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ABSTRACT 

Developing low-cost technology for custom water delivery to individual or small groups of 
plants is a critical next step to advance precision irrigation. Current systems for estimating 
evapotranspiration (ET), or plant water use, work on the scale of a full vineyard (e.g.,  
3–5 acres) or the scale of a single vine, but at a cost that prohibits monitoring past a small 
number of representative vines. To develop and evaluate low-cost ET sensors for individual 
grapevines, we used three head-pruned Zinfandel vines in pots and placed them on load cells 
to collect continuous weights indicative of actual ET. We mounted research-grade sensors for 
humidity, temperature, and wind speed on each vine and saved data at 2-minute intervals during 
three growing seasons. We developed three models based on first principles (Convective Mass 
Transfer or Mass Balance approaches) or simple correlations to predict actual single-plant ET 
from these data. We present here the results of a multi-year trial at the UC-Davis RMI vineyard to 
illustrate the performance of each of the models for ET estimation. Relative model performance 
was assessed by comparing model predictions to ground truth data provided by measurements 
from load cells–including assessments of estimated instantaneous ET rate, estimated cumulative 
water use over a one-hour window surrounding solar noon, and estimated cumulative water 
use over a full 24-hour period. The three algorithms developed consistently performed well, 
with single vine ET rate predictions showing a strong linear relationship with ground truth  
(range in r2 over three seasons CMT r2 = 0.61–0.86; MB r2 = 0.07–0.91; EM r2 = 0.57–0.92).  
The MB approach, which includes two measurements of relative humidity and temperature, was 
the most variable, likely due to the impact of sensor placement. In all seasons, we also examined 
the trend in the plant scaling factor found in each model, deemed As, which, based on model 
theory, is a function of vine size. Taken together, these results suggest that high-resolution 
irrigation (HRI) models are a promising new method for ET estimation at the single plant level.
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INTRODUCTION 

In California, recurrent droughts and water shortages have led 
to competition between agricultural, urban and conservation 
water needs (Diffenbaugh et al., 2015). Even in the face 
of these challenges, there are still about 355,000 acres of 
grapes being cultivated throughout the state (CDFA and  
USDA, 2021). These vineyards typically use drip irrigation 
practices, which treat all plants in a management zone 
identically, even though it is clear that all plants do not require 
the same amount of water. Water demand heterogeneity can 
arise from cultivar differences, complex topography, canopy 
orientation, soil structure and composition, or rogueing 
practices for disease control, as examples. As a consequence 
of this variability, treating all plants in a management zone 
as identical will generally lead to some plants receiving 
excessive or inadequate water. Beyond the needs of the plant, 
water balance contributes to fruit quality and yield, layering 
additional complexity into its management. For example, in 
perennial woody crops like grapes and almonds, well-timed 
water stress can help control vegetative vigour and may 
increase fruit quality (Chaves et al., 2007; Van Leeuwen and 
Seguin, 2006). Conversely, moderate to severe water stress 
caused by extreme deficit irrigation can damage cellular 
components for light harvesting, limiting photosynthesis. 
If this water stress is prolonged, delays in ripening, sudden 
vine collapse and reduced fruitfulness can negatively impact 
berry yield and quality (Dayer et al., 2019). These constraints 
can create a problem, however, because the irrigation 
manager’s goal is finding this narrow range of applied water 
by considering the plant’s needs, but these needs usually 
vary in a complex way through space and time. When this 
variability is combined with complex deficit irrigation 
schemes, optimization of water use can be nearly impossible 
using existing technology.

1. Existing methods for measuring 
evapotranspiration
Current methods for measuring crop ET (ETc) are powerful, 
and various approaches have already been commercialised. 
Some of the most widely used methods to measure ET are 
energy balance technologies, sap flow sensors, and the 
more traditional approach of reference ET (ETo) and crop 
coefficients, but all of these methods come with significant 
limitations.

1.1. Energy balance technologies
Energy balance methods are based on the concept of 
conservation of energy, which states that the energy in some 
problem domain is constant. For the plant–soil–atmosphere 
system, then, energy balance theory states that net radiation 
must be in balance with the latent heat flux density, ground 
heat flux density, sensible heat flux density, and other less 
significant energy sinks. Ground heat flux density is the rate 
of heat storage in the soil and vegetation due to conduction 
and is either measured directly or computed using information 
from Normalized Difference Vegetation Index (NDVI) 
measurements. Sensible heat flux density is the energy lost 
to the air from the plant, soil and cover crops via convection 

and conduction. This term is sensitive to factors impacting 
the distribution of energy sources in the canopy, including 
wind speed and surface roughness, and is, therefore, affected 
by canopy size, structure, trellising, plant phenological 
stage and even ground surface heterogeneity (Rienth and 
Scholasch, 2019). Researchers have developed multiple 
methods to estimate sensible heat flux density, including 
eddy covariance, Bowen ratio method, and surface renewal 
(Li et al., 2008; Paw et al., 1995). The energy stored in the 
air layer, in the biomass, and chemical energy stored in the 
carbohydrate bonds of plant sugars are usually considered 
negligible compared to other terms (Anapalli et al., 2018). 
The latent heat flux density is the heat lost from the system 
due to the evaporation of water and is calculated as a residual 
once all other parameters in the model are determined. Latent 
heat flux density divided by the latent heat of vaporisation of 
water will give ET. 

While energy balance technologies for estimating ETc are 
some of the most widely employed, they are also limited to 
coarse spatial resolutions, are expensive and can be sensitive 
to many different sources of error.

1.2. Sap flow sensors
Sap flow sensors are another promising technology with 
several advantages over energy balance methods. These 
sensors directly measure the movement of fluid inside 
the xylem from the roots to stems and to leaves, where 
water is transpired through stomata—a process called 
sap flow. Sap flow is essential for the maintenance of the 
hydraulic continuum from soil to plant to atmosphere; thus, 
monitoring this process can yield important information 
about the hydraulic function or dysfunction of the plant 
(Steppe et al., 2015). Various methods for estimating sap 
flow rate have been developed, including thermal dissipation 
probes and the steam heat balance method (Granier, 1985; 
Lascano, 2000; Lascano et al., 2016). Both are based on 
measuring the difference between a heated element and a non-
heated reference element; as the sap flow rate increases, the 
temperature difference between the two elements decreases 
(Fernández and Testi, 2017). While the sap flow method will 
fundamentally achieve single-plant resolution, individual 
sensors are expensive and require skilled installation and 
routine maintenance labour. As a result, sensors are typically 
mounted on only 1 to 3 plants per management zone. Plants 
are chosen to represent the range of variability; a problematic 
assumption that can ignore many sources of heterogeneity.

1.3. Reference ET and crop coefficients
Another important method for estimating ETc is by a proxy 
measurement along with correction factors known as crop 
coefficients, specific for the type of plant being grown nearby 
(Allan et al., 1998; Behboudian and Singh, 2001). These 
proxy ET values, known as ETo, are calculated at one of over 
200 California Irrigation Management Information System 
(CIMIS) weather stations distributed throughout the state 
(Snyder and Sheradin, 2021); some other states have similar 
systems. Each station measures local weather parameters 
over a reference crop (well-watered grass), and these 
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parameters are fed into a Penman–Monteith model, which 
predicts hourly ETo. Once ETo is known, it can be used to 
calculate the true ETc of crops grown nearby by multiplying 
by a scaling factor known as the crop coefficient (Kc). The 
crop coefficient is an experimentally derived value specific to 
the cultivar and is sometimes adjusted for other management 
factors (Bravdo, 1986). Compared to the other approaches 
for ETc estimation, this method has the distinct advantage 
of being virtually free for California growers. However, this 
approach is limited by its reliance on the assumptions that 
regional ETo values and crop coefficients are generalisable. 
As a result, this method can be quite effective at estimating 
regional ETc, but it can lack local specificity, ignoring 
complex factors that influence slight differences in the 
vine-to-vine water demand, such as management practices, 
phenological stages, topography, soil characteristics and many 
others (Snyder and Sheradin, 2021). Additionally, these 
methods do not perform well under deficit irrigation when 
they cannot completely account for the response of plants to 
water stress (Hochberg et al., 2017).

2. The High-Resolution Irrigation method
Our work addresses the complexity of modern irrigation 
management by outlining a system for delivering water 
differentially to each plant according to its needs—in other 
words, High-Resolution Irrigation (HRI). From the outset, 
we understood achieving HRI would require developing 
two fundamental components: (1) an engineered system 
for the targeted delivery of water to each plant and (2) an 
understanding of the plant’s water needs that can inform 
irrigation decisions. 

The second component, understanding a plant’s water needs, 
requires knowing how much water to apply and when to apply 
it. The scope of this investigation is limited to exploring the 
question of how much water to apply, which is defined as 
evapotranspiration (ET) from a single plant.

Here, we introduce the development and theoretical basis of 
three novel HRI models for predicting ET rate. To illustrate 
the performance of each of the models, we present the 
results of a three-year trial at the UC Davis RMI vineyard. 
We assessed relative model performance, comparing 
instantaneous ET rate, cumulative water use over a one-
hour window surrounding solar noon and cumulative water 
use over a full 24-hour period. Throughout the 2020, 2021 
and 2022 growing seasons, we also examined the trend in 
the plant scaling factor found in each model, deemed As. 
Together, these observations strongly support the utility of 
the new HRI models for ETc estimation.

MATERIALS AND METHODS 

1. Collecting single vine data
We collected data from three head-trained Vitis vinifera L.  
cv. Zinfandel vines grafted on St. George rootstock 
(V. rupestris), planted in 1.1 m3 plastic containers filled with 
Yolo County, CA sourced sandy loam. Zinfandel scion was 
grafted onto rootstock in Davis, CA, in 2009, and then vines 

were transplanted into containers in 2016. Yolo County 
sandy loam has been shown to have an available water 
holding capacity of about 10–15 % by volume (Schwankl 
and Prichard, 2009). Vines were located in the Robert 
Mondavi Institute (RMI) vineyard in Davis, California 
(Supplementary Figure 1). We irrigated vines using a 
dedicated programmable drip irrigation and fertigation system, 
composed of 8 equally spaced 2 L/H Woodpecker pressure 
compensating drippers (NetafimTM, model 01WPC2) in a 
1.5-meter circumference ring around the base of each vine. 
Irrigation events ranged in duration from 30 to 180 minutes 
and were programmed to occur before dawn every 24 to 
72 hours during periods of normal irrigation, and no irrigation 
was done during dry-down periods. Vines received the same 
pest management and fertiliser regimen as other vines at 
RMI, per the direction of the vineyard manager. Data were 
collected from two vines during the 2020 and 2021 seasons 
and three vines in the 2022 season.

To predict the ET rate (units = kg • s-1) and then calculate 
single plant ET (units = kg), we measured the wind speed, 
air temperature and relative humidity in vine canopies by 
mounting each vine with a suite of research-grade sensors. 
We measured wind speed (units m • s-1) inside the vine canopy 
using a single needle anemometer (East 30 Sensors, Pullman, 
WA) that took instantaneous wind speed measurements 
every 10 seconds and recorded the average of the previous 
12 instantaneous measurements for every 2-minute interval. 
We measured temperature (units °C) and relative humidity 
(units %) using HMP60L sensors (Campbell Scientific®, 
Logan, UT) mounted both inside and outside of each vine 
canopy and recorded instantaneous measurements at each 
2-minute interval. We filtered all biometeorological data 
using a 3-hour moving average to remove noise without 
causing any significant over or under-approximation of daily 
maxima and minima.

To measure ground truth ET (units = kg), we placed each 
potted vine and attached sensor suite on a commercial load 
cell, model HFS 405 (2270 kg capacity, 0.01 kg resolution; 
CAS Corporation, Seoul, South Korea), which recorded 
instantaneous mass at each 2-minute interval. The load cell 
was calibrated each year in February using manufacturer 
guidelines. ET was then calculated by difference. From this 
point forward, ground truth ET will be referred to as load 
cell-measured ET. ET rate (units = kg • s-1) is calculated by 
taking the derivative of mass with respect to time.

We automated all data collection using two CR1000 data 
loggers (Campbell Scientific®, Logan, UT), with 1 or 
2 vines and associated sensors per logger, using custom  
CR1 programs. A single 30 W solar cell and 12 V lead acid 
battery powered the entire vine-sensor system. 

2. Predicting ET rate for single grapevines
If the ET rate of water through the canopy of a plant 
could be measured, then calculating ET would be 
relatively straightforward. As current technology cannot 
accurately measure the ET rate directly at this scale, we 
have developed three novel models for predicting the ET 
rate using common biometeorological measurements. 
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These models estimate ET but do not include a term for soil 
evaporation as a first approximation because early experiments 
showed the effect of soil surface evaporation was small, 
averaging less than 5–10 % of daily water loss. Our methods 
use non-destructive, largely automated proximal sensing and 
a computation pipeline, feeding data from biometeorological 
sensors to the models. In this process, we measure wind 
speed, air temperature and relative humidity in or near the 
plant canopy. Using only these parameters, we have created 
three models, described in detail in the following sections, 
which can be used to calculate the estimated ET rate per area 
(ṁe, units kg • s-1 • m-2) for single plants. Hereafter, we refer 
to the ET rate per area as mass flux.

2.1. Convective Mass Transfer mass flux model
The Convective Mass Transfer (CMT) model is one of 
two HRI models inspired by first principles. CMT relates 
transpiration to theory describing the convective mass 
transfer from a flat surface of water into moving air. This 
theory is based on applying the Reynolds analogy, which 
suggests a simple relationship between different transport 
phenomena (Cussler, 2009). In this case, we use an analogy 
to the well-described process of convective heat transfer 
from a flat solid plate into a fluid with laminar flow over its 
surface. Using this analogy, we can define transpiration as the 
convective mass transfer from a flat surface of liquid or a gas 
saturated with water vapour into a gas with laminar flow over 
its surface (Cussler, 2009). From this theory, the estimated 
mass transfer flux depends on the mass transfer coefficient 
(Km) and the difference between the partial pressure of water 
in the air at the saturated surface (Psat) and in the air in the 
greater atmosphere (P∞) [Equation 1].Equation 1 
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In this case, the mass transfer coefficient (Km) is a function 
of the mass diffusivity of air, the Reynolds number, the 
Schmidt number and a scalar term. The Reynolds number 
can be expressed as a function of the bulk velocity of air 
and kinematic viscosity, while the Schmidt number can be 
expressed as a function of kinematic viscosity and mass 
diffusivity. Note that in a pure gas, the diffusion coefficient 
and viscosity are proportional to T3/2 and T1/2, respectively 
(Bird et al., 2006). When the pure gas condition is assumed 
to be true and all other constants are included in the scalar (kcmt) 
term, the full CMT model can be reduced to [Equation 2]:

Equation 1 

�̇�𝑚! 	= 𝐾𝐾" 	 ∙ 	 (	𝑃𝑃#$% 	− 𝑃𝑃&	) 

 

[Equation 2]. 

�̇�𝑚! 	= 	 𝑣𝑣&
'
( 	 ∙ 	𝑇𝑇

''
'( 	 ∙ 	𝑘𝑘)"% 	 ∙ 	∆𝑃𝑃 

 

[Equation 3]. 

�̇�𝑚* = �̇�𝑚+,% − �̇�𝑚 = 0𝐴𝐴# ∙ 𝑣𝑣&,+,% ∙ 𝐻𝐻+,%3 − 

 

Equation 4]: 

�̇�𝑚! = 𝑣𝑣& ∙ ∆𝐻𝐻 

Equation 5]: 

�̇�𝑚! = 𝑘𝑘' ∙ 𝑣𝑣& + 𝑘𝑘( ∙ 𝑇𝑇 + 𝑘𝑘. ∙ (𝑣𝑣& ∙ 𝑇𝑇) 

[Equation 6]: 

𝐸𝐸𝑇𝑇! = 𝐴𝐴# ∙ 6 �̇�𝑚!𝑑𝑑𝑑𝑑
%

/
 

 

where v∞ is the bulk velocity of air (m • s-1) measured inside 
the canopy, T is canopy air temperature (K) and Δ P (g • m-2) 
is the difference between partial pressure of water in air in the 
boundary layer and the greater atmosphere. The saturation 
pressure of water in the air is calculated using Antoine’s 
Equation, which relates vapour pressure to air temperature 
and partial pressure is calculated by multiplying this value 
by relative humidity in the canopy. This model maintains 
three assumptions: first, all transpiring leaf surfaces are 
saturated with water vapour, perfectly flat and with a uniform 

temperature equal to the temperature of the air in the canopy. 
Second, stomata are assumed to remain in the open state to 
maintain constant boundary layer saturation and finally, it is 
assumed that a laminar flow of air exists at the leaf surface, 
which carries water vapour away from the boundary layer. 
Consistent with CMT theory, the area term (As) associated 
with this flux would be equal to the total saturated surface area 
of the transpiring leaves in the canopy. As kcmt is a constant 
and not easily calculated a priori, here we will include this 
parameter with As to get a new modified area term, As’, which 
will not affect the remainder of the analyses. Hence, in our 
calculations, Equation 2 is used without the kcmt term.

2.2. Mass Balance mass flux model
The Mass Balance (MB) model is based on the concept of 
conservation of mass, which states that in any closed system, 
mass is constant and is neither created nor destroyed. In the 
case of a plant canopy, this means the mass flow rate of water 
out of the canopy (ṁout) is equal to the mass flow rate of water 
into the canopy (ṁin) plus the mass flow rate from the plant 
(i.e., evapotranspiration rate, ṁp). With rearrangement, this 
equation states the ET rate is equal to the difference between 
the mass flow rate out of the canopy and into the canopy, as 
seen in [Equation 3].
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However, here, we assume that the cross-sectional area of 
the canopy is constant, as is the velocity of wind through the 
plant (verified experimentally). With these assumptions, the 
ET rate can be calculated as a product of the bulk velocity of 
air (v∞, units m • s-1) measured inside the canopy, the cross-
sectional area of the canopy (As, units m2) and the difference 
between the absolute humidity (H, units g • m-3) outside and 
inside the canopy. Thus, by dividing both sides of Equation 
3 by the area term, the full MB model for mass flux can be 
reduced to [Equation 4]:

Equation 1 

�̇�𝑚! 	= 𝐾𝐾" 	 ∙ 	 (	𝑃𝑃#$% 	− 𝑃𝑃&	) 

 

[Equation 2]. 

�̇�𝑚! 	= 	 𝑣𝑣&
'
( 	 ∙ 	𝑇𝑇

''
'( 	 ∙ 	𝑘𝑘)"% 	 ∙ 	∆𝑃𝑃 

 

[Equation 3]. 

�̇�𝑚* = �̇�𝑚+,% − �̇�𝑚 = 0𝐴𝐴# ∙ 𝑣𝑣&,+,% ∙ 𝐻𝐻+,%3 − 

 

Equation 4]: 

�̇�𝑚! = 𝑣𝑣& ∙ ∆𝐻𝐻 

Equation 5]: 

�̇�𝑚! = 𝑘𝑘' ∙ 𝑣𝑣& + 𝑘𝑘( ∙ 𝑇𝑇 + 𝑘𝑘. ∙ (𝑣𝑣& ∙ 𝑇𝑇) 

[Equation 6]: 

𝐸𝐸𝑇𝑇! = 𝐴𝐴# ∙ 6 �̇�𝑚!𝑑𝑑𝑑𝑑
%

/
 

 

where Δ H is the difference between H the air outside the 
canopy and the air inside the canopy. Absolute humidity, a 
function of air temperature, is computed using a formula 
derived from the Ideal Gas Law and an equation for Saturation 
Vapor Pressure (Snyder, 2005). As stated above, based on the 
mass balance concepts underlying this model, the area term 
(As) would equal the cross-sectional area of the vine canopy.

2.3. Empirical mass flux model
We selected the Empirical Model (EM) using only statistical 
methods from a set of more than 25 candidate models exploring 
mass flux as a function of various combinations of measured 
biometeorological parameters, as well as the interactions 
of these parameters. The goals of EM model development 
were generalisability and dimensional reduction. In addition 
to computational efficiency, dimensional reduction has the 
added benefit of reducing the number of sensors needed in 
the low-cost sensors being developed as part of this project.
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We selected the full EM model [Equation 5] because, 
in addition to achieving reduced dimensionality, it also 
performed well in terms of ET predictions when compared to 
other candidate models.
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The EM includes only bulk wind speed (v∞, units m • s-1) 
measured inside the canopy and air temperature (T, units °C) 
parameters, as well as the interaction of these parameters and 
unit fixing constants (k1, k2 and k3). This approach assumes 
humidity measurements and related parameters (e.g., partial 
pressure) are not strong enough predictors of ET rate to be 
included in a model designed to explain variation in mass 
flux and inform irrigation decisions. Due to its empirical 
nature, the area term (As) in this model does not have a clear 
physical meaning.

3. Calculation of model area terms
To calculate ETe (units = kg) from mass flux, the magnitude 
of the model-associated area term must first be measured or 
calculated; here, we calculated As experimentally. During any 
given time window, we achieved this calculation by dividing 
the load cell measured ET rate by the model-estimated mass 
flux. Throughout all seasons thus far, we used two to four 
continuous days of data to fit a new As term, then used this 
term to make projected predictions for the next 10–12 days. 
Based on data collected in 2020, we found that it is helpful to 
recalculate a new As term for each model every 10–14 days, 
at least until canopies are fully established.

4. ETe from mass flux
Once mass flux has been calculated using one of the three 
novel models and As terms have been determined, it is 
possible to move on to ET calculation. Each HRI model 
generates an estimated instantaneous mass flux for every 
two-minute interval. This mass flux is integrated over time (t, 
units s) and multiplied by a plant scaling coefficient (As, units 
m2), giving estimated ETe [Equation 6]:

Equation 1 
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 ET rates are found by simply multiplying mass flux estimates 
by the As terms without integration. While early data 
suggests that all models perform well in terms of correlating 
estimated ET rate with measured ET rate, we have only 
started investigating methods for directly estimating the area 
term from physical measurements.

5. Programming and data analysis
For the following results, we used R v3.5.1 for all analysis 
and visualization (R Core Team, 2018). Model statistics, 
including r2, p-value and RMSE, were generated using the 
‘stats’ package, a part of R. For all computation, we used 
a 2021 Apple MacBook Pro with 16 gigabytes of random 
access memory.

RESULTS

From May 2020 through August 2022, we collected 
three seasons of data with our sensors and load cells. All 
biometeorological parameters are characterised by a strong 
diurnal pattern (Supplementary Figure 2). Ground truth ET 
data generated from load cell measurements were recorded 
at 2-minute intervals. When viewed over time, this data 
reveals periods of evapotranspiration as well as irrigation 
events (Supplementary Figure 3). The measured ET rate is 
computed from the load cell data by taking the derivative 
of mass with respect to time (Figure 1). It can be seen that 
the evapotranspiration is highest during times with peak 
temperature, which occurs around solar noon each day. 
While these data are reported only for a single vine, other 
vines exhibited very similar behaviour. Overall, we observed 
vines using about 30 litres of water per day, which falls 
within the range of observations from UC ANR in 2002, 
which measured 22.7 to 37.9 litres of water used per day 
for mature, vigorous grapevines in the Central Valley of 
California (Geisel et al., 2002).

FIGURE 1. Load cell measured ET rate
aMeasured ET rate is computed by taking the derivative of load 
cell mass with respect to time. Irrigation events were ignored using 
a filter. Data from August 2020

We used filtered biometeorological parameters to make ET 
rate predictions using our three models. In Figure 2, the load 
cell measured ET rate is plotted alongside the model-predicted 
ET rate over a 5-day period in June 2022. We found a strong 
linear relationship between model-predicted and load-cell-
measured ET rates. The CMT predicted ET rate r2 values 
were 0.89 for Vine 1, 0.85 for Vine 2 and 0.66 for Vine 3; MB 
predicted ET rate r2 values were 0.78 for Vine 1, 0.22 for Vine 
2 and 0.45 for Vine 3; and EM predicted ET rate r2 values were 
0.87 for Vine 1, 0.89 for Vine 2 and 0.74 for Vine 3 (Figure 
2). We observed similar agreement over the course of the full 
2020, 2021 and 2022 seasons (Table 1). At most times of the 
day, the CMT model tends to overpredict and the EM model 
tends to underpredict during the daytime and overpredict 
during night-time hours. The MB model was both under 
and overpredicted and was more prone to error. Importantly, 
we collected some of these data during extended periods of 
drought stress as well as during periods of typical irrigation.  
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Including stressful periods, noted in Table 1, provides 
additional evidence that the models generate estimates of crop 
ETc and not another concept like reference ETo, which is more 
related to evaporative demand. In this experiment, each dry-
down event represents 10 consecutive days without receiving 
any applied irrigation. Note the relatively poor performance 
of Vine 2 in the MB model in all growing seasons, exhibited 
in Figure 2 and Table 1. This can be attributed to errors when 
calculating absolute humidity differences from temperature 
and individual relative humidity, especially when these 
differences are small. Sometimes, when absolute humidity 
inside and outside the canopy is very close, a negative ET 
rate can be calculated, which is unlikely for grapevine and 
is probably a result of a lack of sensitivity in the methods 
used to sense and calculate absolute humidity. Absolute 
humidity error could also be the result of sensor placement. 
We noted the outside canopy relative humidity sensors for 
Vine 2 were placed upwind of prevailing winds relative to 
Vine 2, while the outside canopy humidity sensors for Vine 
1 and 3 were placed downwind relative to their respective 
vines, thus indicating the importance of proper sensor 
placement for the successful use of the MB approach. Both 
the CMT and EM models give generally good predictions 
of the ET rate. Neither of these approaches uses the external 
relative humidity sensors on the experimental vines, which 
means none of the effects seen on Vine 2 are present in these 
calculations.

Given their physical bases, we hypothesised that the trend in 
the CMT and MB associated As terms over each season could 
have a consistent relationship to the seasonal trend in other plant 
physical parameters, such as Leaf Area Index (LAI) or cross-
sectional area of the canopy (Orlando et al., 2016; Figure 3). 
In 2020 and 2022, the CMT model As values displayed an 
overall trend that somewhat or very much resembles annual 
cycles in canopy physical parameters like LAI, with an 

increase until approximate veraison with subsequent levelling 
out, but this trend was reversed in 2021. While in 2022, the 
MB model As trend was somewhat like the expected trend, the 
trends observed in 2020 and 2021 were not what we would 
expect for plant growth during a growing season. In several 
instances during 2020 and 2021, the MB model As values 
were below zero, indicating erroneous predictions likely due 
to sensitivity issues with sensing and calculating absolute 
humidity. After these observations, we now believe that the 
As term relationship to physical measurements, such as LAI, 
is more nuanced and is likely mediated by other factors, such 
as physiological changes caused by the senescence of older 
leaves, fruit set, or other seasonal processes.

With the calculation of As terms, we can now directly 
compare the load cell measured and model predicted ET. 
Load cell measured ET, ETc, is calculated by integrating 
load cell measured ET rate over time. For all vines, we 
computed the model predicted ETe and load cell measured 
ETc over a 1-hour window from 13:00–14:00 PST, daily 
using 56 days for Vine 1, 42 days for Vine 2 and 23 days 
for Vine 3, distributed approximately evenly from May to 
August 2022 (Figure 4). The days used to calculate model 
predicted ETe and load cell measured ETc were chosen 
based on the availability of a continuous set of data for a full  
24-hour period. The main challenge to finding a full 24 hours 
of measurements every 2 minutes was frequent gaps in 
wind speed data, a result of the unprotected needle design 
of the anemometers. If the anemometer needle comes into 
contact with anything, such as a leaf, insect or debris, during 
the measurement window, it will record a zero, negative or 
unreasonably large value. These erroneous recordings are 
considered to be gaps or missing data. To understand how 
the models performed relative to one another over short 
periods of time during the day, we performed multiple linear 
regression analyses on all 1-hour vine and model data.  

FIGURE 2. Predicted and measured ET rates over time
aEach plot shows the ET rate of water as determined by the load cell and by one the HRI models for a 5-day period in June 2022. 
In all figures, the purple line represents the load cell measured ET rate. The p-value for all linear regressions was less than 2 • 10-16.  
The CMT r2 values ranged from 0.66 to 0.89, the MB r2 values ranged from 0.22 to 0.78, and the EM r2 values ranged from 0.74 to 0.89.  
An expanded version of Figure 2 is available in the Supplementary Figures section as Supplementary Figure 4, and includes r2, p-value, 
and linear regression equations, for each vine and model.
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FIGURE 3. CMT and MB model area terms over three years
aExample of trend in experimentally determined area term (As) values for CMT (top row) and MB (bottom row) models over the 2020 (left 
column), 2021 (middle column), and 2022 (right column) growing seasons. Legend in top, right panel

FIGURE 4. Predicted vs. measured ET over 1 hour window
aPlot comparing the predicted ETe from all of the HRI models, and ground truth ETc from the load cells during a 1 hour window from 
13:00–14:00 each day (units = kg). Data are from Vines 1–3 using dates May–August in the 2022 season. Data were fit with a 
multiple linear regression model, and a 1:1 reference line is shown in black. The multiple r-squared is 0.6292, and all model associated 
p-values are significant at the 0.001 level of significance.
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The multiple r-squared is 0.6292, suggesting a good overall 
fit, and all model p-values are significant at the 0.001 level, 
indicating a significant relationship between all model 
predictions and ground truth.

We also computed the model-predicted ETe and load cell 
measured ETc over a 24-hour window, daily for the same 23, 
42 or 56 days distributed approximately evenly from May to 
August 2022 (Figure 5). With the inclusion of night in this 
multiple linear regression analysis, when little to no ET is 
occurring, and all models predict more accurately than during 
the day, the linear relationships between model predicted and 
ground truth ET now explain up to 82 % of the variation 
in crop ETc over a wide range of phenological stages and 
environmental conditions. The increase in explained variation 
could also be due to small shifts in prediction compared to 
ground truth. These shifts have a relatively large effect on the 
accuracy of predictions during some times of day, but over 
longer integration periods, this effect is significantly reduced. 
Overall, only the CMT and EM model p-values are significant 
at the 0.001 level. MB model predictions are associated with 
a p-value of 0.17, suggesting a non-significant relationship 
between MB-predicted ET and ground truth ET over full  
24-hour periods.

We suggest, based on these results, that crop ET can 
be modelled effectively using HRI techniques and 
biometeorological data measured in vine canopies, though 
accurate calculation of As values may be critical to improving 
these predictions and enhancing generalisability.

DISCUSSION

Given the generally consistent results over multiple seasons, 
we believe the three novel HRI models for predicting the 
ET rate of a single vine are a promising new method. With 
this fine-scale understanding of the water use of individual 
plants, irrigation managers could, for the first time, adjust 
water application rates to ensure plants are receiving 
what they need and nothing more. This vital step towards 
improved efficiency of applied irrigation, which accounts for 
the vine-to-vine water use variability that results from the 
heterogeneity of vineyards, will support further development 
of important technology capable of addressing the growing 
problem of water scarcity while maintaining or improving 
grape quality.

The data presented here is strong evidence that the ET rate 
can be well described using only simple biometeorological 
measurements and either first principles or empirical models. 
Based on the performance criteria of r2 and RMSE, the EM 
model consistently explained more variation in ET rate than 
other models. However, while the EM gave the best results for 
these vines, we believe that the CMT model or MB models, 
which are based on first principles, will prove to be more 
generalizable, especially to variable canopy architectures and 
seasonal changes.

Other technologies designed to estimate ET also 
face challenges, but comparing other models to the 
HRI model is not straightforward because most other 
models make predictions at coarser time scales. 

FIGURE 5. Predicted vs. measured ET over 24 hour window
aPlot comparing the predicted ETe from all of the HRI models, and ground truth ETc from the load cells during a 24 hour window each 
day (units = kg). Data are from Vines 1–3 using dates May–August in the 2022 season. Data were fit with a multiple linear regression 
model, and a 1:1 reference line is shown in black. The multiple r-squared is 0.8232, and the CMT and EM model associated p-values 
are significant at the 0.001 level of significance. The MB model p-value is 0.17.
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Generally, data from other ET estimation methods, especially 
crop coefficient methods, is presented on the scale of months 
or seasons, such as in Li et al. (2008), not days or hours. 
However, in Gómez-Candón et al. (2021), researchers 
captured multispectral images of Durum wheat fields using 
UAVs and then calculated actual ET using a Two-Source 
Energy Balance, an application of energy balance which 
separates energy fluxes, and, therefore, ET, from plant and 
soil into two components (Norman et al., 1995; Kustas and 
Anderson, 2009). Using this method, the remotely sensed 
estimates of ET calculated with the TSEB model only 
explained 50 % of the variation in daily ground truth ET 
measurements. While these researchers exemplified how 
challenging applying ET sensing methods can be in the field, 
some studies have also reported better performance of the 
energy balance approach. Anapalli et al. (2018) demonstrated 
energy balance ET predictions can explain as much as 82 
% of the variation in lysimeter ET; however, this study 
was focused on corn and the ET measurements were less 
frequent, at once per day. Still, comparing these correlations 
to those observed in Table 1, it is reasonable to conclude that 
the HRI models offer a viable alternative to existing methods 
for estimating ET.

While the observed correlations with ET rate persist over 
multiple vines and multiple seasons, accurate prediction of 
ETe will depend on the accurate calculation of the As term, 
which may vary with plant and over time. The As terms for 
two of the models, CMT and MB, have an actual physical 
meaning, albeit with the CMT model term incorporating 
kcmt, but measuring those parameters directly may not be 
straightforward and will require further exploration. Again, 
for a single vineyard, we may not need this term to make 
good predictions of ET, but to make these predictions 
generalisable, it will be essential, especially if vines are of 
different sizes because of replanting or heterogeneities in soil 
or topography. Calculation of As terms directly from physical 
data, such as ground-based imagery of the vines collected 
throughout the season during normal tractor passes, would 
be possible. Downstream image analysis could be automated 
using a deep learning approach, similar to the approach used 
in Olenskyj et al. (2022), to extract canopy cross-sectional 
areas, total leaf area, or other physical parameters of the vine 
that are well correlated with the model As terms.

Because generalisability is likely a prerequisite for the 
viability of this technology, it is critical that we unravel the 
physical meaning of this term and how to measure it directly. 
Studying how the experimentally derived As terms change 
over the growing season provides early insights into how we 
might overcome this problem. As was previously mentioned, 
we believe the trend in the area term could have some 
consistent relationship to the trend of other plant physical 
parameters over the growing season, such as leaf area or leaf 
area index, which tends to increase until harvest (typically 
early September in California) when it begins decreasing until 
leaves are shed shortly thereafter (Netzer et al., 2009). Given 
these observations and the physical basis of two of the HRI 
models, we hypothesised that the As term will be proportional 
to other physical measurements such as LAI or canopy cross-
section. However, the experimentally derived area terms from 

the 2021 season did not resemble the expected pattern. Due 
to the way humidity and temperature sensors were mounted 
in the centre of the canopy and not in a different or more 
dynamic position, we believe the calculations of true As were 
masked by other intracanopy effects, such as physiological 
changes in transpiration rate caused by senescence of older 
leaves, fruit set, or other seasonal processes. In future studies, 
we aim to explore ways to mitigate the effect of these other 
variables.

Other challenges include issues with the relative placement 
of humidity sensors and vines, which can severely impact 
the accuracy of MB-predicted mass flux. In future seasons, 
we will investigate more accurate methods for calculating 
absolute humidity, including methods that are not sensitive to 
the relative positioning of vines and sensors or, alternatively, 
finding the optimal location of sensors for a given vine 
geometry. This issue is exemplified in Figure 2 and Table 1, 
which both show the MB predicted ET rate for Vine 2 as 
underperforming relative to other vines. Moreover, note that 
in Figure 3, the As term for the MB predictions dips below 
0 several times in 2020 and 2021, indicating a negative ET 
rate was erroneously calculated. This sensitivity to sensor 
and vine location reveals a fundamental weakness of the 
MB model, as it requires twice as many sensors as the other 
models and ideal sensor placement, and, therefore, increases 
the likelihood of incorrect measurements.

In addition to these issues, implementation in a commercial 
vineyard presents other challenges. For example, it is possible 
that canopies with less radial symmetry, such as many 
common trellis systems in California, could be more difficult 
to measure. It is also possible that certain trellis systems, 
cultivars, regions, topographical features, or other factors 
we have yet to consider could limit the performance of the 
models. In addition, sensors used by the models will need 
to be inexpensive, especially if every vine or a high density 
of vines is to be monitored, and robust in an agricultural 
environment—both topics of further research.

CONCLUSION

Even with the remaining challenges of increasing 
generalizability, the algorithms’ prediction of the ET rate of 
water from single vines is very promising as an inexpensive 
and high-resolution means of controlling irrigation. Applied 
correctly, the algorithms presented here provide an option 
to growers looking for greater efficiency of irrigation 
and improved crop quality. The HRI algorithms provide 
a theoretical and practical basis for growers to balance 
irrigation with the varied water demands of vines growing 
in heterogeneous environments, all using a non-invasive and 
automated process. 
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