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Bacterial extracellular vesicles (BEVs) have emerged as critical factors involved in

gut health regulation, transcending their traditional roles as byproducts of

bacterial metabolism. These vesicles function as cargo carriers and contribute

to various aspects of intestinal homeostasis, including microbial balance,

antimicrobial peptide secretion, physical barrier integrity, and immune system

activation. Therefore, any imbalance in BEV production can cause several gut-

related issues including intestinal infection, inflammatory bowel disease,

metabolic dysregulation, and even cancer. BEVs derived from beneficial or

commensal bacteria can act as potent immune regulators and have been

implicated in maintaining gut health. They also show promise for future clinical

applications in vaccine development and tumor immunotherapy. This review

examines the multifaceted role of BEVs in gut health and disease, and also delves

into future research directions and potential applications.
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Introduction

The gut is an intricate and dynamic ecosystem that plays a pivotal role in human health

and disease (1–3). Housing approximately 100 trillion organisms, the influence of the gut

microbiota extends beyond simple digestion (1, 4). They can shape metabolic functions,

influence epithelial barrier integrity, regulate immune responses (5–7). These

microorganisms interact with host cells in numerous ways, from direct cellular adhesion

or invasion to the release of cell wall components and the secretion of metabolically

functional products (8–10). Emerging research recognizes that bacteria can modulate gut

health via producing bacterial extracellular vesicles (BEVs) (11).

BEVs represent a class of cellular products secreted by both gram-negative and positive

bacteria (12–14). These vesicles are usually 20 – 400 nm in diameter and have a bilayer lipid

membrane structure with a similar composition to that of the parent membrane (15). Protected

by the membrane, BEVs encapsulate various substances including virulence factors, proteins,

nucleic acids, and lipids (13). The primary function of BEVs are considered as an excretion
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system for the disposal of unwanted metabolites and misfolded

proteins (16). Moreover, BEVs are found to function as signal and

material transmission tools that mediate bacteria-bacteria and bacteria-

host interactions (13, 15). BEVs can aid bacteria in nutrient acquisition,

resistance to antibiotics or antimicrobial peptides (AMPs), and

elimination of specific microbes (17). Meanwhile, BEVs can deliver

virulence factors and toxins to host cells, thereby disrupt barrier

integrity, induce inflammation, and even promote carcinogenesis

(18). Nevertheless, the BEVs from certain beneficial or commensal

bacteria are contribute to host health maintenance by triggering a host

defence response or immune activation (11).

In this review, we consolidate the published evidence

demonstrating the impact of BEVs on gut health, particularly

their role in regulating the integrity and function of the intestinal

barrier. We also highlight the significant roles of BEVs in various

gut diseases, including infection, inflammatory bowel disease (IBD),

gut-related metabolic diseases, and gastrointestinal tumors. We

discuss the limitations of current research on BEVs in the gut,

while concurrently exploring their potential therapeutic

applications in gut disease treatment.
Biogenesis and types of BEVs in
the gut

The gastrointestinal tract harbors a dynamic and symbiotic

microbial ecosystem (19). These microorganisms exhibit
Frontiers in Immunology 02
remarkable metabolic abilities and continuously secrete BEVs into

the lumen. Recent studies have reported a significant concentration

of 8 × 1012 BEVs per milliliter in a solution containing 20 g of stool

resuspended in 100 ml phosphate-buffered saline (20). Typically,

these BEVs are classified into outer membrane vesicles (OMVs) and

cytoplasmic membrane vesicles (CMVs), based on their constituent

parts and unique biogenesis pathways (13).

The ability of gram-negative bacteria to secrete membrane

vesicles originating from their outer membranes, termed as OMVs,

was discovered over fifty years ago (14, 21). Subsequent research has

revealed that gram-negative bacteria generate several types of BEVs

under various conditions, including OMVs, outer inner membrane

vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs)

(14, 22). Traditional OMVs are formed through a process known as

“blebbing” (or the non-lytic route), resulting in a vesicle

encapsulated in a single membrane bilayer (Figure 1A) (22). OMV

generation is attributed to several mechanisms, including reduced

outer membrane-peptidoglycan connection linkages, increased

membrane curvature, increased periplasmic pressure, and flagellar

rotation (22–24). Additionally, during genotoxic stress, gram-

negative bacteria may utilize explosive cell lysis (or the lytic route)

to produce OIMVs and EOMVs (13, 22). The prominent feature of

these vesicles is both OIMVs and EOMVs contain many cytoplasmic

components; moreover, OIMVs have two membrane bilayers,

derived from the outer and inner membranes. (Figure 1A) (25).

Although enveloped in a dense peptidoglycan layer, gram-

positive bacteria have evolved to generate their own types of

vesicles, termed as CMVs (14). Similar to OMVs, these vesicles are
B

A

FIGURE 1

Types and generation models of BEVs. (A) Gram-negative bacteria can release OMVs by blebbing of the outer membrane (left panel). Vesicles
produced by explosive cell lysis are named explosive outer membrane vesicles (EOMVs) and outer-inner membrane vesicles (OIMVs), which are
triggered by phage-derived endolysin that degrades the peptidoglycan layer (right panel). EOMVs and OIMVs randomly contain cytoplasmic
components, while OMVs don’t directly package cytoplasmic components. (B) Gram-positive bacteria can secret cytoplasmic membrane vesicles
(CMVs) (left panel). Stress induced Gram-positive bacteria lysis, named “bubbling cell death”, can lead to the release of ECMV (right panel).
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encased in a lipid bilayer derived from the cytoplasmic membrane of

the parent bacteria and exhibit a comparable size range (Figure 1B).

The precise process underlying CMVs biogenesis remains elusive;

however, a series of pivotal steps have been identified (26–28). First is

cytoplasmic membrane budding, prompted by the accumulation of

specific phospholipids in the outer leaflet of the membrane (26).

Next is the formation and release of CMVs from the plasma; this is

influenced by lipoprotein content reduction, which increases

membrane fluidity, and accumulation of phenol-soluble modulins,

which disrupt membranes due to their surfactant-like properties and

amphipathic helical structure (26, 29). The final step is the passage of

CMV through the cell wall. This process is facilitated by

peptidoglycan-degrading enzymes (27, 29). In addition, explosive

CMVs (ECMVs) can be formed in gram-positive bacteria via

“bubbling cell death”, which is similar to EOMV biogenesis (13).

In this process, the release of CMVs under SOS response-inducing

conditions is facilitated via prophage-derived endolysins (Figure 1B)

(13, 30). However, the comprehensive elucidation of CMVs

biogenesis in gram-positive bacteria remains unclear.

In addition, evidence suggests that BEV generation is accurately

regulated. Recent studies on Salmonella enterica have indicated that

the production of OMVs is upregulated by its PhoPQ system when

attacked by host innate immunity (31). Antibiotic-induced

oxidative stress in S. aureus triggers CMV production via

increasing permeability of the peptidoglycan layer. Genetic

regulation of vesiculation has also been investigated, with

disruptions in gene encoding factor s B (sigB) in Listeria

monocytogenes (L. monocytogenes) (32) or the two-component

system CovRS in Streptococcus pyogenes (33) resulting in altered

CMVs production, which indicates a regulatory role in vesicle

biogenesis. Furthermore, the cargos contained in OMVs are

rigorously controlled (34, 35). The lipoprotein composition

between the outer membrane of Bacteroides thetaiotaomicron and

its OMVs were found to be significantly different (36). Moreover, a

study showed that the exposure of Pseudomonas aeruginosa (P.

aeruginosa) to the epoxide epibromohydrin resulted in the

significant upregulation of the epoxide hydrolase (Cif) and outer

membrane protein OprF in its OMVs (37).
Role of BEVs in gut homeostasis

Gut homeostasis is fundamentally reliant on an intact barrier

function composed of microbial, chemical, physical, and immune

barriers that work together to form a defense line from the lumen to

the basal layer (38–41). BEVs, which are products of gut commensal

bacteria (42), serve as key messengers and regulators in this

environment. They facilitate a range of interactions with the gut

barrier that contribute to the maintenance of gut health (Figure 2).
Microbial barrier

The healthy gut microbiota is referred to as the microbial

barrier, and comprises various species of commensal intestinal

bacteria (43). These species either compete or cooperate to
Frontiers in Immunology 03
establish a balanced microbial community (43), which is critical

for resisting the colonization, growth, and invasion of pathogenic

microorganisms (44). BEVs can modulate the equilibrium of the gut

microbiota in several ways (Figure 2B). First, BEVs promote the

survival of their parent bacterium or other bacteria. For instance, P.

aeruginosa OMVs carry many Pseudomonas quinolone signals,

which can bind iron, an essential element for bacterial viability,

and bring it to the outer membrane of the parent bacterium via

fusion (18). Similarly, OMVs from Akkermansia muciniphila (A.

muciniphila) can restore the disturbed balance of gut microbiota via

selectively promoting the proliferation of beneficial bacteria

through membrane fusion (45). Second, bacteria release BEVs as

a defense mechanism against phage infections. For example,

Manning et al. reported that the co-incubation of OMVs collected

from Escherichia coli (E. coli) and T4 bacteriophages resulted in a

significant reduction in the active phage number (46). Similarly,

Reyes-Robles et al. found that Vibrio cholerae (V. cholerae) secreted

OMVs carrying phage receptors as a defense mechanism that

conferred protection against phage predation (47). Finally,

BEVs function as tools to eliminate other bacteria. Li et al.

reported that OMVs from 15 strains of gram-negative bacteria,

including many commensal or pathogenic gut bacteria, such as

Enterobacter, Escherichia, Morganella, Salmonella, and Shigella

strains, could lyse many gram-positive and gram-negative

cultures. Peptidoglycan hydrolases associated with BEVs are

thought to account for bacterial lysis (48). Growing evidence

has supported the antimicrobial functions of BEVs. For instance,

OMVs from P. aeruginosa can kill competitor species such as

S. aureus via peptidoglycan hydrolases, antimicrobial 4-hydroxy-

3-methyl-2-(2-non-enyl)-quinoline, and rhamnolipid (49). OMVs

from Lysobacter and Myxococcus contain a toxic mixture of

bioactive compounds and lytic enzymes capable of killing the

surrounding microbes (50).
Chemical barrier

The intestinal chemical barrier is composed of AMPs and other

antibacterial substances, such as bile acids (41), and inhibits growth

of certain bacteria and segregates intestinal bacteria from intestinal

epithelial cells. Several studies have suggested that BEVs can disrupt

the function of the chemical barrier (Figure 2C). Nakayama-

Imaohji et al. reported that a Bacteroides fragilis (B. fragilis) strain

with hypervesiculating mutants (which release more OMVs)

showed higher resistance to treatment with AMPs, such as LL-37

and defensin-2 (51). Similarly, Urashima et al. found that the outer

membrane protein T, which was specifically enriched in the OMVs

of enterohemorrhagic E. coli (EHEC), broke down LL-37 and

inhibited its antimicrobial activity, thereby enhancing EHEC

survival and adaptation to the host gut environment (52).

Moreover, the exposure of P. aeruginosa to lysozyme significantly

enhanced OMVs release (by approximately 100-fold) (53).

Analogously, in vitro studies have shown that E. coli upregulates

OMVs secretion upon encountering AMPs, and the addition of E.

coli OMVs has been demonstrated to increase bacterial survival in

vitro when challenged with antibiotics, such as Polymyxin B and
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colistin (54). All in all, BEVs can digest or neutralize AMPs,

potentially weakening the chemical barrier function.

Contrarily, some evidences indicated that BEVs act as

stimulators, inducing the intestine to increase AMP expression,

thereby enhancing the chemical barrier (Figure 2C). For instance,

Kaparakis et al. discovered that OMVs from P. aeruginosa and

Helicobacter pylori (H. pylori), which contained peptidoglycans,

could induce epithelial cells to express human b-defensins (HBD),

such as HBD2 and HBD3 (55). Lactobacillus derived CMVs have

also been reported to stimulate the expression of the AMP REG3G,

a c-type lectin, thus promoting the chemical barrier of the

gastrointestinal tract and providing protection against pathogens

(56). OMVs released from A. muciniphila were recently reported to

stimulate goblet cells to produce mucus (45), which resisted the

adhesion and stimulation of pathogenic bacteria to gut epithelial

cells. These findings suggest that some BEVs can stimulate intestinal

cells, leading to increased AMP and mucus production, thereby

enhancing the chemical barrier.
Physical barrier

The intestinal epithelial barrier, a physical partition separating

the body’s internal environment from the lumen, is composed of a
Frontiers in Immunology 04
single layer of epithelial cells interconnected via tight junction

proteins, such as occludin, claudins, and zonula occludens (39,

57). Although this physical barrier effectively limits the intrusion of

most harmful substances, BEVs have been shown to internalize or

permeate it (58). BEVs penetrate non-phagocytic host cells via five

primary mechanisms: clathrin-mediated endocytosis, caveolin-

mediated endocytosis, l ipid raft-mediated endocytosis,

macropinocytosis, and membrane fusion (17, 59). BEVs can

concurrently utilize one or more pathways to infiltrate host cells,

depending on their size and components. For example, OMVs

derived from H. pylori were found to enter epithelial cells via four

different mechanisms (55, 60, 61).

Once internalized, BEVs traverse the endolysosomal pathway

and are subsequently degraded in lysosomes or autophagosomes

(62); however, recent studies suggest that some BEVs can escape

degradation and deliver their cargos into cells. Bielaszewska et al.

demonstrated that after the OMVs of EHEC O157 were internalized

in early endosomes through a process reliant on dynamin-

dependent endocytosis, virulence factors, including Shiga toxin 2a

(Stx2a), cytolethal distending toxin V (CdtV), and EHEC

hemolysin, were separately transported from the vesicles via

intracellular trafficking (63). Although the precise mechanisms of

BEVs internalization and cargo transport remain unclear, BEVs are

surmised act as a significant cargo delivery system to intestinal
FIGURE 2

The functions of BEVs in gut homeostasis. (A) BEVs regulate gut health by interacting with microbial, chemical, physical, and immune barriers. (B) In
microbial barrier, BEVs can promote the survival of their parent bacterium or other bacteria, protect against phage infection, and kill competitor
species. (C) In chemical barrier, BEVs can neutralize the function of AMPs. Nevertheless, some BEVs also act as stimulators that induce the intestine
to express more AMPs thus enhance the chemical barrier. (D) In physical barrier, BEVs can damage the integrality of epithelial barrier via reducing
the tight junction protein and E-cadherin, or causing epithelial cell death. On the contrary, the BEVs from some beneficial bacteria could enhance
the physical barrier function. (E) In immune barrier, BEVs could stimulate epithelial cell to secret cytokines through both cell surface receptors (such
as TLR4) and inter intracellular receptors (such as NOD1). Macrophage can directly recognize and uptake BEVs and then activate inflammasome and
secret cytokines. DCs can detect the polysaccharide (PSA) from OMV then result to promote the differentiation Tregs and the anti-inflammatory
cytokine IL-10.
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epithelial cells, influencing the function and integrity of the physical

barrier of the gut.

Evidence suggests that some gut pathogenic bacteria can

damage the intestinal barrier via BEVs (Figure 2D). Upon

internalization in human intestinal epithelial cells, gram-negative

bacterial OMVs release lipopolysaccharides (LPS) into the cytosol

(64), facilitated by sorting nexin 10 (SNX10), which activates

caspase-5. This leads to Lyn phosphorylation, subsequently down-

regulating E-cadherin expression and impairing the intestinal

barrier (64). EHEC O157 OMVs can disrupt the barrier through

two pathways: the release of hemolysin, which increases

mitochondrial permeability and triggers apoptosis (65), and the

discharge of CdtV-B, which causes DNA damage and induces

apoptosis (66). Moreover, OMVs of the pathogen Fusobacterium

nucleatum (F. nucleatum) can activate the FADD-RIPK1-cCASP-3

signaling pathway, decreasing ZO-1 protein and increasing

apoptosis, thereby damaging the epithelial barrier (67). Similarly,

Campylobacter jejuni releases OMVs containing toxins that harm

cellular DNA and impair the intestinal barrier (68–70). V. cholerae

OMVs carry active proteases that induce apoptosis or necrosis,

causing epithelial barrier loss during infection (71). Finally,

Enterotoxigenic B. fragilis releases OMVs along with B. fragilis

toxin, which disrupt the intestinal barrier via cleaving E-cadherin

and affecting the zonula adherens and tight junctions in the

intestinal epithelium (72).

Despite their disruptive potential, BEVs do not always impair

the intestinal epithelial barrier (Figure 2D). The probiotic E. coli

Nissle 1917 and commensal ECOR63 enhance barrier function via

increasing tight junction protein expression (73, 74). Furthermore,

OMVs produced by E. coli C25, a commensal bacterium, trigger a

moderate release of the proinflammatory interleukin 8 (IL-8) and

stimulate the transcriptional upregulation of Toll-like receptors

(TLRs) in intestinal epithelial cell lines, subsequently enhancing

the barrier function of epithelial cells and inhibiting bacterial

internalization (75). Similarly, OMVs released from A.

muciniphila help maintain the integrity of the intestinal barrier

via penetrating the intestinal epithelial cells and boosting the

expression of tight junction proteins and mucus (45, 76).
Immune barrier

The gut immune barrier, primarily comprising immune cells

including macrophages, dendritic cells (DCs), lymphocytes, mast

cells, and natural killer cells, resides in the lamina propria or Peyer’s

patch, situated beneath the physical barrier (77). They can gather

information from the intestinal epithelial cells which produce a

range of immunoregulatory signals (78). Furthermore, they directly

recognize and accept certain bacterial components that permeate

this barrier (79).

BEVs can stimulate intestinal epithelial cells to secrete various

cytokines and chemokines that play pivotal roles in modulating

intestinal immune functions (Figure 2E). For instance, F. nucleatum

releases OMVs that stimulate epithelial cells, thereby increasing the

activation of p-ERK, p-CREB, and NF-kB signaling pathways. This

activation subsequently upregulates proinflammatory cytokines,
Frontiers in Immunology 05
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6, interferon (IFN)-g, and monocyte chemoattractant protein

(MCP)-1 (55). Thapa et al. analyzed the effect of BEVs derived

from 32 different gut bacteria (26 gram-negative and six gram-

positive bacteria) on intestinal epithelial cells. Their findings

revealed that BEVs could induce species-specific immune

responses in these cells. OMVs from gram-negative bacteria were

found to trigger a stronger proinflammatory response than CMVs

from gram-positive bacteria. A large proportion of the BEVs

induced a significant increase in CCL20, IL-8, and CXCL1 levels

in epithelial cell lines. Their research also identified LPS as the

dominant proinflammatory bacterial effector that activated the

caspase- and RIPK2-dependent pathways (80). OMVs can

stimulate immune responses via cell surface and intracellular

receptors in epithelial cells. For example, EHEC O157 OMVs

induce IL-8 production in human intestinal epithelial cells via

stimulating TLR4 and TLR5 (cell surface receptors), thus

activating the nuclear factor NF-kB (81). In addition, these

OMVs can deliver peptidoglycan into the host cell cytosol,

thereby inducing innate immune responses through a NOD1

(intracellular receptor)/NF-kB dependent, but TLR-independent,

mechanism (55, 59).

BEVs can also directly engage with intestinal immune cells (59),

particularly macrophages, which play vital roles in the immune

barrier (Figure 2E). Research shows that macrophages can uptake

gram-negative OMVs via clathrin-mediated endocytosis. LPS from

these OMVs can escape from early endosomes into the cytosol,

triggering the caspase-11-dependent release of IL-1b and cell death

in a dose-dependent manner (82). Previous studies found that

guanylate-binding proteins recognized LPS, bound to the OMV

surface, and mediated activation of the caspase-11 non-canonical

inflammasome (83). Similarly, Bitto et al. reported that OMVs from

P. aeruginosa directly activated the inflammasome in macrophages

(84), which were dependent on caspase-5, a human homolog of

murine caspase-11, highlighting another pathway of activation of

immune responses in mice and humans via OMVs (83). Moreover,

gram-positive bacteria can also initiate an immune response in

macrophages via signaling pathways that differ significantly from

those used by OMVs. Wang et al. discovered that S. aureus released

CMVs that interacted with TLR2, thereby activating the NLRP3

inflammasome via potassium efflux. This led to the recruitment of

apoptosis-associated speck-like protein containing a caspase

recruitment domain and caspase-1 activation, resulting in the

cellular release of mature cytokines IL-1b and IL-18 and the

induction of pyroptosis (85). Conversely, CMVs from Pediococcus

pentosaceus demonstrated potent anti-inflammatory properties.

These CMVs facilitate the differentiation of bone marrow

precursors into myeloid-derived suppressor-like cells and

promote M2 macrophage polarization in vitro and in vivo (85, 86).

DCs are phagocytes and antigen-presenting cells that regulate

the activation of adaptive immune responses, particularly T-helper

and regulatory T (Tregs) cells (Figure 2E) (87). Shen et al. and Chu

et al. demonstrated that DCs could detect polysaccharide found in

B. fragilis OMVs via TLR2, which then activated growth arrest and

DNA damage-inducible protein (Gadd45a) signaling, resulting in

increased proliferation of Tregs and secretion of the anti-
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inflammatory cytokine IL-10 (88). This immune response process

protected mice from severe experimental colitis (89). However,

deficiencies in ATG16L1 or NOD2, two genes associated with IBD,

disrupt DC-Treg cell interactions, thereby obstructing the

protective function of B. fragilis OMVs (89). Additionally, E. coli

OMVs induce DCs to generate T-helper cell responses in a strain-

specific manner. Non-pathogenic E. coli strains, E. coli Nissle 1917

(probiotic) and ECOR63 (commensal), trigger increased secretion

of Th1 polarizing cytokines (IFN-g and IL-12) from DCs.

Conversely, OMVs from ECOR12 (commensal) or ECOR53

(pathogenic) stimulate the production of higher levels of Treg-

related cytokines (IL-10 and TGF-b). Despite the differences

between strains, all OMVs enhance the secretion of Th17/Th22

priming cytokines (IL-6, IL-23, tumor necrosis factor-a, and IL-

1b) (58).
What’s more, BEVs can access Peyer’s patches and then directly

interact and activate the immune cells. Wang et al. found A.

muciniphila OMVs are able to enter Peyer’s patches after direct

delivery into the intestinal lumen, and induce higher production of

immune active DCs with CD80 expression (45). Consequently, with

the help of activated DCs, the productions of CD69+ B cells and

IgA+ plasma cells along with total B cells are significantly

augmented, thereby increasing intestinal IgA concentration (45,

90). This process is believed to reduce the relative abundance of

harmful pathogens in the gut microbiota.

In conclusion, the influence of BEVs on intestinal barrier

regulation is complex, with some enhancing barrier function, and

others contributing to its impairment. This highlights the intricate

interplay between the gut microbiota and their multifaceted effects

on human health and diseases.
BEVs and gut related diseases

Considering the significant roles of BEVs in maintaining gut

homeostasis, investigation of their possible involvement in the onset

and progression of gut-related diseases is appropriate. Current

research indicates a key role of BEVs in various diseases related

to the gut. These conditions include infections, IBD, metabolic

disorders, and cancer (Table 1). BEVs, with their diverse biological

functions and intricate interactions with host cells, may be pivotal

in the pathogenesis of these conditions. Details of the specific roles

of BEVs in each of these disease categories are discussed in the

following sections.
Infections

Numerous studies have highlighted the role of gut bacteria in

exploiting BEVs to infect and harm hosts. BEVs can neutralize

AMP activation, potentially undermining the effectiveness of the

host chemical barriers and enhancing their susceptibility to

pathogenic infections (53, 54). Furthermore, BEVs can foster the

formation of biofilms and complex microbial communities, which

are implicated in gastrointestinal infections and other diseases (22,

104, 105). A significant proportion of biofilm matrix-associated
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proteins originate from BEVs such as OMVs produced by P.

aeruginosa (91). Several intestinal pathogens employ BEVs as

vehicles for delivering toxins to gut cells during infection. V.

cholerae, a noninvasive gram-negative pathogen, causes cholera

via colonizing the small intestine and releasing a potent

enterotoxin called cholera toxin (CT). Chatterjee et al. discovered

that V. choleraeOMVs carried copious amounts of CT and could be

internalized by intestinal epithelial cells, subsequently increasing

cyclic adenosine monophosphate levels in a ganglioside GM1 (CT

receptor)-dependent manner (92). Similarly, L. monocytogenes, a

gram-positive intracellular pathogen, utilizes CMVs to release

toxins, including listeriolysin O and phosphatidylinositol-specific

phospholipase C, which cause mammalian cytotoxicity (93).

However, not all BEV effects on infections are harmful.

Evidence suggests that BEVs can bolster gut defense against

bacterial infections. During these infections, OMVs deliver LPS to

macrophages, inducing a caspase-11-mediated inflammatory

reaction that aids the host in pathogen clearance (82). Patten

et al. observed that pre-incubation of intestinal epithelial cells

with E. coli C25-derived OMVs impeded the internalization of

the parent bacterium. They suggested that this was due to the mild

proinflammatory response induced by OMVs in epithelial cells,

which enhanced their ability to combat infection (75).

Moreover, BEVs are critical mediators in immune training and

fortifying antiviral defenses. Bhar et al. found that co-inoculation of

BEVs with murine norovirus led to the enhanced production and

release of proinflammatory cytokines in macrophages, suggesting

the potential role of BEVs in promoting an antiviral response (94).

Erttmann et al. reported that gut microbiota depletion lowered

systemic tonic IFN-I levels and antiviral priming, rendering the

mice more susceptible to systemic viral infections. They found that

the gut microbiota released DNA-containing BEVs that could

permeate the intestinal barrier and circulate in the blood,

delivering foreign DNA to distal host cells, thereby activating the

cGAS-STING-IFN-I-dependent pathway to protect against RNA

viruses (95). Additionally, Frantz et al. identified a specific small

RNA (sRNA), rli32, partially derived from L. monocytogenes CMVs,

that could infiltrate mammalian cell lines and increase IFN-I

expression in a RIG-I-dependent manner (96).
IBD

Numerous studies have suggested that gut barrier dysfunction

can exacerbate IBD progression. Current research indicates that

BEVs contribute to IBD via damaging both physical and immune

barriers, particularly the epithelial and immune cells (Figure 3A).

The increased proportion of gram-negative bacteria observed in

patients with IBD typically release excessive OMVs laden with LPS

(64). These OMVs infiltrate epithelial cells and their LPS translocate

into the cytosol, instigating immune reactions, downregulating E-

cadherin expression, and causing intestinal barrier dysfunction

(64). Tulkens et al. clinically investigated and revealed a

significant correlation between the levels of BEV-associated LPS

in the plasma and impaired barrier integrity in patients with

intestinal mucositis, including IBD (20, 106). As a result, bacterial
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TABLE 1 The function of BEVs in gut related disease.

Disease
Beneficial
or
harmful

Parent
bacteria

Effective
component

Target
barrier
layer

Influence Reference

Gut infections

Harmful

Enterohemorrhagic
E. coli

OmpT protease
Chemical
barrier

Breaking down gut AMPs (52)

P. aeruginosa
Phospholipid
bilayer

Chemical
barrier

Absorbing and neutralizing AMPs (53)

E. coli
Phospholipid
bilayer

Chemical
barrier

Absorbing and neutralizing AMPs (54)

P. aeruginosa
Biofilm matrix-
associated
proteins

Physical
barrier

Helping bacteria cope with stressful host
environments by facilitating biofilm formation

(91)

V. cholerae Cholera toxin
Physical
barrier

Delivering cholera toxin to epithelial cell and up-
regulating cAMP

(92)

L. monocytogenes
LLO and PI-
PLC

Physical,
immune
barrier

Delivering a concentrated and varied toxin cargo to
host cells.

(93)

Beneficial

Gram-negative
bacteria

LPS
Immune
barrier

Eliciting caspase-11-mediated inflammatory
reaction and helping the host to promote pathogens
clearance

(82)

E. coli C25 Unidentified
Physical
barrier

Inhibiting the internalization of the parent
bacterium

(75)

Universal gut
bacteria

Unidentified
Immune
barrier

Stimulating immune cell to release of pro-
inflammatory cytokines and promote an antiviral
response

(94)

Universal gut
bacteria

DNA
Immune
barrier

Activating the cGAS-STING-IFN-I dependent
pathway to protect against RNA virus

(95)

L. monocytogenes sRNAs rli32
Immune
barrier

Increase type I IFN expression in RIG-I-dependent
manner

(96)

IBD

Harmful

Gram-negative
bacteria

LPS
Physical
barrier

Down-regulating E-cadherin expression (64)

F. nucleatum Unidentified

Physical
barrier

Activating RIPK1 and RIPK3 inducing epithelial
necroptosis

(67)

Immune
barrier

Activating TLR4 and promoting pro-inflammatory
cytokine production and leading to increased
immune cell infiltration

(67)

Beneficial

E. coli Nissle 1917 Unidentified
Physical
barrier

Up-regulating tight junction proteins ZO-1, ZO-2,
and claudin-14

(73)

B. fragilis Polysaccharide
Immune
barrier

Interacting with DC cells and causeing immune
tolerance

(88)

A. muciniphila Unidentified

Microbial,
physical,
and
immune
barrier

Restoring disturbed balance of the gut microbiota,
maintaining the integrity of the intestinal barrier,
activating B cells and DCs

(45)

Metabolism
disease

Harmful P. panacis Unidentified – Blocking the insulin signaling pathway (97)

Beneficial A. muciniphila Unidentified
Physical
barrier

Ameliorateing HFD-induced intestinal barrier
dysfunction

(98)

Gastrointestinal
Cancer

Harmful

E. coli MG1655 Ile-tRF-5X –
Promoting the expression of the MAK3K4 gene,
enhancing cell proliferation

(99)

F. nucleatum Unidentified
Physical and
immune
barrier

Inducing IL-8 expression and reducing E-cadherin
and cadherin-1 gene expression

(100–102)

(Continued)
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BEVs significantly stimulate peripheral blood mononuclear cells to

secrete proinflammatory cytokines such as IL-6, IL-8, MCP-1, and

macrophage inflammatory protein-1a. Specific OMVs released by

gut pathogens are also associated with IBD (20). Liu et al. reported

that F. nucleatum OMVs significantly exacerbated dextran sulfate

sodium (DSS)-induced colitis symptoms in mice via activating

receptor-interacting protein kinases 1 and 3 and inducing

epithelial necroptosis. This process resulted in significant

epithelial barrier loss and oxidative stress-related damage (67).

Engevik et al. supported this result and, in addition, they found

that F. nucleatum OMVs also activated TLR4 and downstream

targets signal-regulated kinase, cAMP response element binding

Protein, and NF-kB, thereby promoting proinflammatory cytokine

production and leading to increased immune cell infiltration (107).

Conversely, several studies have reported the protective role of

BEVs against IBD (Figure 3B). The probiotic E. coli Nissle 1917

enhances gut physical barrier integrity via upregulating the tight

junction proteins ZO-1, ZO-2, and claudin-14, thereby attenuating

DSS colitis in mice (73). The commensal bacterium B. fragilis

secretes OMVs that interact with DCs, triggering immune
Frontiers in Immunology 08
tolerance and thereby protecting animals from 2,4,6-

trinitrobenzenesulfonic acid solution-induced colitis and intestinal

inflammation (88). A. muciniphila OMVs are reported to

ameliorate DSS-induced colitis using several mechanisms,

including restoring the disturbed balance of the gut microbiota,

maintaining the integrity of the intestinal barrier, and activating B

cells and DCs (45). The IBD-associated genes ATG16L1 and NOD2

are crucial for OMV-mediated activation of colitis protection.

ATG16L1 T300A transgenic mice did not exhibit protection from

2,4-dinitrobenzene sulfonic acid-induced colitis. Individuals with

Crohn’s disease, a subtype of IBD, typically carry the ATG16L1

major risk variant T300A. This finding suggests a potential target

for the early genetic diagnosis of IBD (89).
Metabolic diseases

The balance of gut microbiota significantly influences host

metabolic homeostasis, and BEVs are crucial in this process. A

significant increase in OMVs from Pseudomonas panacis was
TABLE 1 Continued

Disease
Beneficial
or
harmful

Parent
bacteria

Effective
component

Target
barrier
layer

Influence Reference

Beneficial

Gram-negative
bacteria

Unidentified –

OMVs specifically targeted and accumulated in
tumor tissues of syngeneic mouse colonic tumor
model, subsequently triggering the production of
antitumor cytokines

(103)

A. muciniphila Unidentified
Immune
barrier

Enhance PD-1–based immunotherapy of CRC in a
mouse model

(45)
BA

FIGURE 3

The dual functions of BEVs in IBD pathogenesis. (A) Some beneficial OMVs play roles in inhibiting colitis. The mechanisms include: ① enhancing gut
physical barrier integrity by up-regulating tight junction proteins; ② interacting with DCs and increasing production of Tregs and the anti-
inflammatory cytokine IL-10; ③ promoting anti-inflammation M2 macrophage polarization. ④ activating B cells to product mucosal immunoglobulin
A. (B) The BEVs from pathogens can promote IBD. The mechanisms include: ① causing intestinal barrier dysfunction by down-regulating tight
junction proteins and E-cadherin and inducing epithelial cell death; ② promoting pro-inflammatory cytokine production and leading to increased
immune cell infiltration. In addition, BEVs could enter the blood system and stimulate peripheral blood mononuclear cells to aggravate systemic
immune activation.
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observed in a high-fat diet-induced type 2 diabetes mouse model.

Subsequent studies confirmed that these OMVs could block the

insulin signaling pathway in skeletal muscles and adipose tissues

(97). Conversely, A. muciniphila-derived OMVs ameliorate high-fat

diet-induced obesity via various mechanisms, which include

improved intestinal barrier integrity, reduced inflammation,

balanced energy, and improved blood parameters (98). This

contrasting effect of different BEVs on metabolic homeostasis

emphasizes the complex and multifaceted roles of these entities in

maintaining host health. It is thought that the characteristics of the

parent bacteria determine whether their BEVs are harmful or

beneficial, and normal quantity of BEVs could maintain

immunological activity while excess amounts would be harmful.
Gastrointestinal cancer

Numerous reports have highlighted the influence of BEVs on

cancer development and metastasis in the gastrointestinal tract.

OMVs from E. coli MG1655 have been shown to deliver a tRNA

fragment termed as Ile-tRF-5X, into human colorectal carcinoma

cells (HCT116). This interaction promotes the expression of

mitogen-activated protein kinase 3, thereby enhancing cell

proliferation (99). F. nucleatum, widely recognized as a pathogen

that promotes colorectal cancer (CRC) development, utilizes

various mechanisms for this process, including OMVs. Proteomic

analysis using mass spectrometry revealed an abundance of

virulence factors and biologically active proteases present or

selectively enriched in these OMVs (100). The specific roles of

OMVs in CRC include inducing IL-8 expression (100, 101), which

fosters a pro-inflammatory microenvironment favoring tumor

growth; and reducing E-cadherin and cadherin-1 gene expression

to promote an epithelial-to-mesenchymal transition-like genotype

in tumor cells (100, 102), which ultimately promotes the migration

and invasion of cancer cells in vivo (108).

Conversely studies have explored the potential of BEVs as

therapeutic agents for cancer treatment via immunotherapy. Kim

et al. found that gram-negative bacterial OMVs specifically targeted

and accumulated in tumor tissues of a syngeneic mouse colonic tumor

model, subsequently triggering the production of antitumor cytokines

CXCL10 and IFN-g. This indicates that BEVs represent a promising

new approach for cancer immunotherapy (103). Additionally, A.

muciniphila OMVs have been found to enhance programmed cell

death protein-1-based immunotherapy of CRC in mouse models. This

suggests a potential clinical application of OMVs in improving the

efficacy of immunotherapy by targeting programmed cell death

protein-1 (45). These varied findings demonstrate the significant and

multifaceted roles of BEVs in gastrointestinal cancer progression and

potential therapeutic strategies.
Current challenges and future
perspectives

Despite substantial evidence supporting the process of BEVs

generation are positive controlled, the regulation of BEVs
Frontiers in Immunology 09
production and cargo selection remains unclear. Further research

is required to elucidate these mechanisms, which will significantly

facilitate basic research on BEVs functions in bacteria-bacteria and

bacteria-host communication and its translational application.

Moreover, the dual role of BEVs in gut health and the

pathogenesis of intestinal-related diseases remains unclear.

Furthermore, the precise active components of BEVs, their

receptors, and the induced signaling pathways in host cells

remain unidentified. The investigation of their impact on other

intestinal cell types, such as intestinal stromal and neuronal cells is

also required.

Considering their ability to penetrate the intestinal barrier and

their correlation with various gut diseases, BEVs are potential

diagnostic biomarkers for intestinal disorders (106). Their

capacity to regulate host immune responses indicates their

potential as vaccines against intestinal infections and

inflammatory disorders. Preliminary studies have suggested that

some BEVs can induce an antitumor immune response and inhibit

tumor growth, suggesting their role in cancer immunotherapy (45,

103). Further studies are required to validate these findings and

translate them into clinical applications.

Despite the encouraging findings on BEVs, this field of research

still remains largely unexplored, and requires more comprehensive

investigations a deeper understanding of BEV biogenesis, cargo

selection, and their interaction mechanisms with host cells is

crucial. With this knowledge, the full potential of BEVs in

diagnostics, therapeutics, and vaccine development can be

harnessed, thereby opening new frontiers for microbiome-related

biomedical applications.
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R, et al. Intestinal anti-inflammatory effects of outer membrane vesicles from
Escherichia coli nissle 1917 in DSS-experimental colitis in mice. Front Microbiol
(2017) 8:1274. doi: 10.3389/fmicb.2017.01274

74. Alvarez CS, Giménez R, Cañas MA, Vera R, Dıáz-Garrido N, Badia J,
et al. Extracellular vesicles and soluble factors secreted by Escherichia coli
Nissle 1917 and ECOR63 protect against enteropathogenic E. coli-induced intestinal
epithelial barrier dysfunction. BMC Microbiol (2019) 19:166. doi: 10.1186/s12866-019-
1534-3

75. Patten DA, Hussein E, Davies SP, Humphreys PN, Collett A. Commensal-
derived OMVs elicit a mild proinflammatory response in intestinal epithelial cells.
Microbiol (Reading) (2017) 163:702–11. doi: 10.1099/mic.0.000468

76. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia
muciniphila-derived extracellular vesicles influence gut permeability through
the regulation of tight junctions. Exp Mol Med (2018) 50:e450. doi: 10.1038/
emm.2017.282

77. Daneman R, Rescigno M. The gut immune barrier and the blood-brain barrier:
are they so different? Immunity (2009) 31:722–35. doi: 10.1016/j.immuni.2009.09.012

78. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function
and immune homeostasis. Nat Rev Immunol (2014) 14:141–53. doi: 10.1038/nri3608

79. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer
membrane vesicles. Nat Rev Immunol (2015) 15:375–87. doi: 10.1038/nri3837

80. Thapa HB, Kohl P, Zingl FG, Fleischhacker D, Wolinski H, Kufer TA, et al.
Characterization of the inflammatory response evoked by bacterial membrane vesicles
in intestinal cells reveals an RIPK2-dependent activation by enterotoxigenic
Escherichia coli vesicles. Microbiol Spectr (2023) 11(4):e0111523. doi: 10.1128/
spectrum.01115-23
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