced it

with Ct features from PCR test results. The β-AR model enhanced

by Ct-derived features provided more accurate forecasts (lower

RMSE/AE) than the β-AR model without Ct features.

Our observations are consistent with three previous studies

and further corroborate and highlight the value of Ct values in

epidemic forecasting (10–12). The study conducted in Madagascar

showed that epidemic growth curves [Hay et al] integrating Ct-

derived features (median, skewness) slightly preceded incidence

data-derived epidemic growth curves (12). Likewise, the study

conducted in Belgium that correlated daily/weekly Ct value

distributions (mean) and case counts showed that epidemic

trajectories incorporating Ct values preceded those derived by case

counts by 17 days (11). Lastly, the Hong Kong study, observed 7

days of leading Rt waves from the log-regression model derived

from the Ct statistics (mean, skewness) as compared to the Rt waves

derived from classic case counts (10). Our study adds to this body

of evidence that highlights the importance of Ct values for epidemic

trajectories and how they could be leveraged to predict surges in a

timely manner.

Some of the more widely used forecasting models use

features such as population mobility data, international flight

data, government restrictions, non-pharmaceutical interventions,

vaccination, and seasonality, as well as COVID-19 symptoms

survey data (19, 21–24). With the exception of COVID-19

symptom data, most of these features such as international flight

data, government restrictions etc. are not grounded in the inherent

biology of the infection. There are other forecasting methods that

have been developed that take some of the biological characteristics

of the virus into account; for example, wastewater surveillance

(25) that measures concentrations of the virus in wastewater to

infer community-level disease dynamics, or self-reported COVID-

19 symptoms (26), or detecting pre-symptomatic cases using digital

wearable devices (27, 28), or a combination of self-reporting and

digital wearable devices (29). However, as compared to these

models, Ct values would still be the most readily available since

they are automatically generated with most routine COVID-19 RT-

PCR tests. Nevertheless, features such as wastewater surveillance

data can be used in conjunction with Ct data to enhance forecasting

models as future work, but is currently beyond the scope of

this paper.

While our Ct-enhanced model showed better forecasting

than the case-count derived forecasting approach, our study is

not without limitations. Firstly, our data were obtained from a

single PCR assay. However, Hay et. al demonstrated that the
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using different PCR methods does not influence the ability the

Ct-based model to accurately estimate the epidemic trajectory.

Secondly, currently used forecasting models can make predictions

at different geographical levels such as at the national, state (23)

[and/or the county level (30–32) while we assessed our model at

a smaller geographical scale, at the community and the county

level. Thirdly, we enhanced only one forecasting model, the β-

AR model, to assess the usefulness of incorporating Ct values.

There are other publicly available forecasting models employing a

compartmental model methodology (21, 23, 24, 33–38), machine

learning techniques (30, 39, 40), deep learning approaches (41–

45), ensemble methods (9, 46, 47), statistical methods (48–

51), hybrid approaches (52–57) that could be enhanced to

validate our approach. Additionally, campus case-counts were not

adjusted for different samples taken from the same individual

or for re-infection, but this would only impact campus case-

based epidemic trajectories. Future work is needed to assess the

utility of Ct values in early detection of other pathogens and

across diverse geographical locations. Lastly, we acknowledge

limitations around cost and availability of PCR tests, especially

during lockdowns or in low-resource settings. To that point,

we advocate that when resources are spent on conducting these

tests, we get the most out of them by not only just using the

binary positive/negative result, but also the generated Ct values

which give a better picture of the true epidemic trajectory in

the community.

More importantly, what this study, along with others, has

shown is the potential of utilizing PCR Ct values for surveillance

of other respiratory infectious diseases such as seasonal influenza

or its broader use in the field of other infectious diseases. The

value of PCR Ct data has often been overlooked for public

health surveillance due to lack of awareness and/or due to the

lack of data availability. There is now growing evidence that Ct-

derived forecasting methods are an effective method for sentinel

surveillance and early identification of surges. Many groups have

advocated for public reporting of Ct information for surveillance,

especially in countries with limited public health surveillance

resources with routine testing laboratories even acting as “epidemic

sensors” for the geographical regions they serve (11, 12). Given the

compelling evidence for the use of Ct values in disease monitoring

and forecasting, we strongly urge public health agencies to make

PCR Ct values publicly available along with the binary test results.
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