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Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease

involving many systems and organs, and individuals with SLE exhibit unique

cancer risk characteristics. The significance of the basement membrane (BM) in

the occurrence and progression of human autoimmune diseases and tumors has

been established through research. However, the roles of BM-related genes and

their protein expression mechanisms in the pathogenesis of SLE and pan-cancer

development has not been elucidated.

Methods: In this study, we applied bioinformatics methods to perform differential

expression analysis of BM-related genes in datasets from SLE patients. We

utilized LASSO logistic regression, SVM-RFE, and RandomForest to screen for

feature genes and construct a diagnosis model for SLE. In order to attain a

comprehensive comprehension of the biological functionalities of the feature

genes, we conducted GSEA analysis, ROC analysis, and computed levels of

immune cell infiltration. Finally, we sourced pan-cancer expression profiles from

the TCGA and GTEx databases and performed pan-cancer analysis.

Results:We screened six feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3,

and COLQ) to construct an SLE diagnostic model. Immune infiltration analysis

showed a significant correlation between AGRN and immune cell functions such

as parainflammation and type I IFN response. After further gene expression

validation, we finally selected AGRN for pan-cancer analysis. The results showed

that AGRN’s expression level varied according to distinct tumor types and was

closely correlated with some tumor patients’ prognosis, immune cell infiltration,

and other indicators.
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Discussion: In conclusion, BM-related genes play a pivotal role in the

pathogenesis of SLE, and AGRN shows immense promise as a target in SLE

and the progression of multiple tumors.
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Introduction

Systemic lupus erythematosus (SLE) patients have a loss of

immune tolerance to autoantigens (e.g., nuclear antigens) in their

bodies, which in turn leads to tissue inflammation and multi-organ

damage (1). The pathophysiology of SLE is not currently known.

Sunlight exposure or viral infection may trigger the disease in

genetically susceptible individuals, with the most susceptible

group being women of childbearing age (2). Previous studies have

demonstrated that immune cells aberrant activation, including B

cells (3), T cells (4), macrophages (5), eosinophils (6), and dendritic

cells (DCs) (7), plays a significant role in SLE. Notably, SLE patients

have a higher risk for overall malignancy (8, 9), which is one of the

leading reasons for death in SLE patients (10). Immune system

dysregulation could potentially be clinically significant in the

development of cancer (11).

The basement membrane (BM) is a cell-adhesive extracellular

matrix widely distributed in animal tissues (12) that serves as a

supporting junction and a semi-permeable membrane for material

permeation (13–16). Research has indicated that genetic defects in

BM-related components may result in disease phenotypes in

patients, manifesting in various aspects such as the retina (17,

18), kidneys (19), blood vessels (20), skeletal system (21), and

muscles (22). BM protein is also the target of self-antibodies in

autoimmune diseases (23). Therefore, BM is necessary for

maintaining tissue homeostasis in the body and may be closely

related to the pathogenesis of SLE and its multi-organ damage. In

addition, BM provides clues for cell polarity, differentiation,

migration, and survival (15, 24, 25), which significantly contribute

to tumor progression, diagnosis, and prognosis (26, 27). Reshaping

of BM induces degradation products that play a particularly

important role in promoting and inhibiting tumors (28–31).

However, the BM-related genes and proteins expression

mechanisms in both SLE patients and malignancies have yet to be

elucidated. Therefore, it is urgent to explore the BM-related genetic

features closely associated with the occurrence and progression of

malignancy in SLE patients.
02
Recently, Ranjay et al. defined an integrated network of BM

proteins encoded by human genes (32). Based on this, we applied

bioinformatics methods to perform differential expression analysis of

BM-related genes in datasets from SLE patients obtained from the

GEO database (GSE110169, GSE185047). We utilized LASSO logistic

regression, SVM-RFE, and RandomForest to screen for feature genes

and construct a diagnosis model for SLE. Subsequently, we performed

GSEA analysis, ROC analysis, and calculated the level of immune

infiltration by ssGSEA. Finally, we analyzed the relationship between

feature genes and immune infiltration. In addition, we

comprehensively analyzed the prognostic value of AGRN in cancer

patients and assessed the role of AGRN in tumor microenvironment

(TME), tumor mutation burden (TMB), and microsatellite instability

(MSI). This study aims to clarify the pathological physiology and

molecular biology roles of BM-related genes in SLE andmultiple tumor

development, providing new ideas for diagnostic and personalized

therapeutic targets for SLE and cancer.
Methods

Download and collation of datasets in SLE

In our study, we downloaded two datasets, GSE110169 and

GSE185047, from the GEO database (Table 1). We performed array

normalizationusing“limma” inRsoftware.Additionally,wedownloaded

gene expression data and corresponding clinical data for 33 types of

cancer samples from theTCGAdatabase andmRNAexpressionprofiles

for 31 different tissues fromGTEx for subsequent pan-cancer analysis.
Identification of BM-related genes

Based on previous research reports (32), we extracted the

expression of 222 basement membrane genes using the “limma”

package and then performed differential expression analysis
TABLE 1 Information on microarray datasets obtained from GEO.

GEO Dataset Platform Samples Source types Group

GSE110169 GPL13667 82 SLE patients and 77 Controls Whole blood Discovery cohort

GSE185047 GPL570 87 SLE patients and 10 Controls Whole blood Validation cohort
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(p.adjust < 0.05 were considered statistically significant). Finally, we

used the “pheatmap” package to generate expression heatmaps.
Functional enrichment analysis

Functional enrichment analysis was performed on BM-related

genes with differential expression to confirm potential target

functions. The Gene Ontology (GO) was utilized for functional gene

annotation, including molecular function (MF), biological process

(BP), and cellular component (CC) annotations. KEGG enrichment

analysis provides a good reference for functional studies of differentially

expressed genes. Additionally, disease ontology (DO) analysis was

performed to understand the types of diseases in which BM-related

genes are involved.
Screening for feature genes

Further analysis of differentially expressed BM-related genes

will be used to screen for feature genes in SLE. Random Forest and

SVM-RFE are two commonly used machine learning methods for

selecting key factors. In addition, we perform LASSO regression in

order to compute linear models and screen for valuable variables.

Finally, the feature genes were determined by taking the intersection

set through the Venn diagram.
Diagnostic model construction
and validation

Based on feature genes, we constructed a diagnostic column line

graph to forecast the risk of SLE occurrence. The diagnostic model’s

prediction accuracy is then evaluated using calibration curve and

decision curve analyses. Finally, we used R software to create ROC

curves, which were used to screen the highest AUC value of the

feature genes for pan-cancer analysis.
Quantitative real-time polymerase
chain reaction

We collected and extracted total RNA from whole blood of 16 SLE

patients and 24 healthy individuals. Quantitative real-time polymerase

chain reaction (qRT-PCR) was performed to detect mRNA levels. The

relative expression of mRNA was normalized to the level of GAPDH.

Primers are shown in Supplementary Table 1. In addition, each SLE

patient's disease activity index score (SLEDAI) was assessed and the

correlation between AGRN mRNA levels and SLEDAI was analyzed.
GSEA analysis

GSEA is a method for interpreting whole-genome expression

profiles that can be used to identify the enrichment of different gene
Frontiers in Immunology 03
sets in specific biological processes. After sorting the feature genes

according to their expression patterns, the enrichment score of the

gene set in the gene ranking is calculated, and it is visualized

using R.
Immune infiltration analysis by ssGSEA

The degree of immune cell infiltration in the samples was

calculated using ssGSEA. To analyze the relationship between

immune cells, immune function, and feature genes, the Spearman

correlation coefficient was obtained using the “corrplot” package.
Differential expression analysis of AGRN in
tumor tissues

The expression levels of AGRN in 33 tumor tissues were

assessed and compared with those of normal tissues. Transform

the expression data using log2 conversion and t-test. The expression

difference between tumor and normal tissues is based on a standard

of p < 0.05. Use the “ggplot2” package to create boxplots.
Immunohistochemistry staining of AGRN

We analyzed the protein expression differences of AGRN

using the Human Protein Atlas database (HPA, https://

www.proteinatlas.org/). The HPA database provides information

on the distribution of proteins in human tissues and cells. We

downloaded immunohistochemistry images of tumor tissues and

their corresponding normal tissues from the HPA, including breast

cancer, liver cancer, lung cancer, prostate cancer, and 12 other

tumor types.
Analysis of AGRN and prognosis of cancer

Analyzing clinical data from the TCGA database, the metrics

used to evaluate the correlation between AGRN and the prognosis

of cancer patients were overall survival (OS), disease-specific

survival (DSS), and progression-free interval (PFI). Perform

Kaplan-Meier analysis and plot survival curves using the

“survival” and “survivor” packages.
Relationship between AGRN and immunity

We calculated the stromal score and immune score of the tumor

microenvironment by using the “estimate”, “ggplot2,” and “ggpubr”

packages. The correlation between AGRN and immune cell

infiltration level was explored by the CIBERSORT algorithm. In

addition, TMB and MSI analyses were also performed based on the

“fmsb” package.
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Statistical analysis

Data are expressed as mean ± standard error (SEM). Unpaired

Student’s t-test was used for statistical analysis. Statistical analysis was

performed.P-valueslessthan0.05wereconsideredstatisticallysignificant.
Results

Differential expression of BM-related
genes in SLE

Weanalyzed the expression levelsofBM-relatedgenes in thehealthy

controls andSLEgroup(usingp-adjustment<0.05as the threshold), and

the results showed that therewere 61 differentially expressedBM-related
Frontiers in Immunology 04
genes (DEBGs) in the GSE110169 dataset and 102 differentially

expressed BM-related genes in the GSE185047 dataset. Figure 1 shows

the heatmap of differentially expressed BM-related genes.
Functional enrichment analysis

Enrichment analysis showed the biological functions connected

to the BM-related genes with differential expression. The research

findings indicate that the main enriched biological processes

include extracellular matrix organization, cell-matrix adhesion,

endoderm development, endodermal cell differentiation, integrin

binding, sulfur compound binding, and metallopeptidase activity

(Figure 2A). The KEGG pathways primarily include ECM-receptor

interaction, leukocyte transendothelial migration, PI3K-Akt
A B

FIGURE 1

Heatmap analysis of DEBGs in healthy controls and SLE patients. (A) Heatmap analysis of Discovery cohort; (B) Heatmap analysis of Validation
cohort. (*p<0.05, **p<0.01, ***p<0.001).
A B C

FIGURE 2

Functional enrichment analysis of DEBGs. (A) GO analysis of DEBGs; (B) KEGG analysis of DEBGs; (C) DO analysis of DEBGs.
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pathway, arrhythmogenic right ventricular cardiomyopathy, cell

adhesion molecules, intestinal immunity, and HPV infection

(Figure 2B). DO analysis is mainly associated with retinal disease,

ovarian carcinoma, bone cancer, malignant glioma, corneal disease,

glomerulosclerosis, and other diseases (Figure 2C).
Screening of feature genes

19 predictive genes with statistical significance were selected

from univariate data by logistic regression (Figures 3A, B); the

SVM-RFE results show that the best prediction performance can be

obtained by selecting 43 feature variables (Figures 3C, D); the

combination of random forests and feature selection was used to

determine the error rate (Figures 3E, F); and the relationship

between 30 relatively important genes (Figure 3G), with MDG

values over 2 for 10 genes. Six overlapping feature genes were

identified through a Venn diagram (Figure 3H).
Constructing a diagnostic model for SLE
based on feature genes

A diagnostic nomogram model for SLE was constructed based

on feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and
Frontiers in Immunology 05
COLQ). The R software was employed to visualize the diagnostic

nomogram (Figure 4A), calibration plot (Figure 4B), and decision

curve analysis (DCA) (Figure 4C) of SLE. The calibration curve and

DCA of the diagnostic model demonstrated a good fit with an AUC

of 0.955 (Figure 4D). The AUC values for the feature genes are

presented in Figure 4E, with AGRN exhibiting the highest AUC

value at 0.895.
GSEA analysis of the feature genes

SLE patients were divided into two groups and analyzed by

GSEA based on the median expression values of the feature genes.

In the AGRN high-expression subgroup, B cell receptor signaling

pathway, chemokine signaling pathway, RIG-I-like receptor (RLR),

cytosolic DNA sensing, and NOD-like receptor (NLR) were

significantly enriched (Figure 5A). Pathways associated with

Alzheimer’s disease, bladder cancer, endocytosis, lysosomes, and

proximal tubule bicarbonate reclamation were significantly elevated

in the COL4A3 low-expression subgroup (Figure 5B). In the COLQ

high-expression subgroup, pathways such as base excision repair,

natural killer cell-mediated cytotoxicity, and porphyrin metabolism

were enriched, while in the COLQ low-expression subgroup, the

NOD-like receptor signaling pathway was enriched (Figure 5C).
A B

D

E F

G

H

C

FIGURE 3

Feature genes selection. (A) Selection operator model (lasso); (B) Adjustment of feature selection in the minimum absolute shrinkage; (C, D) Biomarker
signature gene expression validation by SVM–RFE algorithm selection; (E) RandomForest error rate versus the number of classification trees; (F) Clinical effect
plot of random forest model; (G) BM-related genes with a MDG value; (H) Venn diagram screening for feature genes.
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A B

D E F

C

FIGURE 5

GSEA enrichment analysis of feature genes. (A) GSEA analysis of AGRN; (B) GSEA analysis of COL4A3; (C) GSEA analysis of COLQ; (D) GSEA analysis
of PHF13; (E) GSEA analysis of SPOCK2; (F) GSEA analysis of TGFBI.
A B

D EC

FIGURE 4

Construction and validation of the SLE diagnostic model. (A) Nomogram graphs of SLE; (B) Calibration curve of the model; (C) Decision Curve
Analysis; (D, E) ROC curves of the feature genes.
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The PHF13 low-expression subgroup was significantly enriched in

ribosomes and systemic lupus erythematosus (Figure 5D). In the

SPOCK2 high-expression subgroup, pathways such as base excision

repair, spliceosome, and T cell receptor signaling were highly

enriched, while pathways such as olfactory transduction and

PPAR signaling pathway were enriched in the low-expression

subgroup (Figure 5E). The TGFBI high-expression subgroup was

enriched in pathways such as chemokine signaling pathway,

lysosome, and galactose metabolism (Figure 5F).
Frontiers in Immunology 07
Analysis of immune infiltration

Further investigation of the immunological infiltration relationship

between SLE and healthy controls was performed by ssGSEA. The

correlation analysis of immune cells revealed the existence of multiple

pairs of positively and negatively correlated immune cells. Neutrophils

and macrophages exhibited a significant positive correlation, while T

helper cells and pDCs showed a higher positive correlation. Moreover,

Th1 cells were negatively correlated with neutrophils (Figure 6A). In
A B

D

E

C

FIGURE 6

Analysis of ssGSEA immune infiltration. (A) Correlation analysis between immune cells; (B) Correlation analysis between immune functions; (C) Boxplot
of differences in immune cell infiltration between SLE and healthy controls; (D) Boxplot of immune function differences between SLE and healthy
controls; (E) Correlation analysis of feature genes with immune function. (ns: no statistical difference, *p<0.05, **p<0.01, ***p<0.001).
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terms of immune function correlation analysis, parainflammation and

type I IFN Response had a highly positive correlation (Figure 6B). The

boxplot shows that compared with the healthy controls, aDCs and Treg

cells in the SLE group exhibited increased infiltration (p < 0.001), while

T helper cells, TIL, iDCs, B cells, and NK cells showed decreased

infiltration (p < 0.05) (Figure 6C). In the SLE group compared to the

healthy controls, APC co-inhibition, inflammation-promoting, MHC-

I, parainflammation, and I-IFN response were all considerably higher

(p < 0.001) (Figure 6D). AGRN was favorably connected with immune

cell functions like aDCs, APC co-inhibition, parainflammation, and

I-IFN response in a feature gene-immune infiltration correlation study

(Figure 6E). These feature genes might regulate the immune process as

SLE develops. In addition, we conducted the same analysis on the

validation queue GSE185047 dataset, and the results showed a

consistent correlation between immune cell functions, and a high

correlation between AGRN and immune functions such as DCs,

parainflammation, and I-IFN response. The results are detailed in

Supplementary Figure 1.
Validation of AGRN and diagnostic models

We used the GSE185047 dataset to validate the differential

expression of AGRN and the accuracy of the diagnostic model. In

the validation dataset, AGRNwas highly expressed in the SLE group

compared to healthy controls (p < 0.001) (Figure 7A), and the AUC

of AGRN was 0.994 (Figure 7B). The SLE diagnostic model based

on feature genes had an AUC of up to 1.000 (Figure 7C), which was
Frontiers in Immunology 08
consistent with the results obtained from the discovery cohort

(Figures 7D, E).
Experimental verification of AGRN
expression in whole blood of SLE patients

qRT-PCR analysis showed that peripheral blood AGRN mRNA

expression was significantly upregulated in SLE patients (p<0.001). The

correlation between AGRN levels and systemic lupus erythematosus

(SLE) disease activity index score (SLEDAI) was further analyzed. The

results showed that AGRN mRNA levels were positively correlated

with SLEDAI (R=0.494), but there was no significant difference

(p=0.052). As shown in Supplementary Figure 2.
Expression of AGRN in pan-cancer

Combining the results of immune infiltration analysis and ROC

analysis, we conducted a pan-cancer analysis of AGRN. The

analysis showed that various types of cancer expressed AGRN,

with the highest level in MESO (Figure 8A). AGRN was identified in

TCGA data as highly expressed in 18 tumor tissues and lowly

expressed in KICH (Figure 8B). In addition, analysis of the normal

tissue data downloaded from the GTEx database revealed that

AGRN expression was elevated in 28 tumor tissues and weakly

expressed in KICH and TGCT (Figure 8C). In addition, to assess the
A B

D E

C

FIGURE 7

Differential expression boxplot and ROC curve of AGRN. (A) Differential expression analysis of AGRN in Discovery cohort; (B) ROC curve of AGRN in
Discovery cohort; (C) Differential expression analysis of AGRN in Validation cohort; (D) ROC curve of AGRN in Validation cohort. (E) ROC curves of
SLE diagnostic column line graph model. (***p<0.001).
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expression of AGRN at the protein level, we utilized the HPA

database to extract immunohistochemistry images. Supplementary

Figure 3 clearly demonstrates that the expression of AGRN protein

is significantly higher in tumor tissues, such as breast cancer,

cervical cancer, glioma, and lung cancer, compared to

normal tissues.
Prognostic value analysis of AGRN

We analyzed the relationship between AGRN expression and

clinicopathological features in a variety of cancers and found

significant associations between AGRN expression in COAD,

HNSC, KIRC, LIHC, PAAD, and TGCT at different pathological

stages in the TCGA database (Figure 8D). Correlation analysis

between AGRN expression and survival characteristics showed that

high AGRN expression was a high-risk factor for LIHC, PAAD, and

SARC (Figure 9). In the DSS study, high AGRN expression

indicated significantly better prognosis for BRCA (Figure 9B),

while in LIHC patients, low AGRN expression was inversely

related to prognosis. Regarding the association between AGRN

and PFS, forest plots and KM survival curves showed that in LIHC,

PAAD, and PRAD, patients that expressed more AGRN expression

had poorer PFI (Figure 9C).
Frontiers in Immunology 09
AGRN and tumor microenvironment

The tumor immune microenvironment plays an important role

in tumor progression (33, 34). We analyzed the relationship

between AGRN expression and the tumor microenvironment.

The findings showed that AGRN expression was significantly

negatively correlated with immune scores of TGCT, LAML, and

THYM, while it was significantly positively correlated with stromal

scores of DLBC, TGCT, PCPG, and THYM (Figure 10).
AGRN and immune cells infiltration

By analyzing the correlation between AGRN expression and

immune cell infiltration in tumor tissues, we found that AGRN

expression correlated higher with immune cell infiltration in

LAML, TGCT, PAAD, THYM, GBM, KIRP, and LIHC tissues.

AGRN was negatively correlated with CD4 T-cell memory,

monocytes, plasma cells, and Tfh cells, while it was positively

correlated with NK cells activated, mast cells resting, and DCs

resting. Interestingly, AGRN expression was positively correlated

with multiple subtypes of macrophages (M0, M1, and M2).

Additionally, AGRN had a negative correlation with B cell naïve

in THYM, PAAD, and TGCT (Figure 11).
A B

DC

FIGURE 8

AGRN expression in pan-cancer. (A) AGRN expression in cancer cell lines; (B) Comparison of AGRN expression between tumor and normal tissue in
the TCGA dataset; (C) Comparison of AGRN expression between tumor and normal tissue in the TCGA and GTEx datasets; (D) Correlation between
AGRN expression and pathological staging in the TCGA database. (*p<0.05, **p<0.01, ***p<0.001).
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The correlation between AGRN and
TMB and MSI

In the correlation study of AGRN expression and TMB, AGRN

expression in LGG, THYM, UCEC, COAD, HNSC, and PAAD was
Frontiers in Immunology 10
significantly associated with TMB (Figure 12A). In the correlation

study of AGRN expression and MSI, AGRN expression in CESC,

CHOL, LUSC, MESO, STAD, TGCT, and UVM was significantly

associated with MSI (Figure 12B).
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FIGURE 9

Correlation of AGRN with prognosis in pan–cancer. (A) Correlation between AGRN expression and overall survival (OS); (B) Correlation between
AGRN expression levels and disease-specific survival (DSS); (C) Correlation between AGRN expression and PFI; (D–K) K-M analysis of the correlation
between AGRN expression and OS, DSS and PFI.
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Discussion

SLE is an autoimmune disease that affects any organ (35),

including the skin, kidneys, nervous system, and heart, and

predominates in women between the ages of 20 and 45. Although

the mortality rate associated with SLE has decreased with the

advancement of research on biologics and stem cell therapies, the

pathogenesis of SLE still remains elusive. As a special type of

extracellular matrix, BM plays a variety of important functions in

vivo, such as cell anchoring and signal transduction (36). Research

suggests that BM-related components are closely associated with

the development of human autoimmune diseases. It has been

confirmed in psoriasis that BM destruction is one of the earliest

events in its pathogenesis (37). The glomerular BM is a crucial

component of the capillary wall in the renal glomerulus, which

governs renal filtration (38). Existing studies have shown that the

oxidative stress imbalance in lupus nephritis patients can lead to

disruption of glomerular BM integrity and affect the renal tubular

function of the patients (39). Therefore, exploring the gene and

protein expression mechanisms of the BM will provide novel

insights into the pathogenesis and therapeutic strategies of SLE.

In this study, we utilized bioinformatics methods to perform

expression analysis of BM-related genes in a dataset of SLE patients

from the GEO database. We identified 61 differentially expressed BM-

related genes. GO enrichment analysis indicated that the differentially

expressed BM-related genes were mainly associated with cell-substrate

adhesion, metallopeptidase activity, and endodermal cell

differentiation. KEGG enrichment analysis revealed a high

correlation with ECM-receptor interaction, regulation of the actin

cytoskeleton, leukocyte transendothelial migration, and the PI3K-Akt

signaling pathway. Subsequently, we employed LASSO regression,

SVM-RFE, and RandomForest to screen feature BM-related genes,

namely AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and COLQ. The

validation dataset confirmed the differential expression of feature genes.
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Numerous studies have revealed the relevance of feature genes

to autoimmune diseases. Collagen Q (ColQ), a collagen protein

commonly found in cholinergic tissues, is involved in the formation

of the synaptic basal lamina at neuromuscular junctions. Mutations

in this gene are closely related to the occurrence of congenital

myasthenic syndrome (40). ColQ is thought to affect

acetylcholinesterase through interaction with MuSK (41), and its

mutation may lead to myasthenic syndrome. As one of the

components that constitute the glomerular BM, defects in

COL4A3 can lead to inherited renal diseases (38, 42). In allergic

asthma, an increase in the serum level of the COL4A3 degradation

marker C4Ma3 is associated with exacerbation of the allergic

asthma phenotype, providing a novel biomarker for predicting

the response to anti-IgE therapy (43). TGFBI is a protein induced

by TGFb1 and is widely distributed in tissues such as the heart,

blood vessels, and eyes (44). Research has shown that in type 1

diabetes, big-h3/TGF-bi can inhibit T cell activation, effectively

preventing the occurrence of autoimmune reactions (45). It is worth

noting that TGFBI plays an important role in the diagnosis and

pathogenesis of lupus nephritis and holds promise as a therapeutic

target (46). Literature reports on SPOCK2 have mostly focused on

its role in tumorigenesis and progression. It has been reported that

the has-miR-363-3p-SPOCK2 axis is involved in regulating the

cytoskeleton of actin cells and plays a regulatory role in the staging

and progression of ovarian cancer (47). SPOCK2 downregulation

significantly inhibits proliferation and invasion of OC cells while

promoting cell apoptosis (48). In patients with pulmonary

adenocarcinoma, SPOCK2 expression is downregulated, while

high expression of SPOCK2 prolongs the survival of LUAD

patients. Further investigation into the molecular mechanisms of

SPOCK2’s role in LUAD revealed that this could be partially due to

its association with tumor-infiltrating immune cells (49).

Interestingly, PHF13 (also known as SPOC1) differs from the four

previously mentioned proteins in that its function primarily focuses
FIGURE 10

Relationships between AGRN expression and tumor microenvironment.
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on DNA damage repair and chromatin structure regulation (50),

involving chromatin binding and histone methylation binding, and

is associated with the development of ovarian cancer (51). AGRN, a

proteoglycan, is one of the core components of the BM structure. It

is expressed widely in any tissue and is especially important for the

formation, maintenance, plasticity, and signal transmission
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of synapses in the central nervous system (52). Mice with

mutations that result in the absence of AGRN expression exhibit

nonfunctional neuromuscular junctions and suffocate to death in

utero or shortly after birth (53). Exploring the underlying molecular

mechanisms reveals that AGRN is essential for the formation,

maintenance, and regeneration of neuromuscular junctions
FIGURE 11

Relationships between AGRN expression and immune cell infiltration.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1231611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2023.1231611
through the LRP4/MuSK pathway (54, 55). In adult hippocampus,

genetic deficiency of AGRN reduces the proliferation of neural

stem/progenitor cells (NSPCs) and increases depression-like

behavior (56). In clinical practice, about 40-90% of SLE patients

present with neuro-psychiatric manifestations such as depression,

cognitive impairment, and psychosis, known as neuropsychiatric

systemic lupus erythematosus (NPSLE) (57). The AGRN expression

in the brain tissue of SLE and its impact on the progression of

NPSLE requires further investigation. In addition, AGRN is a

crucial regulatory factor in the epithelial-mesenchymal transition

in epicardium, promoting epicardial cell proliferation (58, 59),

reducing myocardial ischemia-reperfusion injury and improving

cardiac function (60).

We constructed a diagnostic model for SLE based on the feature

genes, and calibration curve and decision curve analysis

demonstrated a good fit of the model, with an AUC of 0.955 for

the diagnostic model. Subsequent ROC analysis revealed that

AGRN exhibited the highest value. This highlights the potential

diagnostic value of AGRN in SLE. According to GSEA analysis, the

AGRN high-expression subgroup was enriched for the signaling

pathways for the B cell receptor and chemokines. By immune

infiltration analysis, the SLE group had higher levels of aDCs and

Treg infiltration than healthy controls, and immune functions such

as APC co-inhibition, inflammation promotion, MHC-I,

parainflammation, and type I IFN response were stronger in the

SLE group than in the healthy controls. AGRN was significantly

correlated with the above immune functions. This is consistent with

existing research findings indicating that AGRN has a significant

impact on the immune system. The expression of AGRN in T cells

has long been confirmed. Khan reported the expression of AGRN in

mouse thymocytes and splenocytes (61). AGRN participates in the

activation of T lymphocytes by binding to a-DG protein to promote

the formation of immunological synapses between T cells and target

cells (62, 63), while AGRN is post-translationally modified after T

cell activation. The addition of purified AGRN from activated T

cells to the medium of resting T cells induces the aggregation of
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lipid rafts and TCRs (61). Another study has shown that AGRN is

mainly expressed in monocytes, while its expression in lymphocytes

and granulocytes is significantly lower. The cell-autonomous signal

transmitted by AGRN is perceived by macrophages via a-DG
receptor, which facilitates cytoskeletal rearrangement during

synapse formation and phosphorylation of Erk1/2 (64). SLE

patients produce type I interferon, which can shift initial CD4 T

cells from Th1 subtype to the predominant Tfh cell phenotype,

promoting B cell differentiation, immunoglobulin class switching,

and ultimately leading to secretion of anti-nuclear antibodies

(ANA) (65, 66). Based on bioinformatics analysis, we have

demonstrated a significant correlation between AGRN and IFN-I

in SLE patients, suggesting AGRN may have potential synergistic

effects on IFN-I-mediated T lymphocyte differentiation and

activation. The basement membrane, as the main component of

the extracellular matrix, guides cell polarity, differentiation, and

migration, and plays an important role in tumor progression.

Therefore, we selected the basement membrane related gene

AGRN for pan-cancer analysis.

It has been reported that malignant tumors are a potential

complication in SLE patients (67). The population with SLE has

unique cancer risk characteristics. Compared with the general

population, SLE patients had a higher chance of developing 24

site-specific tumors, particularly non-Hodgkin lymphoma (68, 69).

The risk of melanoma, prostate cancer, and breast cancer is reduced,

while there is no difference in the risk of 11 other malignancies (9,

70). However, the mechanisms underlying the association between

SLE and cancer remain elusive. Excessive stimulation of B cells and

defects in immune system surveillance systems during SLE are

considered one of the reasons for increased cancer risk (68). In

addition, the interaction between medication exposure and virus

exposure in SLE patients, although currently unconfirmed,

is also considered another risk factor for increased cancer

incidence (71, 72). Recent research has shown that AGRN is

upregulated in various tumor tissues (73–76), and plays an

important role in regulating malignancy development and
A B

FIGURE 12

Relationships between AGRN and TMB, MSI. (A) Correlation between AGRN and TMB; (B) Correlation between AGRN and MSI. (*p<0.05, **p<0.01,
***p<0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1231611
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2023.1231611
immune microenvironment (73, 77, 78). This may be one of the

reasons why SLE patients have a higher risk of certain tumors

compared to healthy individuals (79, 80). Our research indicates

that AGRN expression is significantly higher in the majority of

tumor tissues. Furthermore, AGRN expression is associated with

the pathological staging of COAD, HNSC, KIRC, LIHC, PAAD, and

TGCT. Overall, this suggests that AGRN holds promising prospects

for cancer diagnosis.

AGRN expression levels affect the prognosis of tumor patients.

High AGRN expression was a high-risk factor for LIHC, PAAD,

SARC, and PRAD, while high AGRN expression indicated a

significantly better prognosis for BRCA. Analysis of tumor

immune cell infiltration revealed that AGRN is closely associated

with memory CD4+T cells activated, monocytes, plasma cells, Tfh

cells, NK cells activated, mast cells resting, and DCs resting. It is

noteworthy that AGRN expression is positively correlated with

multiple subtypes of infiltrating macrophages (M0, M1, and M2).

Overall, our findings suggest that AGRN may play a part in

promoting tumorigenesis and act as a potential cancer

prognosis biomarker.

Although our research has shown that the BM-related genes

AGRN plays a big part in the progression of SLE and multiple

malignancies, the upstream and downstream molecular regulatory

mechanisms of AGRN in SLE have not been demonstrated in vivo.

In addition, we conducted a diagnostic efficiency analysis of AGRN,

and found a positive correlation between AGRN and disease

activity, but without statistical significance. This is related to a

small sample size and inconsistent activity scores and sampling time

for some patients. Therefore, it is necessary to further evaluate the

correlation between AGRN and disease activity, explore the

specificity and common molecular mechanisms of AGRN in the

progression of SLE and tumors, particularly hepatocellular

carcinoma, should be conducted, which may provide new insights

for personalized medicine.
Conclusion

In our research, we have examined the level of BM-related genes in

SLE. AGRN was identified as a key molecular biomarker in the

etiopathogenesis of SLE, which may offer more latent therapeutic

targets for clinical treatment. However, it is necessary to validate and

develop this discovery through further research. In pan-cancer analysis,

the expression levels of AGRN vary in different kinds of tumors and

may become an independent prognostic factor for certain tumors. In

summary, AGRN is considered the most promising target in the

development of SLE and multiple tumors, which may bring hope for

the treatment of human immune-related diseases.
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