
JOURNAL OF DEGRADED AND MINING LANDS MANAGEMENT 
Volume 11, Number 1 (October 2023):5073-5083, doi:10.15243/jdmlm.2023.111.5073 
ISSN: 2339-076X (p); 2502-2458 (e), www.jdmlm.ub.ac.id 

 

Open Access                                                                                                                                                        5073 

 

 

Research Article  

Mapping eruption affected area using Sentinel-2A imagery and machine 

learning techniques  

Ni Made Trigunasih1*, I Wayan Narka1, Moh Saifulloh2 

1  Soil Sciences and Environment, Faculty of Agriculture, Udayana University, Jl. Raya Kampus UNUD, Bukit Jimbaran, 
Kuta Selatan, Badung-Bali 80361, Indonesia 

2  Spatial Data Infrastructure Development Center (PPIDS), Udayana University, Jl. Raya Kampus UNUD, Bukit Jimbaran, 
Kuta Selatan, Badung-Bali 80361, Indonesia  

*corresponding author: trigunasih@unud.ac.id  

  Abstract  

Article history: 
Received 25 May 2023  
Received 1 July 2023 
Accepted 1 August 2023  
 

 Volcanic eruptions are natural disasters with significant environmental and 
societal impacts. Timely detection and monitoring of volcanic eruptions are 
crucial for effective hazard assessment, mitigation strategies, and emergency 
response planning. Remote sensing technology has emerged as a valuable tool 
for detecting and assessing the effects of volcanic eruptions. One of the 
challenges in remote sensing image processing is handling large data dimensions 
that are difficult to address using traditional methods. Machine learning 
approaches offer a suitable solution to tackle these challenges. Machine learning 
demonstrates increasing computational capabilities, the ability to handle big data 
and automation. This study aimed to compare different machine learning 
classification algorithms, including Random Forest (RF), Support Vector 
Machine (SVM), Gaussian Mixture Model (GMM), and K-Nearest Neighbors 
(KNN). The data utilized in this study was derived from Sentinel-2A Multi-
Spectral Instrument (MSI) imagery, which was tested in areas affected by the 
eruption of Mount Agung, Bali Province, in 2017. The results indicated that the 
GMM algorithm performed the best among the machine learning classifiers, 
achieving an Overall Accuracy (OA) value of 82.04%. It was followed by RF 
(78.86%) and KNN (77.55%). The areas affected by volcanic eruptions were 
determined by overlaying disaster-prone regions with areas mapped using the 
machine learning approach. The total affected area was measured as 29.89 km2, 
with an additional 3.31 km2 outside the designated zone. The findings of this 
study serve as a guideline for governmental entities, stakeholders, and 
communities to implement effective mitigation efforts for disaster risk reduction. 
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Introduction 

Mount eruptions are natural geological events with 
profound environmental implications, influencing 
various terrestrial and atmospheric processes. These 
eruptions not only result in immediate catastrophic 
effects, such as the release of ash, pyroclastic flows, 
and lava flows but also trigger long-term consequences 
that can significantly alter the landscape and 
ecological balance of affected regions (Thouret et al., 

2007; Lavigne et al., 2013). The correlation between 
mount eruptions and land degradation, vegetation 
change, and the utilization of remote sensing data for 
monitoring and assessment has garnered increasing 
attention from the scientific community in recent 
years. Mount eruptions are known to cause extensive 
land degradation through mechanisms such as soil 
erosion, ash deposition, and alteration of landforms 
(Suwa and Yamakoshi, 1999; Carn et al., 2004; 
Komorowski et al., 2013; Harsanto, 2015).                  
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The disturbance of natural ecosystems due to volcanic 
activities often leads to changes in land cover and 
vegetation patterns, impacting plant biodiversity, 
forest regeneration, and overall ecosystem resilience 
(Malawani et al., 2021; Saputra et al., 2022). 
Additionally, the socio-economic consequences of 
land degradation in volcanic regions can be severe, 
affecting local livelihoods, agriculture, and 
infrastructure. The impact of volcanic eruptions can be 
investigated using remote sensing technology 
approaches. 

Remote sensing data obtained from various 
satellite and aerial platforms have proven to be 
valuable tools for detecting, monitoring, and analyzing 
volcanic eruptions and their associated impacts 
(Schmidt et al., 2015; Hu et al., 2022; Simurda et al., 
2022). Remote sensing technology allows for the 
acquisition of high-resolution imagery and data over 
large areas, enabling the detection and monitoring of 
volcanic eruptions on a global scale. Satellites 
equipped with specialized sensors, such as multi-
spectral and thermal infrared instruments, can capture 
the spectral signatures and thermal anomalies 
associated with volcanic activity. These data provide 
valuable information about eruption characteristics, 
including the size, location, duration, and intensity of 
volcanic events. The development of remote sensing 
data, from aerial photographs to digital images, cannot 
be separated from the history of computer 
development. Remote sensing data processing that 
requires visual interpretation with manual techniques 
has shifted to digital analysis techniques, so its use is 
growing with various techniques to improve accuracy 
results. The advantage of computer image analysis is 
that it reduces the subjective factor of human 
judgment. One of the problems in recognizing the 
spectral pattern of remote sensing data is image 
resolution, where the higher the resolution, the larger 
the data volume, and the algorithm for analysis is more 
complex. Thus, several algorithms were developed to 
be able to store large amounts of data and analyze and 
validate it. The knowledge-based approach then 
shifted to a data-based approach, which is the 
intersection of statistical science and computer 
science, namely artificial intelligence. 

Artificial intelligence is widely used to solve 
various problems such as business, robotics, natural 
language, mathematics, games, perception, medical 
diagnosis, engineering, financial analysis, scientific 
analysis, and reasoning (Ruiz-Real et al., 2021). 
Machine learning can be defined as the application of 
computers and mathematical algorithms adopted 
utilizing learning that comes from data and produces 
predictions in the future (Russell and Bohannon, 
2015). The learning process in question attempts to 
acquire intelligence through training and testing 
(Blum, 2007; Bensoussan et al., 2022). The field of 
machine learning is concerned with how to build 
computer programs to improve automatically based on 
experience. Recent research reveals that machine 

learning is divided into three categories: supervised 
learning, unsupervised learning, and reinforcement 
learning (Huang et al., 2006). The technique used by 
supervised learning is a classification method in which 
the data set is completely labeled to classify the 
unknown class. At the same time, the unsupervised 
learning technique is often called a cluster because 
there is no need for labeling in the data set, and the 
results do not identify examples in the specified class 
(Thupae et al., 2018; Favorskaya et al., 2021). 

The supervised learning method is based on a 
collection of data samples with labels. The sample set 
is used to summarise the characteristics of the behavior 
size distribution in each type of application to form a 
behavioral model from the data (Wu et al., 2011). 
Supervised learning has several popular algorithms, 
such as Back Propagation (BP), Linear Regression 
(LR), Random Forest (RF), Naive Bayesian (NB), 
Rocchio Method (RM), Decision Tree (DF), and 
Neural Network (NN) (Negnevitsky et al., 2005; 
Negnevitsky and Pavlovsky, 2005; Portugal et al., 
2018; Uddin et al., 2019; Batta, 2020). Then, several 
algorithms for classification are also mentioned, such 
as Support Vector Machines (SVM), Normal Bayesian 
Classifier (NBC), K-Nearest Neighbors (KNN), 
Gradient Boosted Trees (GBT), Random Trees (RT), 
and Artificial Neural Networks (ANN), Gaussian 
Mixture Models (GMM) (Wang Z et al., 2020; 
Ravichandran et al., 2021). The use of machine 
learning algorithms in remote sensing has been carried 
out for the detection of land use changes, landslide 
susceptibility, flood susceptibility, and detection of 
certain types of plants on agricultural land (Prins and 
Van Niekerk, 2020; Talukdar et al., 2020; Hashi et al., 
2021; Ma et al., 2021). 

The object of this research is the disaster-prone 
area (KRB) of the eruption of Mount Agung. The 
enormous eruption of Mount Agung occurred in 1963. 
At the beginning of the 21st century, in 2017, it erupted 
again, which caused losses for the tourism sector in 
Bali. The use of multi-spectral satellite imagery data 
on Sentinel 2 images and a combination of machine 
learning and remote sensing technology can detect the 
spatial distribution of land that lava flows have 
excavated due to the eruption.  

The purpose of this study was to compare 
machine learning algorithms on remote sensing 
imagery. The second goal was to combine these 
algorithms to detect the spatial distribution of the 
impact of lava flows due to the 2017 eruption. 

Methods 

The research employed a descriptive qualitative 
approach to investigate the impacts of volcanic 
eruptions derived from remote sensing data. Data 
analysis for remote sensing images using automated 
supervised machine learning methods, namely the       
KNN, RF, and GMM. RF is a supervised machine 
learning algorithm that is often used in classification 
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and regression problems. RF is also called the 
ensemble method, which is a method to improve 
classification accuracy by combining classification 
methods (Sheykhmousa et al., 2020). GMM is a 
probabilistic model and uses a soft clustering approach 
to distribute points in different clusters. This GMM has 
a Gaussian distribution with a bell-shaped curve, with 
data points distributed symmetrically around the mean 
(Wang Z et al., 2020). KNN is a non-parametric 
algorithm that does not make any assumptions about 
the data. KNN is a machine learning algorithm with a 
supervised learning approach that works by classifying 
new data using the similarity between new data and 
several data (k) at the closest available location. This 
algorithm implements ‘lazy learning” or “instant-
based learning” and is a non-parametric algorithm. 

KNN algorithm is used for classification and 
regression (Brownlee, 2016). 

Research site 

Spatially, the research was carried out in the disaster-
prone area of Mount Agung with centroid coordinates 
8°20'37.60"S, 115°30'27.04"E (Figure 1). The area of 
the research object for detecting land use and lava 
flows is 33.20 km2. The disaster-prone area is located 
in Karangasem Regency, with an area ranging from 
600 to 3000 m above sea level. Administratively, 21 
villages are included in the disaster-prone area. Among 
them are the villages of Besakih, Sebudi, Ban, 
Sukadana, Tulamben, Jungutan, Dukuh, Budakeling, 
etc. The slope level of the areas ranges from flat          
(0-8%) to very steep (>45%). 

 

 

Figure 1. The research location is viewed from a global (a), regional (b) scale, as well as a combination of false 
colors to facilitate training and validation/testing of data on a local scale (c). 

 
Tools and materials  

This study used a single image acquisition in May 
2018 on Citra Sentinel-2 Level 1 C 
(https://scihub.copernicus.eu/dhus/#/home). The 
Sentinel-2A Satellite with Multi-Spectral Instrument 
(MSI) has 13 spectral channels. It extends from Visible 
and Near Infrared (VNIR). It displays four spectral 
channels with a spatial resolution of 10 m, namely blue 
(490 nm), green (560 nm), red (665 nm), and near-
infrared (842 nm) channels.  Short Wave Infrared 
(SWIR) displays six channels with a spatial resolution 
of 20 m, namely four channels in spectral vegetation 
(705 nm, 740 nm, and 865 nm) and two large SWIR 

channels (1,610 nm and 2,190 nm). Three channels 
with a spatial resolution of 60 m were used for 
atmospheric correction and cloud screening (443 nm 
for aerosol capture, 945 nm for water vapor capture, 
and 1,380 nm for cirrus cloud detection). This satellite 
has a swept area of 290 km (Bergsma and Almar, 2020; 
Phiri et al., 2020). Village administrative boundaries 
were obtained from the Ministry of Agrarian and 
Spatial Planning in 2019, while disaster-prone areas 
(KRB) were obtained from PVMBG 
(https://vsi.esdm.go.id). The data processing was 
carried out using QGIS software and the additional 
dzetsaka plugin, and validation was done using the 
Semi-Automatic Classification Plugin (SCP). 
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Research method 

The Sentinel-2 image used is level 1C 2018 data that 
had been geometrically and radiometrically corrected. 
The pre-processing stage of the Sentinel-2 image was 
carried out on QGIS software version 3.22 using the 
Semi-Automatic Classification Plugin, which included 
atmospheric correction, resampling, and image 
cropping. Atmospheric correction was carried out 
using the Dark Object Subtraction (DOS) method to 
reduce atmospheric disturbances and make 
recognizing an object or other appearance easier. The 
next step was to combine 13 bands of the corrected 
image in one image. The number of samples was 500 
polygons, which represented the land cover of dense 
vegetation, sparse vegetation, agriculture, bare land, 
settlement, and cloud cover. Of the 500 samples, 350 
(70%) were used as training, and 150 (30%) were used 
as testing/validation. The spatial distribution of the 
training area and testing/validation are presented in 
Figure 1c. The output of the validation is the accuracy 
of the land cover classification of each machine 
learning method. The accuracy test aims to evaluate 
the error rate in the classification results to determine 
the percentage accuracy of the classification results. 
The accuracy test was performed on the classified 
image without delineation. Accuracy is calculated by 
an error matrix (confusion matrix). The percentage of 
the results of each image composition is seen from the 
producer accuracy, user accuracy, overall accuracy, 
and kappa accuracy. 

Results and Discussion 

Signature reflectance in different land cover types 

The spectral signature is generated using the bands 
presented by Sentinel Image 2. It is defined as a 
characteristic response pattern as each object on the 

earth's surface has its interaction with electromagnetic 
energy. The basis of the classification is to find some 
areas of the electromagnetic spectrum where the nature 
of this interaction differs for each object or land cover 
on the earth's surface (Wang B et al., 2018; Salih, 
2021). Understanding the spectral signatures of 
different objects and features is essential for accurate 
classification and mapping in remote sensing 
applications. Sentinel-2A's multi-spectral sensor, with 
its 13 spectral bands, provides rich information to 
differentiate various land cover and land use 
categories. By analyzing the spectral response of 
objects and applying appropriate classification 
algorithms, researchers and analysts can derive 
valuable insights about the earth's surface, monitor 
changes over time, and support a wide range of 
applications, including environmental monitoring, 
agriculture, urban planning, and natural resource 
management. 
 The classification algorithm uses the spectral 
signature, which makes it possible to label image 
pixels. Different types of land cover have different 
spectral values (vegetation, bare land, built-up land). 
In Figure 2, it can be seen that each material has a 
unique signature. Therefore, this spectral signature can 
be used for the classification of materials such as land 
cover, vegetation, water, and asphalt/construction, 
depending on the sensor resolution and the amount and 
type of land cover that can be identified. The amount 
of reflected radiation concerning the wavelength is 
observed, in which the response of the spectral 
signature increases to infrared. Regarding vegetation, 
it is a resource that depends on many characteristics 
depending on the type of species to be evaluated 
(leaves, stems, stems, moisture, etc.) (Borgogno-
Mondino et al., 2020; Kobayashi et al., 2020). The 
reflectance increases in the near-infrared due to plants' 
low energy absorption.   

 

 

Figure 2. Signature reflectance in different land cover types. 
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In the mid-infrared, there is a significant decrease 
along the wavelength, as water in plants absorbs 
energy. The spectral behavior depends on several 
characteristics, such as air and water content, structure, 
and texture. In this case, when dealing with 
construction enclosures such as buildings and vacant 
lots, they are smooth surfaces, implying that the 
reflectance increases along the wavelength. 
Sequentially, the lowest reflectance value was found in 
the land cover of bare land, settlement, agriculture, 
sparse vegetation, and dense vegetation, and the 
highest reflectance value was cloud cover. 

Spatial distribution of land cover types  

The results of land cover classification using machine 
learning algorithms KNN, RF, and GMM are 
presented in Figure 3. The classification of cover in 
this study consists of dense vegetation, sparse 
vegetation, agricultural land, bare land used by 
lahars/eruption impacts, settlements, and cloud cover. 
Dense vegetation includes forest land use, as well as 
shrubs with a high density. Sparse vegetation is 
included in the use of scrubland with low gaps between 
trees and fields.  

 

 

Figure 3. Comparison of land cover classification of machine learning KNN (a), RF (b), and GMM (c). 
 

Agricultural land includes the use of paddy fields. The 
bare land indicates the former lava flows from the 
eruption, such as a heap of sand. Settlements include 
using construction land, buildings, road networks and 
partly using bare land.  Visually, the KNN and RF 
algorithms have the same pattern. Unlike the case with 
the GMM algorithm, because it appears on the upper 
slopes of Mount Agung, there are settlements in the red 
area. The sparse vegetation has the most expansive 
area in all machine learning algorithms. This is 
followed by dense vegetation, bare land, cloud cover, 
agriculture, and settlements. A very contrasting area 
difference is shown in the cover of settlement land and 
bare land. The bare land of the KNN and RF 
algorithms has an area of 29 km2, while the GMM 
algorithm has an area of only 22 km2. The settlement 
of the KNN and RF algorithms is 4 km2, while the 
GMM algorithm is 12 km2 (Figure 4). 

Accuracy assessment in differential machine 

learning algorithm  

Based on machine learning classification on remote 
sensing imagery, the highest accuracy was found in the 
use of the GMM algorithm with OA (82.04) and Kappa 

(0.74), followed by the RF algorithm with OA (78.86) 
and Kappa (0.70), and the lowest accuracy was the 
KNN algorithm with OA (77.55) and Kappa (0.69) 
(Table 1). Based on the classification results, RF has a 
pattern closer to the training data results on the original 
image, although it has lower accuracy than the GMM 
classification results. This is because the parametric 
classification is strongly influenced by the distribution 
of pixels evenly in each pattern and can only better 
recognize patterns with the same tendency for pixel 
values as the sample data. At the same time, non-
parametric can understand the data even though it has 
noise (interference). Classification accuracy is also 
influenced by the user's accuracy in determining the 
sample area; a more detailed classification scheme and 
field testing are needed (Tavares et al., 2019; Jamali, 
2021; Loukika et al., 2021; Shetty et al., 2021). In 
Figure 5, the bare land is detected as a settlement, and 
the most significant error is shown by the pattern of the 
GMM classification results. RF offers advantages over 
KNN and GMM, which are more consistent and do not 
get stuck in local minimums. There is no need to repeat 
the training by trial and error on each parameter or 
random initialization. 
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Table 1. Accuracy assessment of land use/ land cover (LULC) based on machine learning method. 

LULC Standard Error (SE) Producer's Accuracy (PA) % User's Accuracy (UA) % Overall Accuracy (OA)  % Kappa 

 KNN RF GMM KNN RF GMM KNN RF GMM KNN RF GMM KNN RF GMM 

DV 0.00 0.009 0.01 100.00 100.00 100.00 100.00 96.77 96.77 

77.55 78.86 82.04 0.69 0.70 0.74 

SV 0.040 0.042 0.04 100.00 100.00 97.05 59.52 65.79 70.59 
AL 0.026 0.020 0.03 21.27 40.85 24.63 100.00 100.00 93.33 
BL 0.022 0.023 0.02 64.13 63.14 55.83 91.18 93.94 90.32 
ST 0.033 0.038 0.03 7.16 6.82 28.58 64.29 78.57 65.22 
CC 0.003 0.005 0.00 100.00 100.00 100.00 93.75 83.33 93.75 

Where: Dense Vegetation (DV), Sparse Vegetation (SV), Agricultural Land (AL), Bare Land (BL), Settlement (ST), and Cloud Cover (CV). 

Machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), Gaussian Mixture Model (GMM). 
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Figure 4. Graph of the area of each land cover type. 

 

 
Figure 5. Comparison of the original image (d) with the prediction results on the KNN (a), RF (b), and GMM 

algorithms (c). 
 

Eruption affected area 

The area affected by the eruption was obtained by 
combining vacant land in the KNN, RF, and GMM 
algorithms with the aim of obtaining a representative 
coverage of the affected area based on satellite 
imagery used by researchers. The area affected by the 
eruption is spatially indicated by the black zone. 
Spatially, the widest eruption impact is located in the 
northwest, north, and northeast, and there are some 
areas in the south. The eruption scars are shown to 
follow river patterns, so most of them are deposited in 
the northern coastal area (Figure 6). Based on the 
disaster-prone zone (KRB), the eruption impact is 
included in KRB III (21.11 km2), KRB II (8.14 km2), 
KRB I (0.53 km2), and outside KRB (3.31 km2) 
presented by Figure 7. The widest spatial distribution 
of the eruption impact is in Sebudi Village (7.17 km2), 

Besakih (6.14 km2), Ban (4.36 km2), Sukadana (4.27 
km2), Tianyar (2.91 km2), and several other areas 
around Mount Agung disaster prone area (Figure 8). 
The eruption had a detrimental impact on agricultural 
land use and the tourism sector (Rahmawati et al., 
2019). Previous researchers have mapped vegetation 
changes near Mount Agung using a vegetation index 
approach on Landsat images. Their findings indicate 
an increase (approximately 1 km2) in vegetation cover 
from the 1980s to 2016. The vegetation change near 
the crater of Mount Agung is relatively slow compared 
to other volcanoes, such as Mount Merapi (Sutomo 
and Wahab, 2019). Recent researchers have reported 
that the artificial neural network (ANN) machine 
learning algorithm is more accurate than the support 
vector machine (SVM), with accuracies of 94.67% and 
97%, respectively (Syifa et al., 2020).  
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Figure 6. Spatial distribution of eruption-affected areas with a base map of disaster-prone areas (KRB). 

 
Figure 7. The difference in the area affected in each KRB category. 
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Figure 8. Eruption affected area.  

 
The previous researchers used Landsat imagery with a 
relatively low spatial resolution (30 m/pixel) and a 
relatively high cloud cover. The drawback was that the 
images did not detect affected areas with dimensions 
less than 30 m/pixel and areas obscured by clouds. The 
Sentinel-2A imagery used in this study has a higher 
spatial resolution of 10 m/pixel and less than 10% 
cloud cover, ensuring that the entire eruption-affected 
area is captured in the images used for this study. The 
spatial distribution of the affected areas is relatively 
accurate, following the pattern of river flow from 
upstream to downstream (Figure 6). 

More detailed mapping results have been 
investigated by Andaru et al. (2021), who 
reconstructed the lava dome using Digital Terrain 
Model (DTM) data obtained from unmanned aerial 
vehicles. The difference between the 2017 and 2019 
DTMs revealed a total erupted material volume 
(886,100 ± 8,000 m3) deposited on the surrounding 
slopes. Optical sensor image products (such as Landsat 
and Sentinel-2A) cannot reconstruct such models. 
Integrating high-resolution, temporal, and spectral 
remote sensing data with active-passive sensor 
systems can be used to estimate more accurate models. 
Image classification techniques with appropriate 
algorithms and a relatively large number of training 
samples can approximate field conditions. The 
integration of remote sensing data and machine 
learning techniques offers a powerful approach to 
mapping volcanic eruption effects. By harnessing the 
capabilities of Sentinel-2A and the computational 
power of machine learning algorithms, we could 
accurately identify and map the areas impacted by 
volcanic activities. This information is crucial for 
assessing the extent of damage, understanding the 
distribution of hazards, and guiding mitigation efforts. 
Future studies could explore the incorporation of 

additional data sources, such as thermal imagery or 
Synthetic Aperture Radar (SAR), to further enhance 
the detection and characterization of eruption effects. 
Additionally, the integration of multi-temporal 
datasets could provide valuable insights into the 
dynamic nature of volcanic activities and their long-
term impacts on the environment. 

Sentinel-2A imagery and machine learning 
algorithms effectiveness in mapping volcanic eruption 
effects. The high-resolution imagery and accurate 
classification results enable a detailed assessment of 
the affected areas and facilitate information for 
disaster management and mitigation. The integration 
of remote sensing and machine learning techniques 
holds great potential for advancing our understanding 
of volcanic eruptions and their environmental impacts. 

Conclusions 

Remote sensing data can describe the phenomenon of 
the eruption impact and other land covers around 
Mount Agung. The dynamics on the earth's surface can 
be detected by combining remote sensing and machine 
learning. Land cover detected by machine learning 
includes dense vegetation, sparse vegetation, 
agricultural land, bare land or former lahars, 
settlements, and cloud cover. The best machine 
learning algorithm in this study is the Gaussian 
Mixture Model (GMM) with an OA value of 82.04, 
followed by Random Forest (RF) (78.86%) and K-
Nearest Neighbors (KNN) (77.55%). Visually, the RF 
algorithm has a spatial pattern similar to the original 
image on Sentinel-2A. So, it is necessary to do further 
research on multi-spectral images with more training 
and testing data to get a consistent pattern for each of 
these algorithms. The areas affected by volcanic 
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eruptions were determined by overlaying disaster-
prone regions with areas mapped using the machine 
learning approach. The total affected area was 
measured as 29.89 km2, with an additional 3.31 km2 
outside the designated zone. The findings of this study 
can be used as a guideline for the government, 
stakeholders, and the community to carry out 
mitigation efforts for disaster risk reduction (DRR). 
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