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Introduction: With the rapid development of digital technology and its deep

integration with the engineering and construction field, digital construction has

become an effective way for low-carbon transformation in the construction

industry. However, there is a gap of empirical research between digital

construction and carbon emissions.

Methods: This paper empirically investigates the impact of digital construction

level on carbon emission intensity and the mechanism of action by using the

two-way fixed effects model and mechanism testing based on the panel data of

52 Shanghai and Shenzhen A-share listed companies in China’s construction

industry from 2015 to 2021.

Results: The findings indicate that the improvement of digital construction level

can significantly decrease the carbon emission intensity of construction

enterprises, and the conclusions still hold after robustness tests and

discussions on endogeneity issues such as replacing core explanatory

variables, replacing models, using instrumental variables method, system GMM

model and difference in differences model. According to a mechanism analysis,

digital construction can curb carbon emission intensity by enhancing the R&D

innovation capacity and total factor productivity of enterprises. Furthermore, the

heterogeneity analysis shows that the improvement of digital construction level

in state-owned enterprises as well as civil engineering construction enterprises

can better contribute to reducing carbon emission intensity.

Discussion: This paper will provide a reference for the synergistic optimization of

digital construction development and carbon emissions reduction in

construction enterprises. The research conclusions are going to promote the

digital transformation of the construction industry to accelerate the achievement

of the carbon peaking and carbon neutrality goals.

KEYWORDS

construction enterprises, digital construction, carbon emission reduction, R&D
innovation capability, total factor productivity
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1 Introduction

Since the industrial revolution, carbon dioxide (CO2) emissions

have proliferated, and the global climate has gradually warmed

because of the massive global consumption of fossil energy. The

Paris Agreement, signed by 175 countries in 2016, aimed to limit

global warming far below 2°C, ideally to 1.5°C, relative to pre-

industrial levels (Hu et al., 2023). As a major carbon-emitting

country, China attaches great importance to achieving peak

carbon and carbon neutrality. The Chinese government’s high

sense of responsibility and determination to achieve high-quality

development is reflected in the pledge made by Chinese leaders to

achieve China’s carbon peak and carbon neutral “3060 goals”, as

well as in the Chinese Government Report in 2023, which

mentioned “working toward the targets of peak carbon emissions

and carbon neutrality with well-conceived and systematic steps”.

The construction industry is a pillar industry of China’s

national economy, with a gross output value of 31.2 trillion

dollars and an added value of 8.3 trillion dollars, accounting for

6.9% of GDP, which has made a great contribution to the high-

quality development of China’s economy in 2022. However, the

traditional construction industry also has the following factors and

characteristics that constrain its high-quality development: first, as

an energy-intensive industry, it suffers from high resource

consumption and serious energy wastage; second, it has a poor

construction environment, more problems with building quality,

and the industry suffers from low productivity and high labor costs;

and third, it has a slow process of industrialization of the

construction industry, with a low degree of application of

informatization and digitization of the construction process. As a

consequence, the building sector has become one of the top three

industries in terms of global CO2 emissions (Chen et al., 2020). The

2022 China Building Energy Consumption and CO2 Emissions

Research Report shows that the proportion of the total life-cycle

carbon emissions of buildings in the country is 50.9% in 2020. At

the same time, the building sector also has the most significant

potential for energy savings, with urban commercial buildings

contributing 45% by 2050 and urban residential buildings

contributing 49% (Zhou et al., 2018). Consequently, how to

promote the carbon emission reduction of the construction

industry and then put forward corresponding strategic

suggestions is an urgent problem to be solved to achieve the “dual

carbon” goal of China’s construction industry.

Meanwhile, a new generation of information technology is featured

by digitalization, networking and intelligence to the subversive changes

brought to the manufacturing industry, which triggered the industrial

transformation is gradually affecting the traditional construction

industry. However, unlike the manufacturing industry, the digital

transformation of the construction industry has its own characteristics

such as the manufacturing industry can usually manufacture products

in the assembly line, the production tools are relatively fixed, while the

location of the building in the construction industry is unchanged, the

construction tools have a greater dynamic (Ding, 2020). In addition, the

digitalization of the construction industry is also characterized by the

following features: informatization and intelligence of the entire

construction lifecycle supported by engineering software, enhanced
Frontiers in Ecology and Evolution 02
upstream and downstream collaboration and information sharing in

the construction supply chain, timely completion of key project

milestones, and control of project costs and reduction of exceeding

the project budget (Yilmaz et al., 2023). “A Program for the Overall

Layout of China’s Digital Development” pointed out that the

construction of digital China is an essential engine for promoting the

Chinese path to modernization in the digital era in February 2023, and

digital construction is an essential portion of the realization of digital

China construction, which will effectively solve the pain points of the

traditional building industry such as extensive production methods, low

production efficiency, and large resource consumption. At the same

time, the “Digital Building DevelopmentWhite Paper” published by the

China Academy of Information and Communications Technology

(CAICT, 2022) proposed that the global building digitization market

size was about $9.8 billion in 2019. It is predicted to reach $29.1 billion

by 2027, with a CAGR of 18.2%, which is in a rapid growth trend. It can

be seen that the combination of engineering construction and digital

technologies such as machine learning, building information modeling

(BIM), blockchain, and big data will become a novel power for the

transformation and high-quali ty development of the

construction industry.

Construction enterprises play a crucial role in the use of digital

construction technology and the realization of carbon emission

intensity reduction as the carrier of digital construction technology

implementation and the micro-unit to realize carbon peaking and

carbon neutrality goals of the construction industry. From the

existing literature, the carbon emission decrease effect of digital

construction technology has sparked the interest of the academic

community. It has been shown that Building 4.0 can improve

productivity and economic efficiency (Forcael et al., 2020),

promote technological progress and technological innovation, and

enhance sustainability in the construction industry through new

technologies and processes (Baduge et al., 2022). The overall green

building analysis capability of BIM facilitates the design of

sustainable buildings and the rational selection of materials (Liu

et al., 2022b), and automation and robotics in intelligent

construction help minimize waste in construction, providing the

construction industry with opportunities to improve accuracy, keep

project costs down and reduce waste, resulting in enabling efficient

use of resources and reducing carbon emissions (Adepoju et al.,

2022). In the articles above, instead of fully testing the impact of

digital construction at a comprehensive level on CO2 emissions and

mechanism, the scholars have only analyzed the impact of carbon

emission with a few specific digital construction technologies.

In this context, this study aims to respond to the following

questions: Can digital construction effectually reduce the CO2

emissions of construction enterprises? If digital construction can

empower construction enterprises to reduce carbon emissions, what

is its mechanism of action? What actions should be taken by

relevant government departments and construction companies to

promote the synergistic development of digital construction and

carbon emission reduction?

Accordingly, the research objectives of this paper are as follows:
(1) Focusing on the construction industry, this research

measures the digital construction level index scientifically
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and comprehensively and analyzes the impact of the digital

construction level on the carbon emission of construction

enterprises from the micro-enterprise level.

(2) We systematically analyze the micro-internal mechanism

of digital construction affecting the carbon emission

intensity of enterprises and examine the heterogeneity of

the level of digital construction on carbon emission

reduction in terms of the nature of business and the sub-

industry types to which it belongs.

(3) We propose corresponding policy recommendations based

on the theoretical analysis and empirical test results.
As a consequence, from the perspective of micro-enterprises,

this paper innovatively measures the digital construction level index

using the entropy weight method from the input, governance, and

output dimensions of digital construction and empirically tests the

influence of digital construction level on the carbon emission

intensity of enterprises and its mechanism of action based on a

sample of 52 listed companies in the construction industry from

2015–2021. The results of the study provide a theoretical basis for

government departments to formulate leading policies on digital

construction technology and carbon emission reduction policies in

the construction industry and offer a reference for carbon emission

reduction management decisions of construction enterprises.

The remainder of the paper is laid out as follows. Section 2 is a

literature review. Section 3 presents the research hypotheses. The

materials and methods are presented in Section 4. Section 5

discusses the empirical findings. Section 6 consists of conclusions

and policy recommendations.
2 Literature review

A number of scholars have studied digital technology and its

development extensively, with the tremendous changes it has

produced in human production and lifestyle as well as the

important role it plays in helping the global process of combating

climate change. According to the research theme of this paper, the

literature involved is mainly reviewed from the following three

aspects: the first is the application of digital technology in the area of

engineering construction, that is, the related research of digital

construction, the second is the research related to building carbon

emissions, and the third is the study on the influence of digital

technology on carbon emissions.
2.1 Related research of digital construction

Disruptive digital technologies have driven the evolutionary

adaptation of the construction industry through historical socio-

technical processes (Woodhead et al., 2018). Digital construction is

a new engineering construction mode that uses digital technology

for architectural design, construction and operation under the

background of a new round of scientific and technological

revolution (Ding, 2020). Similarly, some scholars have drawn

analogies to the theory of Industry 4.0, where the increasing
tiers in Ecology and Evolution 03
automation of manufacturing environments and the creation of

digital value chains derive the concept of Construction 4.0 (Craveiro

et al., 2019), which can then be called a new era for construction

(Chen et al., 2022). Construction 4.0 will contribute to the

transformation of the construction industry into a technologically

innovative industry and align it with manufacturing in terms of

productivity and performance improvement (Oesterreich and

Teuteberg, 2016). In view of this, scholars have conducted

extensive research on how to apply digital construction

technologies. Dou et al. (2023) summarized and analyzed the

overall application of the top ten emerging digital technologies in

the architecture, engineering and construction sectors from 2011 to

2020, including BIM, radio frequency identification, 3D printing,

big data, digital twins, blockchain, IoT, virtual reality and artificial

intelligence. Zhang et al. (2022) proposed a digital twin framework

for building site monitoring by combining the multiple levels of

detail of BIM, which can enhance the process monitoring of

construction sites, improve quality, efficiency and construction

safety, as well as the integration of digital twin and BIM can also

support the implementation of net-zero carbon buildings (Shen

et al., 2022). Regarding the future trend of digital construction,

efficient construction, value-driven computational design and user-

driven built environments are emerging visions for digital

transformation in the building industry (Ernstsen et al., 2021).
2.2 Research related to building
carbon emissions

The current research on building carbon emissions involves the

calculation of carbon emissions and the path to achieve carbon

reduction and carbon neutrality related to this study. Regarding the

accounting of carbon emissions, at the macro level, one method is to

adopt the carbon emission factor method proposed by IPCC in 1996

to measure the national carbon emissions from the construction

industry (Chi et al., 2021); the other is to apply the input–output

model (Leontief, 1970) and combine it with the LCA method to

measure the carbon emissions of the construction industry (Onat

et al., 2014). In contrast, there is no systematic methodology at the

micro-firm level, which is mainly obtained directly through ESG

reports etc., or estimated with the help of firm and industry main

operating cost (Chapple et al., 2013). Furthermore, scholars have

analyzed the building life cycle and emission reduction measures at

various stages in the path to achieving carbon emissions reduction in

buildings. Du et al. (2023b) pointed out that reasonable profit

distribution based on carbon emission reduction is crucial to

promote the implementation of low-carbon initiatives by

construction supply chain firms. Zhang et al. (2019) developed the

China Building Construction Model (CBCM) based on the

production and transportation of building materials and on-site

construction processes, indicating that it may be possible to reduce

future carbon emissions associated with the building construction

sector with the promotion of new low-carbon building structures and

the improvement of productivity. Li et al. (2022) assessed the changes

in carbon emission reductions from commercial building operations

in various provinces of China, which provides a reference for local
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governments and other economies to improve energy efficiency

during the operation phase. In addition, it can promote carbon

reduction in the construction industry by rationally managing the

construction waste generated in the construction process during the

building demolition phase and utilizing this resource (Liu

et al., 2023a).
2.3 Research on the impact of digital
technology on carbon emissions

At present, numerous studies have been undertaken to explore

the influence of the digital economy or digitalization on CO2

emissions, and digital technology can provide digital and intelligent

technical means for the green development of society, contributing to

promoting the decrease of overall energy consumption and CO2

emissions in society (CAICT, 2021). Some scholars have studied the

correlation between the digital economy and carbon emissions in

various cities in China and found that the growth of the digital

economy can decrease urban CO2 emissions (Yu et al., 2022) through

strengthening environmental supervision and promoting green

innovation (Pan et al., 2023), while positively influencing carbon

emission reduction by exerting a “spillover effect” on neighboring

cities (Liu et al., 2022a). Lu (2018) found that information and

communication technologies significantly curbed CO2 emissions

based on a sample of 12 Asian nations from 1993 to 2013. Danish

(2019) also came to the same conclusion using data from 59 nations

along the Belt and Road from 1990 to 2016. However, other

academics contend that as digital technology depends on energy

(Yang et al., 2022), using electricity will intensify the extraction and

consumption of resources, resulting in more carbon emissions, but it

will gradually suppress CO2 emissions with the deepening of the use

of digital technology, displaying a nonlinear connection with an

inverted U shape (Li et al., 2021; Miu et al., 2022). For example, Li

et al. (2023b) found that the coefficient of the influence of the digital

economy on 3E (energy–environment–economy) efficiency changed

from negative to positive when per capita GDP exceeded the

threshold based on data from 24 EU nations from 2011 to 2019,

illustrating that as the continuous maturity of the digital economy,

the sustainability of economic growth progressively rose and the

energy intensity decreased step by step.

Further focusing on the micro-enterprise level research

perspective, Shang et al. (2023) took listed companies in China

from 2012 to 2020 as a sample, and revealed that company digital

transformation can dramatically lower enterprise carbon emission

intensity by enhancing internal control abilities and technological

innovation capability. In addition, other scholars have discovered

that enterprise digital transformation can also decrease corporate

CO2 emissions by improving energy utilization efficiency (Yang

et al., 2023), resource allocation capacity (Chen and Kim, 2023),

green innovation capability (Liu et al., 2023c) and other factors.
2.4 Comment on the research literature

In conclusion, it can be found that domestic and international

scholars have achieved stage-by-stage results in the research related
Frontiers in Ecology and Evolution 04
to digital construction and carbon emission in the construction field

based on the organization and review of domestic and international

literature. However, some problems still need to be solved:
(1) The study on the impact of digital technology on CO2

emissions is mostly concentrated at the macro level of

countries, regions and industries, but there are fewer

studies at the micro-enterprise level. Especially for

construction enterprises, existing studies mainly focus on

the specific application of digital construction technology to

the various stages of the building life cycle, but few studies

have measured the comprehensive level of digital

construction of construction enterprises; therefore, there

are fewer empirical studies on the impact on carbon

emissions of enterprises.

(2) In the path of building carbon emission reduction, scholars

primarily analyze emission reduction measures based on

the industry level in the building life cycle and its various

stages, in which digital construction provides new

opportunities for low-carbon transformation for

construction enterprises. However, the current research

only stays in the stage of qualitative analysis, and few

researches have systematically analyzed and explored the

intrinsic mechanism of carbon emission reduction of

construction enterprises by digital construction through

empirical tests.
In view of the gaps and deviations of the above studies, this

study draws on the way scholars measure the digital economy or

enterprise digitization and combines the digital characteristics of

engineering construction itself, to construct the digital construction

level index of construction enterprises from a brand-new

dimension. Then, we study its impact on corporate carbon

emission reduction and the internal mechanism from both

theoretical and empirical perspectives.
3 Theoretical analysis and
research hypotheses

3.1 Digital construction and
carbon emissions

As an emerging construction mode in the construction

industry, digital construction provides new strategic opportunities

and scientific and technological support for the low-carbon

transformation of the construction industry (Wang et al., 2023a),

and promotes the carbon emission reduction of construction

enterprises from the following aspects. To begin with, the

application of digital construction technology can achieve real-

time collection, monitoring, transmission and analysis of energy

data and guide energy factors to realize efficient allocation (Yao

et al., 2023); at the same time, according to the theory of supply and

demand, it can also effectively promote the coordination of the

supply and demand side of production factors in construction

enterprises, so that enterprises can achieve higher energy
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efficiency under the same conditions (Veskioja et al., 2022; Zhao

and Ren, 2023) to promote carbon emission reduction.

Furthermore, in accordance with the project management life

cycle theory (Ma et al., 2018), the carbon emission reduction

empowered by digital construction technology is also reflected in

the use of digital elements by enterprises to strengthen the control

of the whole life cycle process of construction. In the project design

stage, construction enterprises can virtualize the construction

process by using construction virtual prototype technology and

mixed reality technology, which aims to provide visual means for

carbon emission prediction and minimization of construction

projects so as to find methods to decrease carbon emissions by

taking preventive or corrective measures before the project starts

(Wong et al., 2013). During the construction phase, the materials

used in the use of 3D concrete printing technology can emit 80%

less CO2 than the production of traditional concrete materials

(Nematollahi et al., 2018). In the construction operation and

management phase, companies generate fewer carbon emissions

in future construction activities by applying industrial IoT to collect

past data from the construction process and using digital twin

architecture to monitor real-time architectural situations (Shen

et al., 2022) to compose models and predict their future behavior

(Metallidou et al., 2022). Finally, the application of digital

construction technology can enhance the ability of information

interaction and sharing within enterprises, such as the use of data

creation and sharing, cross-temporal information dissemination

and other channels to transmit, flow green emission reduction

technology and other aspects of information (Lyu et al., 2023), for

the purpose of reducing unnecessary activities, in addition, big data

technology can offer data support for enterprise carbon emission

reduction by improving the integration of data information such as

energy input structure and CO2 emissions (Zhang et al., 2021).

Based on the above, a hypothetical H1 is proposed.

H1: The development of digital construction level can

contribute to the reduction of carbon emission intensity

of enterprises.
3.2 Digital construction, enterprise
R&D innovation capability and
carbon emissions

For the construction industry, the process of integrating

traditional engineering construction activities with digital

technology is an innovative activity (Ding, 2020), such as China

State Construction Engineering Corporation Limited established

the first China National Digital Construction Technology

Innovation Center and independently developed AECMate

domestic 3D engineering image software. On the one hand,

digital innovation theory holds that firms will invest more in

innovation activities among themselves in order to make better

products in the digital economy (Wen et al., 2022a; Wen et al.,

2022b). In order to implement innovation-driven development

strategies and enhance their competitive advantages in the

industry, construction enterprises will inevitably increase their

R&D efforts and investments in digital construction technology
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and other key core technologies (Wu et al., 2021), thereby

enhancing innovation output (Kim, 2019). Pecking order theory

states that since the cost of external financing is higher than the cost

of internal financing, the company can only rely heavily on internal

financing, resulting in underinvestment (Myers and Majluf, 1984).

The implementation of digital construction technology in

construction enterprises also releases a benign signal to the

outside world to actively respond to the national strategy,

implying high-quality development in the future, which means

that it is conducive to facilitating the trust of external financial

backers (Bertani et al., 2020; Zhang and Dong, 2023), so as to

provide financial support for enhancing R&D innovation

capabilities (Ding et al., 2022). It has been shown that for China,

increased R&D investment directly curbs carbon intensity (Wang

and Zhang, 2020) and can play a moderating role between

digitization and CO2 emissions (Ma et al., 2022).

On the other hand, transaction cost theory holds that cost

reduction is an essential way for firms to obtain heterogeneous

innovation resources (Hennart, 1988). Digital technologies such as

the Internet and artificial intelligence have the advantage of

facilitating the sharing of explicit and tacit knowledge resources,

which can help enterprises break down information silos (Wu et al.,

2022), alleviate information asymmetry (Liu et al., 2023b) and

improve the transmission efficiency and accuracy of internal and

external information and knowledge (Goldfarb and Tucker, 2019;

Fang et al., 2022; Wen et al., 2022a). It can also increase the

efficiency of resource allocation of companies (Sousa-Zomer et al.,

2020), and allocate key resources to core technologies and

innovation activities (Li et al., 2023a), thus reducing the cost of

companies in the process of information acquisition and avoiding

the misallocation of resources and energy waste, and reducing CO2

emissions. In addition, digital technology also helps to enhance the

green development capability of enterprises when R&D cooperation

and experience exchange of reducing carbon emission among

companies in the construction industry (Wang et al., 2018; Zhang

et al., 2021); and it promotes collaboration and knowledge sharing

between enterprises and institutions such as universities and

research institutes (Zhang, 2019) and open innovation of

enterprises (Mubarak et al., 2021), resulting in reducing the R&D

trial and error costs of digital construction technologies, shortening

the R&D design cycle, and improving innovation efficiency (Shang

et al., 2023). Based on the above, a hypothetical H2 is proposed.

H2: The development of digital construction level can reduce

the carbon emission intensity by improving the R&D innovation

capability of enterprises.
3.3 Digital construction, total factor
productivity and carbon emissions

Total factor productivity is part of the output that cannot be

interpreted by the number of inputs used in production, and more is

the growth brought about by intangible factors such as technological

progress and technological efficiency (Comin, 2010). The theory of

technological progress argues that the margins of productivity factors

can be raised in the identical ratio by technological progress to bring
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down energy intensity, thus achieving carbon emissions reduction

(Cheng et al., 2021). Correspondingly, in the long run, it is

increasingly becoming a consensus in Chinese society to achieve

low-carbon economic development with technology (Wang et al.,

2022). On the one hand, digital construction technologies can boost

total factor productivity by increasing construction efficiency on the

construction site; specifically, when building concrete walls with

complex geometry using a robot on the construction site,

productivity increases significantly compared to traditional forms

of construction (Garcıá De Soto et al., 2018). Moreover, a

construction site digital process platform built upon the foundation

of IoT, cloud computing, and 5G mobile communication

technologies can improve productivity in the construction process

(Zhou et al., 2020) by addressing the complexity of the construction

site environment and enhancing collaboration between different

project participants such as contractors, construction workers,

machinery and equipment, and material suppliers on the

construction site (Oesterreich and Teuteberg, 2016). On the other

hand, digital construction can also provide technical support for lean

construction, such as the development of construction sites VisiLean

(Dave et al., 2011) and BeaM! (Schimanski et al., 2021) production

management systems integrated with BIM, IoT and lean

construction, which can be applied to the entire project lifecycle,

enabling the realization of lean principles from planning and design,

construction and post-construction phases (Dave et al., 2016), with

the aim of minimizing waste and uncertainty in the building

construction process and thus increasing total factor productivity.

Further, the increase in total factor productivity can yield desirable

outputs such as meeting project schedules, cost and quality targets

with sufficiently few construction inputs such as materials, energy

and labor (Hu and Liu, 2017), which can improve energy efficiency

and reduce carbon emission intensity (Amri et al., 2019; Altinoz et al.,

2021; Lahouel et al., 2021). For instance, Zhu et al. (2019) found that

technological progress (measured by total factor productivity)

decreased the energy consumption intensity of the Chinese

building industry at an average rate of 7.1% per year by
Frontiers in Ecology and Evolution 06
constructing a model of the building process, hence contributing to

carbon productivity (i.e., the inverse of carbon intensity) (Fan et al.,

2021; You and Zhang, 2022). Based on the above, a hypothetical H3

is proposed.

H3: The development of digital construction level can reduce

the carbon emission intensity of enterprises by improving total

factor productivity.

Through the above theoretical analysis, the theoretical

transmission mechanism is shown in Figure 1.
4 Materials and methods

4.1 Econometric model

To test the effect of digital construction on the carbon intensity

of construction enterprises, the following benchmark regression

model is constructed in this paper, as shown in Equation (1):

CEIi,t = a0 + a1DIGCi,t + a2controlsi,t + l i + d t + e i,t (1)

where, the enterprise, t denotes the year, CEIi,t denotes the

carbon emission intensity of the enterprise i in t year, DIGCi,t

denotes the digital construction level index of the enterprise, contr

olsi,t represents the control variable, as well as ei,t is the random

error term; in addition, the model also controls the enterprise fixed

effect li, the year fixed effect dt . For the sake of making the test

results more robust, this paper defaults to the clustering robustness

standard error.
4.2 Variables

4.2.1 Explained variables: enterprise carbon
emission intensity

Enterprise carbon emission intensity (CEI) is determined by

accounting for carbon emissions, which indicates the CO2
FIGURE 1

The theoretical transmission mechanism.
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emissions produced per unit of production value, and the reduction

of carbon emission intensity reflects, to some extent, the

improvement of enterprises’ CO2 emission reduction ability. This

paper evaluates carbon emission intensity by the proportion of

enterprise CO2 emissions to main business income in light of the

data accessibility, as described by Chapple et al. (2013). The amount

of directly available data is very limited since the Chinese

government currently does not mandate companies to disclose

CO2 emissions data in their annual reports or environmental,

social, and governance (ESG) reports. Hence, research uses the

way of Shang et al. (2023) to estimate the carbon emissions of

companies using industry carbon emissions with the help of the

main business cost, which is calculated as shown in Equation (2):

  emissionsi =
costi
costin

� ECO2
(2)

where   emissionsi denotes enterprise CO2 emissions, costi
denotes the main business cost of company, costin denotes the

industry main business cost and ECO2
denotes industry CO2

emissions. The carbon emission behaviors of the construction

enterprise include the carbon emission generated by the process

of completing the construction of various sub-elements and

implementing various measures of the project, as well as the

various types of energy power consumed by mechanical

equipment used in the demolition phase. In other words, the CO2

emission is mainly due to the energy consumption, i.e., the

combustion of fossil fuels, and therefore the industry’s CO2

emissions are measured according to the energy consumption.

When we check the “China Energy Statistical Yearbook”, there

are 11 main types of energy consumption involved in the

construction industry, mainly including raw coal, coke, kerosene,

fuel oil, gas oil, diesel oil, crude oil, LPG, natural gas, heat and

electricity, of which the CO2 emissions from the depletion of the

first nine types of energy are direct emissions from the combustion

of fossil fuels, and the electricity and heat purchased by enterprises

outside are indirect emissions. The CO2 emissions of the industry

can be calculated according to Equation (3):
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ECO2
= Ef + Eeh (3)

where, Ef denotes CO2 emissions due to the burning of

consumed fossil fuels, Eeh denotes CO2 emissions due to the

burning of electricity and heat by enterprises.

Equations (4) and (5) can be used to compute CO2 emissions

from fossil fuel burning using the emission factor approach

described in the 2006 IPCC Guidelines for National Greenhouse

Gas Inventories:

Ef =on
i=1(FCi � EFi) (4)

In Equation (4), FCi denotes the quantity of fossil fuel

consumed, and EFi denotes the CO2 emission factor.

EFi = NCVi � CCi � OFi � r (5)

In Equation (5), NCVi stands for the average low-level

calorific value of the fossil fuel, CCi for its carbon content per

unit calorific value, OFi for its carbon oxidation rate, and r
denotes the proportion of CO2 to the molecular weight of

carbon, which is 44/12. Table 1 displays the values of each

variable and data source.

For the measurement of CO2 emissions from electricity and

heat, it can be calculated according to Equation (6):

Eeh = ADe � EFe + ADh � EFh (6)

where ADe and ADh denote the consumption of electricity and

heat respectively, EFe and EFh denote the CO2 emission factors of

electricity and heat respectively, both adopt the recommended

values of the Ministry of Ecology and Environment, and the CO2

emission factors of electricity in 2015–2020 and 2021 are calculated

as 0.6101 tCO2/MWh and 0.518 tCO2/GJ respectively, and the CO2

emission factor of heat is 0.11 tCO2/GJ.

4.2.2 Core explanatory variables: digital
construction level index

How to measure the digital construction level index (DIGC) of

construction enterprises is a complex and systematic difficulty. As
TABLE 1 CO2 emission reference factors for various energy sources.

Energy
Type

Average low-level calorific
value

Carbon content Per unit calorific
value

Carbon oxidation
rate

CO2 emission
factor

NCVi CCi OFi EFi

Raw Coal 20934 kJ/kg 26.37 tC/TJ 0.94 1.9027 kg-CO2/kg

Coke 28470 kJ/kg 29.5 tC/TJ 0.93 2.8639 kg-CO2/kg

Crude Oil 41868 kJ/kg 20.1 tC/TJ 0.98 3.0240 kg-CO2/kg

Fuel Oil 41868 kJ/kg 21.1 tC/TJ 0.98 3.1744 kg-CO2/kg

Gas Oil 43124 kJ/kg 18.9 tC/TJ 0.98 2.9287 kg-CO2/kg

Kerosene 43124 kJ/kg 19.6 tC/TJ 0.98 3.0372 kg-CO2/kg

Diesel Oil 42705 kJ/kg 20.2 tC/TJ 0.98 3.0998 kg-CO2/kg

LPG 50242 kJ/m3 17.2 tC/TJ 0.99 3.1052 kg-CO2/m
3

Natural Gas 38979 kJ/m3 15.3 tC/TJ 0.99 2.1649 kg-CO2/m
3

NCVi is derived from the Basic Guidelines for Calculating Total Energy Consumption; CCi and OFi are derived from the Guide to Provincial Greenhouse Gas Inventory Preparation.
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digital construction is in the initial phase, scholars are gradually

exploring and improving the concepts and theories, and there is a

dearth of academic research on the measurement of the digital

construction level of construction enterprises. At the same time,

with the advent of the digital economy era, many scholars measure

the digital economy or digital transformation of enterprises with

various methods. Therefore, this paper draws on the relevant digital

index measurement methods and combines the digital

characteristics of engineering construction itself to make a

comprehensive estimation of the digital construction level of

construction enterprises.

In this paper, we will measure the digital construction level

index in three dimensions: input, governance and output of

construction enterprises in digital construction, whose conceptual

diagram is shown in Figure 2, and synthesize the index by using the

entropy value method.
Fron
(1) Referring to Xiao et al. (2022), this paper uses the

proportion of digitization-related portion of intangible

assets in the breakdown of intangible assets to total assets

as a proxy variable for firms’ digital construction input.

Specifically, the use of software in construction enterprises

mainly includes BIM, engineering management

information systems, virtual design and construction,

simulation calculation and process planning. As a

consequence, the items with intangible asset line items,

including “software”, “computer software”, “computer

software”, “software use rights”, “software systems”,

“intelligent platforms” and other digital technology-

related keywords are regarded as “digital construction

intangible assets”, and then their proportion to the total

assets of the year is calculated, which is the digital

construction input of the enterprise.

(2) Digital construction technology, as a key point for the

transformation and upgrading of construction enterprises,

its characteristic information is more likely to be

represented in the annual reports of enterprises. The

vocabulary usage in annual reports can reflect the

strategic features and future view of enterprises, and to a

large extent, it also manifests the management concepts

promoted by enterprises and the development path guided
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by this philosophy (Wu et al., 2021). Consequently, this

paper refers to Wu et al. (2021) and Zhao and Wang (2021)

to extract the keywords of “digital construction technology”

from the annual reports of construction enterprises and

conduct word frequency statistics as a variable for the

digital construction governance of companies.

Following are the precise steps. In the first step, the annual

reports of listed enterprises in the construction industry

from 2015–2021 were collected from Giant Tide

Information Network and converted to text format

through Python’s “pdfplumber” function. In the second

step, a feature thesaurus of digital construction technology

was formed on the basis of policies and research reports

such as the “Digital Construction Development White

Paper (2022)” and the “Several Comments on

Accelerating the Development of New Construction

Industrialization”, as shown in Figure 3, with a total of 96

feature words in six dimensions. In the third step, based on

the self-built feature lexicon, the Jieba function of Python

was used to split words for all samples and remove

intonation words, auxiliary words and punctuation that

have no practical meaning in the text, making it more

meaningful to do word frequency statistics. The fourth step

was to search, match and count word frequencies

depending on the feature thesaurus based on the annual

report in the company text format. In the fifth step, because

the Jieba function had certain limitations on the word

segmentation function of English words, such as part of

word frequency statistics of “AR”, “VR”, “AI” and “CIM”,

which had nothing to do with digital construction

technology, these were eliminated after identification to

form the final total word frequency of digital construction

of construction enterprises.

(3) The output of digital construction is expressed by using the

patents applied by construction companies in the area of

digital construction technology. The calculation method is

as below. In the first step, obtain the IPC subdivision

classification numbers of patents applied for inventions

and utility models by construction enterprises for each

year from the China Research Data Service Platform

(CNRDS). In the second step, patents in the field of
FIGURE 2

Conceptual diagram of digital construction technology.
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digital construction are matched according to the

“International Patent Classification and National

Economic Industry Classification Reference Relationship

Table (2018)” (China National Intellectual Property

Administration, 2018) and the “Statistical Classification of

Digital Economy and Its Core Industries” issued in China

in 2021.
Finally, the proportion of digital construction input, i.e., the

enterprise’s investment in digital construction intangible assets is

35.6% in the establishment of the digital construction level index.

The weight of digital construction governance is 16%, which may be

influenced by the quality of the company’s annual report and the

construction of the characteristic word database, and there may be

some deviation in the results, so the weight is reasonable. The

weight of digital construction output, i.e., digital construction

technology patents, accounts for nearly half of the weight since

the patent applications are generated by construction enterprises in

the process of engineering construction, which can best reflect the

digital construction level of companies. Consequently, the weights

of each sub-index of the digital construction level index are

scientific and reasonable.

4.2.3 Control variables
To increase the study’s accuracy, this paper draws on previous

studies (Shen et al., 2020; Zhang and Dong, 2023) and combines the
tiers in Ecology and Evolution 09
research practice of this paper to add the control variables.

Enterprise size (Size) and enterprise age (Age) are the basic

situations of the enterprise. The larger the size of the enterprise,

the more likely it is to have the energy to implement low-carbon

behaviors and governance. The enterprise age may reflect the life

cycle in which the firm is located, with longer-established firms

likely to be in decline and less able to govern low-carbon behaviors.

Reducing greenhouse gas emissions demands a great deal of

additional management in day-to-day operations, as it requires a

complex design of green governance processes within the company,

so good corporate governance enables companies to integrate

internal resources to promote carbon reduction (Kock et al.,

2012). Therefore, this paper controls corporate governance factors

from board size (Board), equity multiplier (EM), current ratio (CR)

and operating capacity (ET), in which the board of directors makes

the final decision on the extent to which the firm implements

carbon reduction strategies; equity multiplier reflects the financial

leverage of the enterprise, and excessive leverage is not conducive to

the enterprise’s carbon emission reduction; current ratio reflects the

enterprise’s solvency, and the value of which to a certain extent will

affect the decision on the carbon emission reduction; and the

operating capacity embodies the enterprise’s efficiency of the use

of assets to support the business activities. In addition, the

disclosure of environmental and sustainable development (Sus)

reflects a company’s environmental awareness and social

responsibility. Specific variables are defined in Table 2.
FIGURE 3

Feature thesaurus for digital construction technology.
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4.3 Sample selection and data sources

We have combed through China’s important national policies on

the development of digitization and informatization in the

construction industry in recent years and found that the state has

been vigorously promoting digital construction-related technologies

as well as the wide-scale application of digital construction

technologies by construction enterprises since 2015. Therefore, in

this paper, 52 listed companies in Shanghai and Shenzhen A-shares

in the construction industry from 2015–2021 are used as the initial

sample, and the listed companies in the construction industry are

determined according to the industry categories stipulated by the

China Securities Regulatory Commission in 2012. According to the

needs of the study, the samples are screened as follows: (1) exclude

samples listed after 2015; (2) exclude samples listed in ST, *ST and

delisted from 2015–2021; (3) exclude samples undergoing major asset

restructuring from 2015–2021; (4) exclude samples changing from

other industries to the construction industry from 2015–2021. After

the above screening, we finally obtained 364 company-annual

observations. The original data used in this study are obtained

from China Energy Statistical Yearbook, China City Statistical

Yearbook, CSMAR Database, China Economy Information NET

Database, RESSET Database and CNRDS, and the annual reports

of enterprises are compiled from Giant Tide Information Network.
5 Empirical results and discussion

5.1 Descriptive statistics

The results of descriptive statistics are presented in Table 3, in

which the mean value of carbon emission intensity (CEI) is 46.313,

indicating that construction enterprises produce 46.313 kg of CO2

emissions per 10,000 yuan of business income on average, and the

standard deviation of 4.921 with the maximum values is 59.9 and the

minimum values is 31.085, indicating that there are large differences
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in the carbon emission intensity of different enterprises. The mean

value of the Digital Construction Level Index (DIGC) is 2.514, the

standard deviation is 0.543, and the maximum and minimum values

are 3.730 and 0.796, respectively, which means that the development

level of digital construction of different construction enterprises varies

greatly, some construction enterprises have a higher development

level and application of digital construction, but some construction

enterprises have not yet made effective use of digital construction

technology. The mean value of Sus is 0.885, and the standard

deviation is 0.320, indicating that most construction enterprises

disclose environmental and sustainability-related information in

their annual reports or ESG reports. The distribution characteristics

of the remaining control variables are roughly the same as in previous

studies and will not be repeated.
5.2 Benchmark regression

The benchmark regression findings of the effect of the level of

digital construction on the CO2 emission intensity of construction

companies are shown in Table 4. This study adopts the progressive

regression method in the benchmark regression, and after gradually

introducing fixed effects and control variables, the influence of

digital construction on carbon intensity is always negative. Column

(1) reports the regression results of the explanatory variables and

core explanatory variables only, and the coefficient of the digital

construction level index (DIGC) is −3.283, which passes the 1%

statistical significance test, indicating that the improvement of

digital construction level of construction enterprises can

significantly reduce carbon emission intensity. Although column

(2) controls for firm and year fixed effects based on column (1), the

coefficient for DIGC is still statistically negative at the 1% level at

−1.982. Columns (3) and (4) add control variables to column (1)

and control for firm and year fixed effects in turn, and it can be

found that the R2 of the model is increasing and the DIGC

coefficient is gradually decreasing, indicating that it may be
TABLE 2 Description of main variables.

Variable
Category

Variable Name Symbol Variable Description

Explained
variable

Enterprise carbon emission
intensity

CEI Ratio of enterprise CO2 emissions to main business income

Core explanatory
variable

Digital construction level index DIGC
Synthesize it from three dimensions of input, governance and output of construction

enterprises in digital construction using entropy method

Control variables

Enterprise size Size Natural logarithm of total corporate assets

Enterprise age Age Year of enterprise −year of establishment + 1

Board size Board Natural logarithm of the number of board members

Equity multiplier EM Total corporate assets/total shareholders’ equity

Current ratio CR Current assets/current liabilities

Operating capacity ET Expressed as shareholders’ equity turnover ratio, operating income/average shareholders’ equity

Whether to disclose environmental
and sustainability

Sus Enterprises disclosed in the year to take 1, not disclosed to take 0
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because some factors affecting the intensity of carbon emissions

have been absorbed after the inclusion of control variables and fixed

effects, but the significance has not changed. In conclusion, the data

above demonstrates that the level of digital construction has a
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considerable negative effect on the intensity of carbon emissions,

and that the carbon emission intensity decreases with increasing

levels of digital construction in construction enterprises, and the

research hypothesis H1 is supported by the empirical evidence.
TABLE 4 Benchmark regression results.

CEI CEI CEI CEI

(1) (2) (3) (4)

DIGC −3.283*** −1.982*** −1.443*** −1.426***

(0.466) (0.523) (0.535) (0.542)

Size −3.794*** −3.736***

(0.747) (0.771)

Age −1.615*** −1.689***

(0.0784) (0.0923)

Board 5.173*** 5.607***

(1.908) (1.924)

EM −0.00850 0.000617

(0.0219) (0.0210)

CR −1.477*** −1.486***

(0.517) (0.524)

ET 0.743*** 0.713***

(0.147) (0.147)

Sus 0.885* 0.916**

(0.458) (0.464)

_cons 54.57*** 57.67*** 140.5*** 142.1***

(1.190) (1.274) (6.574) (6.750)

FIRM FE N Y Y Y

YEAR FE N Y N Y

N 364 364 364 364

R2 0.131 0.888 0.904 0.905
*, ** and *** represent statistical significance at the 10%, 5% and 1% levels, respectively. The brackets represent the clustering robustness standard errors. The following tables are identical unless
specified differently.
TABLE 3 Descriptive statistical characteristics of main variables.

Variable N Mean S.D. Min Max

CEI 364 46.313 4.921 31.085 59.9

DIGC 364 2.514 0.543 0.796 3.730

Size 364 10.383 0.766 9.160 12.378

Age 364 20.346 6.072 7 38

Board 364 0.9186 0.083 0.699 1.176

EM 364 4.128 2.911 1.397 45.016

CR 364 1.316 0.353 0.612 3.774

ET 364 2.439 1.496 0.124 11.001

Sus 364 0.885 0.320 0 1
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5.3 Robustness test

In order to enhance the robustness and validity of the core

findings, this paper chooses to replace the core explanatory

variables and replace the model for robustness testing.

5.3.1 Replacing core explanatory variables
In this paper, the digital construction level of construction

enterprises is remeasured in the following way: the enterprise's

governance of digital construction indicator is replaced by the

frequency of digital construction keywords in the annual reports

of enterprises as the ratio of the total number of keyword

disclosures to the total number of words in the annual report of

the corresponding year, and then it is re-synthesized into the digital

construction level index with the digital construction input and

output indicators using the entropy value method, which is denoted

as DIGC_1. The test finding is reported in column (1) of Table 5,

where it is discovered that DIGC_1’s coefficient is considerably

negative at the 1% level, which demonstrates that the main finding

of the study still holds after changing the measurement of digital

construction level, further validating the research hypothesis of

this paper.

5.3.2 Replacing the model
To address the possible heteroskedasticity and autocorrelation

in the panel data, this paper draws on Cai et al. (2022) to estimate

the model using FGLS, and the findings are shown in column (2) of

Table 5, where the regression coefficient of DIGC is still

dramatically negative at the 1% level.

The findings of all the aforementioned robustness tests do not

differ noticeably from the sign and degree of significance of the
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primary explanatory variables based on the fixed-effects model,

demonstrating the robustness of the estimates of the fixed-

effects model.
5.4 Endogenous Problems

The endogeneity problem due to reverse causality may exist in

the empirical study of this article (Zhao and Wang, 2021), in other

words, enterprises with low carbon emission intensity are more

focused on improving digital construction. To mitigate the

endogeneity problem, we control for time effects and firm effects

in the baseline model, furthermore, the instrumental variables

approach, the system GMM model and the difference in

differences model are applied to discuss the endogenous problem.

5.4.1 Instrumental variable method
The basic approach to solving the endogeneity problem is to

select appropriate instrumental variables for the core explanatory

variables, and effective instrumental variables fulfill the basic

requirements of correlation and exogeneity. This study utilizes the

historical data with the lagged terms of the core explanatory

variables as a solution to the endogeneity problem. Specifically,

this paper selects the postal and telecommunication data in 1984 of

the province where the firm is located as an instrumental variable

drawing on Wang et al. (2023b), Du et al. (2023a) and Xue et al.

(2022). Since the post and telecommunication data are cross-

sectional data and cannot be directly used in the econometric

analysis of panel data, we refer to Nunn and Qian (2014), Wang

et al. (2023b) and Xiao et al. (2022) for the treatment of this issue,

and introduce the time-series variable of the number of Internet

broadband access subscribers in the previous year to construct the

panel instrumental variable. Finally, instrumental variables for the

level of digital construction in this study are the interaction terms of

the number of Internet broadband access subscribers in the

previous year with the number of landline telephones per 100

people in the province where the construction firms were

registered in 1984, respectively, as well as the first-order lagged

terms of the core explanatory variables. The model is re-tested using

the two-stage least squares (2SLS) method.

Theoretically, for historical postal data, on the one hand, digital

construction technology is based on BIM, Internet, big data, digital

twin and other digital technologies; meanwhile, post and Internet

provide specific carriers for digital construction technology

applications in construction enterprises, so the tool variables

satisfy the relevance condition; on the other hand, the

development of post and mobile Internet itself does not produce

the massive CO2 emissions and will not have a direct effect on the

carbon emission intensity of enterprises, in this sense, the selected

instrumental variables satisfy the condition of exogeneity. For the

lagged terms of the core explanatory variables, on the one hand, the

core explanatory variables are correlated with their first-order

lagged variables, and on the other hand, the lagged variables are

exogenous because they have already occurred and are therefore

“pre-determined”, and may not be correlated with the current

period’s disturbance terms.
TABLE 5 Regression results of robustness test.

Replacing Core
Explanatory Variables

Replacing the Model

(1) (2)

CEI CEI

DIGC_1 −1.534***

(0.565)

DIGC −1.321***

(−3.44)

_cons 83.18*** –

(6.610) –

Controls Y Y

Firm FE Y Y

Year FE Y Y

N 364 364

R2 0.906 –
*** represents statistical significance at the 1% level. R2 is not analytically significant in FGLS
regression and is not reported. FGLS regression shows the Z value in parentheses.
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The result of the second-stage estimation of the instrumental

method is shown in column (1) of Table 6. The Kleibergen-Paap rk

LM statistic is 22.254, which significantly rejects the original

hypothesis of non-identifiability at the 1% level. The Cragg-

Donald Wald F statistic is greater than the Stock-Yogo test at

10% critical value of 19.93, rejecting the original hypothesis of weak

instrumental variables. The Hansen J test p-value is 0.338, which is

greater than 0.1, indicating that all instrumental variables are

exogenous. The above indicators show that the instrumental

variables are reasonably reliable. The coefficient of the digital

construction level of the enterprise (DIGC) is extremely negative

at the 1% level in the second-stage regression, indicating that the

main conclusion of this paper holds again.
5.4.2 System GMM model
Next, a system GMM model is used with reference to Xie and

Kuang (2020), and the level lagged terms of key variables are

introduced as instrumental variables in the regressions for testing.

The core explanatory variable DIGC regression coefficient is

dramatically negative, according to the result in column (2) of

Table 6, which is similar to the prior estimation and shows that the

conclusion of this study is robust.

5.4.3 Difference in differences model
In this study, the difference in differences model (DID) is

chosen to further overcome the endogeneity problem by referring

to the studies of Wu et al. (2021) and Wang et al. (2023b). When

constructing the digital construction level index using the entropy
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value approach, its subindex, the quantity of applications for digital

construction patents, has the largest weight and best reflects the

digital construction level of construction enterprises, so it is used to

judge whether the digital construction technology has been

effectively applied according to the digital construction patent

applications of enterprises in each year. If a construction

enterprise has applied for a digital construction patent during the

sample period, it means that there is a substantial application of

digital construction technology, and this type of enterprise is used as

an experimental group (du=1); if there has been no application for a

digital construction patent, it means that there is no substantial

application of digital construction technology, and this type of

enterprise is used as a control group (du=0); furthermore, the

period dummy variable dt is set, and dt is assigned to 1 if the

enterprise adopts digital construction technology in the current and

subsequent years, otherwise it is 0. Accordingly, the following

difference in differences model is established to examine how the

level of digital construction of construction enterprises affects

carbon intensity:

CEIi,t = j0 + j1dui,t + j2dti,t + j3(dui,t � dti,t)

+ j4controlsi,t + e i,t (7)

where  j3 reflects the change in carbon emission intensity

before and after the adoption of digital construction technology

by enterprises and is the parameter to be estimated for the key

variable. Considering that the application of digital construction

technology by construction companies is an incremental behavior

with time continuity, the sample of enterprises whose digital
TABLE 6 Regression results of the endogenous test.

IV System GMM DID

(1) (2) (3) (4)

CEI CEI CEI CEI

DIGC −2.791** −4.530**

(1.390) (1.697)

du� dt −4.788*** −0.714**

(0.561) (0.335)

_cons 142.9*** – 38.11*** 113.9***

(14.18) – (5.544) (6.308)

Controls Y Y Y Y

Firm FE Y Y N Y

Year FE Y Y N Y

Kleibergen-Paap rk LM 22.254***

Cragg-Donald Wald F 26.504

Hansen J test p-value 0.338

Hansen test p-value 0.170

N 312 208 343 343

R2 0.888 – 0.343 0.911
** and *** represent statistical significance at the 5% and 1% levels, respectively.
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construction level is greater than 0 in the current year but 0 in the

subsequent years is excluded from this paper.

Further, to verify the robustness of the difference in differences

model again, the above model is tested again after focusing on

regulating for firm fixed effects lI and year fixed effects dt, as shown
in Equation (8):

CEIi,t = j
0
0 + j

0
1dui,t + j

0
2dti,t + j

0
3(dui,t � dti,t)

+ j
0
4controlsi,t + l i + d t + e i,t (8)

In columns (3) to (4) of Table 6, the empirical findings based

on the difference in differences model tests are displayed.

Column (3) is tested with Equation (7), and the coefficient of

dui,t � dti,t is −4.788, which is significantly negative at the 1%

level, again indicating that the carbon intensity of construction

enterprises was significantly reduced after adopting digital

construction technology. Column (4) shows the results of the

test in Equation (8), adding firm and year fixed effects, and finds

that the coefficient of dui,t � dti,t shrinks significantly to −0.714,

but remains significant at the 5% level. The above findings

indicate that after mitigating the endogeneity of the model

using the difference in differences model, the improvement in

the level of digital construction still significantly reduces the

carbon emission intensity.

The difference in differences model should satisfy the parallel

trend assumption condition, i.e., the carbon emission intensity of

the experimental group samples and the control group samples

should have the same trend of change before the implementation of

digital construction by the construction enterprises. For this reason,

we carry out the parallel trend test, and the test results are shown

in Figure 4.
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In Figure 4, current denotes the time variable of the first

implementation of digital construction technology by a

construction enterprise, which is taken as the time base, and

pre_i and post_i denote the time variable of the ith year before

and after the implementation of digital construction technology by

a construction enterprise, respectively. Let pre_3 denote the time

variable 3 years before and before the implementation of digital

construction technology by the enterprises, and post_5 denote the

time variable 5 years after and after the implementation of digital

construction technology by the enterprises. As can be seen in

Figure 4, the estimated coefficients for all periods are significantly

around 0 before the implementation of digital construction

technology in construction firms, indicating that the experimental

group is not significantly different from the control group and the

parallel trend assumption is satisfied. After the implementation of

digital construction technology, the estimated coefficients show a

significant downward trend, which indicates that digital

construction has a significant inhibitory effect on the carbon

emission intensity of construction enterprises.
5.5 Heterogeneity analysis

The disincentive influence of digital construction on carbon

emission intensity may vary among different types of enterprises, so

this paper will classify construction enterprises according to the

nature of business and the industry segment to which they belong

for heterogeneity analysis.

5.5.1 Heterogeneity of the nature of business
This paper separates the sample into state-owned and non-

state-owned firms based on the kind of business, and lines (1) to (2)
FIGURE 4

The parallel trend test.
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of Table 7 analyze the carbon emission reduction impact of

businesses with various business natures. The study discovers that

the effect of digital construction level on carbon emission intensity

in the group of state-owned enterprises is significantly negative at

the 5% level, and its coefficient is −2.234; while the regression

coefficient of digital construction on carbon emission intensity for

the group of non-state-owned companies is also negative (−1.068),

but it fails the statistical significance test, and its coefficient is also

significantly lower than that of the state-owned enterprises’ group,

indicating that the digital construction level of non-state-owned

companies is relatively less effective in curbing carbon emission

intensity compared to state-owned companies. The reason for this

difference may be that, for one thing, state-owned companies need

to consider social benefits in addition to economic benefits when

formulating their own development strategies, and take more social

responsibilities than non-state-owned companies, as well as

consider the overall development of society and actively respond

to the strategy of the carbon peaking and carbon neutrality goals

proposed by China, so they play a greater role in carbon emission

reduction in the building sector. For another thing, the

implementation of digital construction technology in construction

enterprises requires large-scale investment in software such as BIM,

virtual design and construction and digital twin, or high-end

equipment such as construction robots and intelligent factories.

State-owned enterprises not only have more advantages in terms of

capital and technology but also have access to more preferential

policies, resource support and institutional guarantees, which can

provide sufficient conditions for the rapid development of digital

construction technologies, thus empowering enterprises to reduce

carbon emissions.

5.5.2 Heterogeneity of sub-industry types
In this paper, the sample is divided into civil engineering

construction enterprises and non-civil engineering construction

enterprises according to the differences in the sub-sectors and
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main business of construction enterprises, and the influence of

digital construction on carbon emission intensity is examined for

both types of enterprises, and the results are indicated in lines (3) to

(4) of Table 7. It has been discovered that digital construction

technology significantly decreases the intensity of carbon

emissions for civil engineering construction companies (the

regression coefficient is −1.900 and passes the 1% statistical

significance test). In contrast, for non-civil engineering

construction enterprises, including landscape, building decoration

and other construction enterprises, the coefficient of DIGC does not

pass the statistical significance test, indicating that civil engineering

construction enterprises are more able to promote carbon emission

reduction by adopting digital construction technology compared to

non-civil engineering construction enterprises. The reason for this

difference may be that the adoption of digital construction

technology is more focused on the field of engineering

construction, which can realize the refinement, wisdom and

efficiency of the whole life cycle management of the construction

process, such as architectural design, construction and operation, for

example, the use of the IoT and intelligent construction platform can

realize fine construction, so that logistics scheduling, construction

scheduling and other information flow automatically, and reduce the

cost and increase the efficiency of engineering projects, while for

landscape, building decoration and other construction industry

enterprises, the use of digital construction technology is more

limited, so civil engineering construction enterprises will suppress

carbon emission intensity to a greater extent based on the extensive

use of digital construction technology.
5.6 Mechanism testing

On the basis of the previous theoretical analysis, the implement

of digital construction in construction enterprises can decrease

carbon emission intensity and promote carbon emission
TABLE 7 Regression results of heterogeneity analysis.

CEI CEI CEI CEI

(1) (2) (3) (4)

Types SOEs non-SOEs civil engineering non-civil engineering

DIGC −2.234** −1.068 −1.900*** 0.419

(0.965) (0.707) (0.678) (0.977)

_cons 93.23*** 75.52*** 85.29*** 92.91**

(15.81) (19.99) (13.01) (42.53)

Controls Y Y Y Y

Firm FE Y Y Y Y

Year FE Y Y Y Y

N 196 168 217 147

R2 0.926 0.889 0.932 0.865
** and *** represent statistical significance at the 5% and 1% levels, respectively.
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reduction in enterprises by improving R&D innovation capability

and total factor productivity. In order to verify this mechanism of

action, the following mechanism testing models are utilized to

analyze the R&D innovation capacity effect and the total factor

productivity effect, based on the methodology of Huang et al.

(2023):

CEIi,t = a0 + a1DIGCi,t + a2controlsi,t + l i + d t + e i,t (9)

Meci,t = b0 + b1DIGCi,t + b2controlsi,t + l i + d t + e i,t (10)

where Meci,t is the mechanism variable, denoting enterprises’

R&D innovation capability (RDI) and total factor productivity

(TFP), ei,t is random error terms, li is firm fixed effects, and dt is
year fixed effects.

In this study, we assess the R&D innovation capability of

companies on the basis of two factors: R&D input and innovation

output (Hall and Lerner, 2010), where R&D input is expressed by

the annual R&D investment funds of enterprises; the innovation

output of enterprises primarily consists of invention, utility model

and design patents. The quantity of patent applications is a more

timely indicator of an organization’s potential for innovation

because patents typically take a long time to be granted (Zhang

and Dong, 2023). Finally, utilizing the enterprise’s R&D

expenditure and the quantity of annual patent applications, the

proxy variables of the enterprise’s R&D innovation capabilities are

synthesized using the entropy method. Then, the total factor

productivity of companies is determined using the LP approach

based on the research of Levinsohn and Petrin (2003) and Lu and

Lian (2012).

5.6.1 R&D innovation capability mechanism
The regression result in line (1) of Table 8 shows that the

regression coefficient of digital construction level is significantly

negative, indicating that the use of digital construction in

construction enterprises can lower carbon emission levels; the use

of digital construction is advantageous for enhancing the R&D
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innovation capability of construction firms, as shown by the

regression coefficient of R&D innovation capability in line (2) of

Table 8 being statistically significant in the positive direction at the

1% level. On the one hand, the use of digital construction

technology prompts construction enterprises to make extensive

use of emerging digital technologies and break down information

silos, obtain heterogeneous innovation resources and advanced

technologies and management tools from more channels,

optimize the allocation of resources (Huang et al., 2023), and

reduce the waste of resources, which improves the R&D and

innovation capability and at the same time reduces the carbon

emissions of enterprises. On the other hand, construction

companies are bound to adopt more digital construction

technologies, increase R&D investment, improve R&D and

innovation capacity, and generate new and more productive

energy efficient technologies through the innovation process

(Petrović and Lobanov, 2020), in order to improve efficiency and

reduce costs in the planning, design, construction and building

operation phases. An increase in R&D investment reduces CO2

emissions through direct and indirect effects (rebound effects,

spillover effects) (Fernández Fernández et al., 2018). As a result of

the above analysis, there is a mechanism of “digital construction

development → enterprise R&D innovation capability

improvement → carbon emission intensity reduction”, and

hypothesis H2 is verified.
5.6.2 Total factor productivity mechanism
According to the regression coefficient in line (3) of Table 8,

which is dramatically positive at the 1% level, the growth of digital

construction is favorable to increasing the total factor productivity

of construction enterprises. Digital construction technology can

increase total factor productivity by improving productivity and

efficiency in the construction process and maximizing the

elimination of waste and uncertainty of resources. The

enhancement in total factor productivity implies technological

progress and technological revolution, which can enable
TABLE 8 Regression results of mechanism testing.

CEI RDI TFP

(1) (2) (3)

DIGC −1.426*** 0.125*** 0.177***

(0.542) (0.0427) (0.0684)

_cons 142.1*** −3.934*** −5.647***

(6.750) (0.528) (1.346)

Controls Y Y Y

Firm FE Y Y Y

Year FE Y Y Y

N 364 364 364

R2 0.905 0.938 0.973
*** represents statistical significance at the 1% level.
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construction companies to obtain the desired output with

sufficiently few construction inputs such as materials, energy and

labor, and the efficiency of energy utilization has been improved,

thus reducing the intensity of carbon emissions. Technological

advances have been widely recognized as the most promising

approach to curbing China’s current carbon emissions (Huang

et al., 2020), which could lead to CO2 reductions through carbon

efficiency improvements (You and Zhang, 2022). After the above

analysis, there is a mechanism of “digital construction development

→ total factor productivity increase → carbon emission intensity

reduction” in this study, and hypothesis H3 is verified.
6 Conclusions and policy
recommendations

6.1 Conclusions

The continuous development of digital construction provides a

significant opportunity for the low-carbon transformation of the

construction industry. This paper constructs the digital

construction level index of construction enterprises from three

dimensions, and empirically analyzes and examines the impact

and mechanism of digital construction on the carbon intensity of

enterprises by using the two-way fixed effects model based on the

panel data of 52 listed companies in China’s building industry from

2015 to 2021. The results of the study show that:
Fron
(1) The improvement of digital construction level can

significantly reduce the carbon emission intensity of

construction enterprises, and for every 1 unit increase in

digital construction level, the carbon emission intensity of

construction enterprises will decrease by 1.426 units. The

conclusions are still valid after a battery of robustness tests

and discussions on endogeneity issues such as replacing

core variables, replacing models and using instrumental

variables method, system GMM model and difference in

differences model.

(2) This paper reveals the intrinsic mechanism between digital

construction and the carbon emission intensity of

construction enterprises, in which digital construction can

significantly reduce the carbon emission intensity by

improving the R&D and innovation capability and total

factor productivity.

(3) From the point of view of the nature of enterprises, state-

owned enterprises are more able to curb carbon emission

intensity than non-state-owned enterprises in terms of

improving the level of digital construction, which is

mainly due to the fact that state-owned enterprises need

to assume more social responsibility and have more

resources and institutional safeguards, and therefore the

leading role of state-owned enterprises should be played.
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(4) In terms of the industry type of the enterprises, digital

construction of civil engineering construction enterprises can

significantly reduce carbon emission intensity due to their more

extensive application of digital construction technology, while

digital construction of non-civil engineering construction

enterprises is not significant to carbon emission intensity.

This study further extends the application of project

management life cycle theory, digital innovation theory,

transaction cost theory and technological progress theory, and

makes up for the lack of research on the impact of digital

transformation of the construction industry on the carbon

emission intensity of enterprises. The conclusions of this paper

can provide a reference for the carbon emission reduction

management decisions of construction enterprises, have practical

guiding significance for future construction enterprises to

implement digital change and integrate digital technology into all

stages of project construction, and provide theoretical guidance for

promoting the transformation and upgrading of the construction

industry and for the introduction of relevant policies by

the government.
6.2 Policy recommendations

According to the preceding research and conclusions, this paper

provides the following policy recommendations:
(1) The government ought to speed up the formulation of

leading policies for digital construction technology in the

construction industry, encourage to fully incorporate of

digital technology and engineering construction, guide each

construction enterprise to recognize that digital

construction is the best path to achieve carbon emission

reduction, and also introduce a series of preferential policies

and incentive policies to strengthen the digital technical

support efforts and financial support for non-state

construction enterprises and small and medium

businesses, so as to stimulate the green innovation

behavior and CO2 emission reduction potential of

enterprises. Similarly, it is essential to actively cultivate

compound talents in digital construction and carbon

management of construction enterprises, and invest more

resources in talent training. To this end, we should

vigorously promote the construction of composite

disciplines in colleges and universities and connect with

the needs of the industry. Furthermore, it is also crucial to

establish and robust a system for environmental

information disclosure that complies with legal

requirements, as well as to encourage enterprises to do so,

as a result, strengthen enterprises’ environmental awareness

and consciously and proactively promote green

transformation and development.
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(2) Construction enterprises ought to pay attention to and

make full use of digital construction technologies and

engineering wisdom management platforms such as

blockchain technology, BIM technology, digital twin, 3D

printing, construction robots, Internet of Things, VR and

construction industry Internet platforms in construction

projects, integrate the vision of green development into

the whole process of construction and daily management,

effectively reduce resource consumption and environmental

pollution, and achieve a higher level of green and low-

carbon. Simultaneously, they are also supposed to play the

leading role of corporate champions, such as state-owned

and central enterprises in the construction field, drive other

enterprises to implement digital, networked and intelligent

changes, vigorously develop digital construction, enhance

the sense of social responsibility and promote green

development of enterprises.

(3) Construction enterprises should implement the national

innovation-driven development strategy, pay attention to

improving R&D innovation capacity, increase R&D

investment, strengthen cooperation with higher education

institutions or other enterprises, obtain information

through multiple channels, break information silos,

effectively integrate the advantages of all parties, and

focus superior resources on breaking through the key

core technologies, engineering software and major

equipment of digital construction, so as to provide green

transformation for the construction industry. In the

meanwhile, they should also focus on improving total

factor productivity, taking the implementation of digital

construction technology as an opportunity to advance the

technological progress and technical efficiency of

companies, improve energy utilization efficiency and

decrease resource waste so as to maximize the carbon

emission reduction effect of digital construction.
6.3 Limitations and research prospects

This paper explores and innovatively investigates the impact and

mechanism of digital construction level on carbon emission of

construction enterprises, but there are some limitations: firstly, this

study examines the causal connection between an enterprise’s level of

digital construction and its ability to reduce CO2 emissions, as well as

the role that R&D and innovation capacity and total factor

productivity play in that relationship, but there may be other ways

and mechanisms that can be further explored; secondly, as a result of

the shortage of data, this article solely takes Chinese listed companies

in the construction industry as the sample, but there are still a sizable

number of businesses left out and they can all be included in the

sample for further exploration; finally, since most construction

enterprises do not disclose the detailed data of carbon emissions,
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this paper obtains them indirectly, and with the improvement and

implementation of the system related to environmental information

disclosure of enterprises, this data will be available directly in the

future, so that the data will be more accurate.
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