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a b s t r a c t 

Spare parts inventory management is complex due to the combined impact of intermittent and vari- 

able demand patterns. It becomes even more challenging if the spare parts demand distribution is highly 

complex due to strong interdependent demand intermittency and extremely irregular demand. The re- 

search literature proposes many analytical methods for forecasting spare parts demand. But, due to their 

limited flexibility in modeling complex demand patterns, existing forecasting methods may not produce 

satisfactory results for a spare parts portfolio displaying extremely complex demand patterns. This study 

proposes a novel nonparametric Bayesian forecasting approach with its roots in the empirical Bayes 

paradigm. The method is subject to few performance constraints and is highly flexible in dealing with 

a rich diversity of demand patterns, including extreme demand complexity. We assess the relative per- 

formance of this new approach with several prominent methods in the literature using an automotive 

parts distributor’s empirical demand data for 46,272 stock-keeping units. This dataset is representative of 

typical spare parts portfolios that are characterized by a wide variety and extremely complex demand 

patterns. The experimental findings show the new Bayesian approach achieves the best overall perfor- 

mance in terms of inventory efficiency and minimal backorders for meeting specified target service lev- 

els. This favorable performance reflects the approach’s flexibility to accommodate disparate and complex 

demand patterns, including interdependence of demand intermittency, irregular demand distribution, and 

even nonstationary demand distribution to some extent, and provide robust solutions. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Effectively managing spare parts inventory for product and 

quipment maintenance is crucial for many manufacturing and ser- 

ice organizations, such as those in automotive, industrial prod- 

cts, telecommunications, medical devices, and transportation in- 

ustries among others. As noted in Deloitte Consulting (2013) , the 

pare parts business is the main driver to enhance customer sat- 

sfaction and generate repurchase opportunities in many firms. Es- 

imates of the global spare parts market size range from $700 bil- 

ion to $1.5 trillion ( Desomer, 2011 ; Jasper, 2006 ). Because of rel-

tively high profit margins, a company’s spare parts business unit 

lone may account for up to 75 percent of the firm’s overall profits 

 Desomer, 2011 ). Thus, properly managing spare parts inventory is 
∗ Corresponding author. 

E-mail address: yuan.ye@csus.edu (Y. Ye). 

e

t

S

H

ttps://doi.org/10.1016/j.ejor.2022.02.033 

377-2217/© 2023 The Authors. Published by Elsevier B.V. This is an open access article u
ssential to ensure smooth operations and boost the firm’s bottom- 

ine. 

However, intermittent demand patterns; i.e., random demand 

ith a large portion of zero values and highly erratic nonzero de- 

and, are common among spare parts, which complicates fore- 

asting ( Boylan & Syntetos, 2010 ; Cattani, Jacobs & Schoenfelder, 

011 ) and ultimately inventory management ( Bacchetti & Saccani, 

012 ; Wouters & Rustenburg, 2014 ). In a Delphi study of senior ser- 

ice parts managers, Boone, Craighead and Hanna (2008) identify 

naccurate forecasts as one of the top two challenges confronting 

ervice parts inventory management. 

Often, the literature considers demand forecasting and inven- 

ory management as separate problems; that is, forecasting litera- 

ure ignores the impact of the forecast method on inventory lev- 

ls and customer service, while the inventory literature assumes 

he demand distribution and its parameters are known ( Goltsos, 

yntetos, Glock & Ioannou, 2021 ; Syntetos, Babai & Gardner, 2015 ). 

owever, accounting for the interactions between the forecasting 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ethod and inventory system is imperative for efficient inventory 

anagement. 

Consider a multi-period inventory management system for a 

pare part with intermittent demand and nonzero replenishment 

ead time. Because of high demand uncertainty, safety stock inven- 

ory is held to protect against shortages during the replenishment 

ycle. The objective is to determine the minimum inventory posi- 

ion (on-hand and on-order inventory) at order placement to en- 

ure a specified service level as defined by either the probability 

f not stocking out during the replenishment cycle or the fraction 

f demand supplied from on-hand inventory. This decision requires 

redicting the replenishment cycle demand (RCD) distribution dur- 

ng which time the inventory system is vulnerable to stock out. The 

eplenishment cycle length for the continuous review, fixed order 

uantity inventory model (Q, r) is the replenishment lead time (L); 

nd for the periodic review (T, R) model with order-up-to level R 

nd review interval (T), the replenishment cycle length is L + T . Re- 

ardless of the inventory control system, the appropriate choice of 

orecast method and parameters can reduce the replenishment cy- 

le’s forecast error and consequent safety stock ( Boylan & Syntetos, 

010 ). 

The two main schools of thought for intermittent demand fore- 

asting embrace either a parametric or nonparametric approach. 

arametric methods, such as simple exponential smoothing (SES), 

roston’s (1972) method (CM) and some recent Bayesian methods, 

ssume a known standard demand distribution (e.g., Normal, Pois- 

on, compound Poisson, uniform) per unit time and estimate its 

arameters, typically the mean and variance, to predict the replen- 

shment cycle’s demand. Nonparametric methods do not rely on 

ny demand distributional assumption. For instance, nonparametric 

ootstrapping methods randomly resample historical demand data 

nd construct an empirical frequency distribution of replenishment 

ycle demand. The nonparametric domain also includes neural net- 

ork (NN) methods, which are data driven and free of restrictive 

robabilistic model assumptions ( Babai, Tsadiras & Papadopoulos, 

020 ; Boylan & Syntetos, 2021 ). There is no consensus in the lit-

rature on whether the parametric or nonparametric approach is 

est suited for all industry applications. Instead, the relative per- 

ormance of the methods appears to be determined by how well 

he model’s features (particularly, its demand distribution assump- 

ions) fit the particular characteristics of industrial problems. 

This study is motivated by research collaboration with a heavy 

ruck spare parts distributor. The distributor seeks to maintain a 

igh spare parts in-stock inventory service level at minimal inven- 

ory investment at their distribution centers. Achieving high fore- 

ast accuracy at the item level plays a key role in balancing these 

radeoffs. In addition to serving as industry knowledge experts, the 

rm assembled a dataset consisting of three years of bi-weekly 

emand data for 46,272 SKUs stocked at the firm’s largest distri- 

ution center. This empirical dataset is distinguished from others 

sed in spare parts forecasting research due to the wide variety 

nd complexity of the SKU’s demand patterns, which range from 

o demand intermittency to many consecutive periods of demand 

ntermittency and from standard, stationary nonzero demand dis- 

ributions to highly irregular and/or nonstationary demand distri- 

utions. As a result, the distributor is unable to achieve its goals 

sing currently available forecasting methods due to their limited 

exibility to effectively deal with the extremely wide variety of 

KU demand patterns represented in the product portfolio. 

This research proposes a novel nonparametric empirical Bayes- 

ased bootstrapping approach (EBBA) as a possible solution for 

he challenge faced by this distributor and many other companies. 

e use the firm’s actual demand data to compare the forecast- 

ng performance of the EBBA method with seven proven methods 

escribed in the literature. Experimental results reveal the robust- 

ess of the EBBA as it achieves better overall performance than 
256 
he other methods in terms of inventory efficiency, fewer backo- 

ders, and achieving desired customer service levels. EBBA is only 

onstrained from achieving a target customer service level when 

emand patterns are nonstationary with steep increases in mean 

nd standard deviation of nonzero demand over time. This favor- 

ble performance is due to the approach’s flexibility to accommo- 

ate disparate and complex demand patterns, including interde- 

endent demand intermittency, irregular demand distribution, and 

ven nonstationary demand distribution to some extent. 

In summary, the major contributions of the paper are: 

1. The paper proposes a novel nonparametric Bayesian bootstrap- 

ping method that is highly flexible to accommodate the rich di- 

versity of demand patterns, including extreme complexity, fac- 

ing spare parts inventory systems, and thus provide robust so- 

lutions in terms of inventory efficiency and meeting customer 

service objectives. 

2. The paper introduces a distinctive empirical demand data set 

for 46,272 truck spare parts that displays extreme demand 

complexity. The dataset is available upon a proper request to 

the authors of this study and can be used for checking flexi- 

bility and robustness of a forecasting method in dealing with 

highly complex demand patterns. 

3. The paper compares the forecasting performance of the new 

Bayesian method with that of several proven parametric 

and nonparametric methods on the empirical dataset, which 

demonstrates the superior performance of the new method and 

reveals some new insights into spare parts demand forecasting. 

The remainder of this paper is organized as follows Section 2 . 

ositions this research in the literature and provides the re- 

earch background Section 3 . presents details of our new Bayesian 

ethod for spar part demand forecasting Section 4 . investigates 

he method’s performance in comparison with several proven 

enchmark methods for our empirical dataset Section 5 . discusses 

ur findings and concludes the paper with future research sugges- 

ions. 

. RESEARCH background 

The intermittent demand, spare parts forecasting literature is 

ast and expanding rapidly. Thus, this survey discusses only re- 

earch closely related to this project. For a more in-depth litera- 

ure review, see Boylan and Syntetos (2010) , Hu, Chakhar, Siraj and 

abib (2018) and Hasni, Aguir, Babai and Jemai (2019) , Petropoulos, 

akridakis, Assimakopoulos and Nikolopoulos (2014) , Syntetos, 

abai, Boylan, Kolassa and Nikolopoulos (2016) , and most recently 

ince, Turrini and Meissner (2021) . As common in the literature, 

e classify the research by parametric and nonparametric meth- 

ds. 

.1. Parametric methods 

Parametric methods assume demand follows a hypothesized 

robability distribution (e.g., Normal or Poisson) whose parameters 

re estimated using a forecasting method. The demand distribution 

arameters are then used to set the inventory policy parameters 

e.g., reorder point, order up to level, safety stock) by extrapolat- 

ng them to predict the RCD distribution. Due to their ease of im- 

lementation and ability to provide reasonably good forecasts, the 

arametric SES and CM are frequently incorporated into Enterprise 

esource Planning (ERP) type solutions and forecasting software 

 Boylan & Syntetos, 2010 ; Forecast Pro, 2020 ). SES, initially devel- 

ped to forecast spare parts demand for faster-moving items, esti- 

ates the mean demand without distinguishing among zero and 

onzero demand periods. Croston (1972) observes that intermit- 

ent demand patterns are constructed from two elements, nonzero 
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emand size and the time interval between demand occurrences, 

oth of which can be independently forecast using exponential 

moothing. Croston (1972) assumes nonzero demand sizes are nor- 

ally distributed, demand occurrences follow a Bernoulli process 

here inter-arrival times of demand occurrences are geometrically 

istributed, and nonzero demand sizes and inter-arrival times are 

utually independent. The ratio of the predicted nonzero demand 

ize over inter-arrival time provides a point estimate of average 

emand per unit time, which when combined with an estimate 

f the variance of forecast errors, can estimate the RCD’s CDF of 

he hypothesized probability distribution. When demand occurs in 

very time period, the CM and SES forecasts produce identical re- 

ults. 

Syntetos and Boylan (2001) show that the CM is biased 

ith a tendency to over-forecast demand. Syntetos and Boylan 

2005) propose the SBA method to nearly eliminate the CM’s bias 

nd show, using simulated and empirical data, the SBA more ac- 

urately predicts intermittent demand than SES and CM. Teunter, 

yntetos and Babai (2011) propose the TSB modification to the CM 

ethod. The modification updates the probability of demand oc- 

urrence and nonzero demand size at the end of every period, in- 

tead of after every nonzero demand occurrence. This better pre- 

icts demand after long time intervals with zero demand as com- 

only associated with spare parts demand, and particularly prod- 

ct obsolescence. Empirical studies reported by Syntetos, Babai and 

ltay (2012) and Syntetos, Lengu and Babai (2013) suggest that 

ompound Poisson distributions, of which Negative Binomial dis- 

ribution is one special case, often effectively describe intermittent 

ustomer demand patterns for many spare part situations. 

Several researchers have developed parametric Bayesian-based 

orecasting methods (e.g., Hill, 1997 ; Silver, 1965 ), but few of them 

ddress intermittent demand situations. Aronis, Magou, Dekker 

nd Tagaras (2004) propose the Poisson-Gamma Bayesian (PGB) 

ethod assuming demand is Poisson distributed and the prior dis- 

ribution is the Gamma distribution. The posterior predictive dis- 

ribution of demand per time period is a Negative Binomial dis- 

ribution. The method yields a closed-form expression of the lead- 

ime demand distribution, which is used for setting the order up to 

evel, S , of an ( S -1, S ) inventory system in support a new product

ine of electronic equipment where historical failure rate data is 

ot available. The PGB method, based on a prior built from aggre- 

ate historical data from similar items, yields lower base stock in- 

entory levels than a Bayesian approach using engineering reliabil- 

ty prediction models as the prior distribution. Dolgui and Pashke- 

ich (2008) study a spare parts inventory system with multiple 

low-moving items and sparse demand history. Their generalized 

ayesian method assumes a population-averaged beta distribution 

s the prior and the binomial distribution as the likelihood func- 

ion, leading to a beta-binominal posterior distribution for model- 

ng lead time demand distribution for a group of related items. 

Babai, Chen, Syntetos and Lengu (2021) propose an alterna- 

ive parametric compound Poisson Bayesian (CPB) method assum- 

ng demand follows a compound Poisson-Geometric distribution. 

 comparative study using 7400 theoretically generated demand 

eries and an empirical dataset of approximately 30 0 0 SKUs from 

he automotive sector reveals that both the PGB and CPB Bayesian 

ethods outperform the SBA method and nonparametric WSS 

ethod, proposed by Willemain, Smart and Schwarz (2004) , in 

erms of inventory efficiency and meeting a target customer ser- 

ice level. The CPB method achieves the highest service level, but 

he PGB approach has fewer backorders. 

The general benefit of a Bayesian parametric model is that 

hen the empirical data match precisely the assumed parametric 

istribution of the model, the model will theoretically report the 

est model performance over all other competing models ( Gönen, 

ohnson, Lu & Westfall, 2019 ). Nevertheless, all the parametric 
257 
ethods impose strong probabilistic assumptions on the data and 

odel parameters, which constrain their flexibility, and thus abil- 

ty to effectively address situations where the demand distribu- 

ions do not match the specific model assumptions. For instance, 

GB explicitly depends on an expert’s ability to accurately and re- 

iably determine initial estimates of the model parameters, which 

re the critical issue for obtaining reasonable demand forecasts 

 Aronis et al., 2004 ). However, expert’s opinions are unrealistic in 

any cases, especially for spare parts inventory systems where de- 

and often has an irregular distribution. Even experts with con- 

iderable knowledge of past demand histories may not reliably es- 

imate, as a prior , the characteristics of the demand distribution, 

uch as its mean demand or an estimated inventory value that is 

reater than 95% of the cumulative demand during the replenish- 

ent cycle. In general, if a parametric model is incorrectly speci- 

ed, that is, the data significantly violates its underlying model as- 

umptions, it can lead to biased and inconsistent predictions, and 

ltimately to inappropriate inferences and suboptimal recommen- 

ations. ( Nambiar, Simchi-Levi & Wang, 2019 ). Frazier, Robert and 

ousseau (2020) and Hong and Martin (2020) show that a mis- 

pecified Bayesian model can yield an ill-behaved asymptotic pos- 

erior distribution. 

.2. Nonparametric methods 

Nonparametric methods often reconstruct the replenishment 

ycle demand distribution from empirical data using a bootstrap- 

ing method. Thus, unlike parametric approaches, nonparametric 

ethods do not rely on a specific distributional assumption so that 

hey are more flexible and model misspecification is less a con- 

ern. As such, the nonparametric methods appear to be more suit- 

ble for a spare parts portfolio having highly irregular demand pat- 

erns as exemplified by our dataset. Efron’s (1979) bootstrapping 

pproach randomly resamples, with replacement, values from the 

tem’s empirical demand history to generate pseudo-replicate his- 

ograms of the replenishment demand distribution. The pseudo- 

eplicates are a valid approximation of the true, unknown distri- 

ution that generates the datasets ( Efron, 1979 , Alfaro, Zoller & 

utzoni, 2003 ). The pseudo-replicates provide a simple frequency 

nterpretation of the CDF, from which the analyst can determine 

he inventory control parameters for meeting a specified inventory 

ervice level. Furthermore, the bootstrapping approach is explicitly 

overned by the uniform probability model for resampling, i.e., all 

ata points in the original sample have an equal probability of be- 

ng selected into a resampling sample. So, it is more flexible and 

obust than the parametric methods when dealing with perturba- 

ions on input data. 

The WSS method addresses two main limitations of Efron’s 

ootstrapping approach. First, WSS models autocorrelation be- 

ween successive demand occurrences as a two-state Markov pro- 

ess. Second, in Efron’s method, the data obtained for each boot- 

trap replication is drawn independently from the sample CDF, 

hich may not contain all possible demand values in the popu- 

ation CDF. WSS rectifies this by ‘jittering’; that is, adding random 

ariation to the sample demand values prior to inclusion in the re- 

onstructed empirical distribution. Comparative study using mul- 

iple industrial datasets indicates that the WSS method produces 

ore accurate predictions of the cumulative RCD than SES and the 

M. 

Some improvements to WSS are suggested by Rego and 

esquita (2015) and Zhou and Viswanathan (2011) . Viswanathan 

nd Zhou (2008) propose the VZ method that generates nonzero 

emand occurrences using the historical distribution of the inter- 

rrival times instead of the two-state Markov model in the WSS 

ethod. Zhou and Viswanathan (2011) compare the relative per- 

ormance of VZ and two variants of the SBA parametric method 
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 Babai & Syntetos, 2007 ), reporting mixed results. On randomly 

enerated datasets with long demand history, the VZ heuristic sat- 

sfies a specified replenishment cycle service level with less inven- 

ory holding and shortage costs than the parametric approaches. 

owever, using industrial demand data, characterized by limited 

istorical demand, the parametric approaches perform better. 

While researchers investigate both the frequentist and Bayesian 

arametric methods for forecasting intermittent demand, to the 

uthors’ best knowledge, a Bayesian nonparametric method does 

ot exist for this purpose. From the Bayesian perspective, Efron’s 

ootstrapping approach is analogous to a specialized Bayesian 

odel ( Rubin, 1981 ). Hastie, Tibshirani and Friedman (2017) call 

his classical bootstrapping methodology, on which the WSS 

ethod and its improvements are based, a “poor man’s” Bayesian 

odel because it is constrained by the strong uninformative 

rior assumption that all data points in the observed sample 

ave an equal probability of appearing in a resampling sample. 

owever, one notable problem with this resampling procedure 

s that it may not well represent the distributional feature of 

bserved data. This is usually of little concern when the data 

ave, or approximately have, a regular standard distribution 

uch as Normal distribution, Negative Binomial distribution, or 

thers. However, if demand is characterized by some irregular 

istributions, the problem becomes troublesome. For exam- 

le, one item in our industrial dataset has nonzero demands 

n 30 out of 81 time periods as listed below in time order, 

 462 , 7 , 66 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 3 , 12 , 6 , 1 , 1 , 1 , 1 , 1 , 2 , ] 

 10 , 6 , 2 , 2 , 6 , 4 , 1 , 1 , 4 , 2 , 3 , 3 ] . 

Using the classical bootstrapping method we will select a de- 

and size 462 with equal probability of 3.33% ( = 1/30) as select- 

ng any other record into a resampling sample, despite that this 

ata point appears to be a highly irregular observation relative to 

he other observations such that it should, more reasonably, have 

 much lower likelihood than the other demand sizes to occur in 

he future. As a result, the company may maintain an unreason- 

bly high inventory level for this item based on demand forecasts 

roduced by the WSS approach. For instance, when using the WSS 

pproach to calculate the order-up-to level for this item based on 

5% target service level, we estimate the order-up-to level to be 

24 with a 100% achieved SL that is significantly above the target 

ervice level. 

Under the Bayesian framework, it is possible to overcome this 

imitation of the classical bootstrapping method by replacing the 

ninformative prior assumption with an informative one that al- 

ows more (or less) probable data points to be selected into a re- 

ampling sample with higher (or lower) probability. In the stan- 

ard Bayesian approach, the informative prior assumption must be 

pecified before observing any data. However, in our case, knowl- 

dge about the relative likelihood of different data points is ac- 

uired only after the data are collected. As a result, the standard 

ayesian workflow may not work for our task. Instead, the Empir- 

cal Bayes (EB) paradigm attributed to Robbins (1955) represents a 

ore feasible approach. In Appendix A , we provide a brief mathe- 

atical description of the EB approach that justifies this paradigm 

oth theoretically and technically. Basically, the EB approach dif- 

erentiates itself from the standard Bayesian approach by estimat- 

ng the prior distribution of model parameters from observed in- 

ample data. As such, this approach is a compromise between fre- 

uentist and Bayesian approaches. On the one hand, the EB ap- 

roach models a problem using the standard Bayesian techniques 

hat can produce more effective solutions by incorporating a rea- 

onable prior distribution assumption on model parameters. On 

he other hand, instead of manually fixing these unknown param- 

ters (i.e., the hyper-parameters) in the prior distribution, EB esti- 

ates them separately for different data samples, which enhances 

he usage of local data. Consequently, the EB model is more flex- 
258 
ble than a standard Bayesian model because its prior assump- 

ion can be adjusted for different data situations ( Casella, 1992 ). 

his makes the EB approach particularly appealing for forecast- 

ng demand data with irregular distributions. Munyangabo, Wait- 

tu and Wanjoya (2019) show that EB methods are efficient data- 

nalysis tools, especially when data have irregular distributions. EB 

ethods have received attention from operational researchers and 

een used to solve a variety of real-world problems. For example, 

uigley, Hardman, Bedford and Walls (2011) develop an EB esti- 

ator of the frequency of rare events for risk assessment. Chun 

2016) proposes an EB method for predicting the number of con- 

orming items during sequential screening. Quigley, Walls, Demirel, 

acCarthy and Parsa (2018) develop an EB approach in support of 

upply chain managers’ decisions on the optimal level of invest- 

ent for improving quality performance under uncertainty. Eckert, 

yndman and Panagiotelis (2021) use an EB prior in their fore- 

asting of Swiss exports. These application cases consistently show 

hat EB methods can produce model outputs that are more accu- 

ate and robust when confronted with high uncertainty and data 

olatility. We refer interested readers to Carlin and Louis (20 0 0) for 

 brief overview of EB methods and Casella (1992) for a compre- 

ensive tutorial of EB methods, including theoretical explanations 

nd illustrative examples. 

Both parametric and nonparametric methods implicitly assume 

 time-invariant demand distribution and can perform poorly if the 

emand distribution is nonstationary. Generally speaking, there are 

wo types of stationarity for time series data, strict stationarity and 

eak stationarity. If a time series is strongly stationary, its proba- 

ility distribution should be strictly identical over time. In the case 

f weak stationarity, a time series may have a time-variant distri- 

ution shape but its mean and autocovariance should be finite and 

nchanged. In this regard, a spare parts portfolio with extremely 

omplex demand patterns is more likely to include nonstation- 

ry demand data. Parametric methods subject to strong distribu- 

ion assumptions are apparently more vulnerable to nonstationary 

emand distribution. On the other hand, the bootstrapping-based 

ethods may generally be more robust against time-variant de- 

and distribution. This is because their predicted demand distri- 

ution for each stocked item is empirically determined by contin- 

ously resampling from its own observed demand data, thus more 

uickly adjusting to a change of demand distribution embodied in 

ewly observed data. 

It is worth mentioning that advancements in machine learn- 

ng and artificial intelligence also motivate the development of 

eural network (NN) methods for spare parts demand forecast- 

ng. Zhang, Patuwo and Hu (1998) provide an overview of NN 

orecasting methods, including the effect of key factors on fore- 

asting performance. Gutierrez, Solis and Mukhopadhyay (2008) , 

ourentzes (2013) , Lolli et al. (2017) , and Babai et al. (2020) are

he most prominent research studies using NNs for intermittent 

emand spare parts forecasting. Unlike traditional methods, NNs 

re nonlinear data-driven, self-adaptive methods with the ability 

o learn from data samples and identify hidden functional relation- 

hips among data without any distribution assumptions. However, 

heir effectiveness for spare parts forecasting and inventory con- 

rol in industrial settings is unproven at this time. Gutierrez et al. 

2008) note that their NN-GUT method consistently outperforms 

BA, CM, and SES methods when the average nonzero demand size 

s smaller for the training sample as compared to the test sam- 

les, but usually underperforms when the average demand size is 

reater for the training samples. In other words, the performance 

f NN forecasting methods is also constrained by nonstationary 

emand distribution. Babai et al. (2020) propose several modifi- 

ations to the NN-GUT method and compare the performance of 

hree variants of their NN-LAG model against the SES, SBA, CM, 

SS, VZ, NN-GUT, assuming a periodic (T,R) order-up-to inventory 
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ystem with a cycle service level (CSL) objective. The results are in- 

onclusive in determining which method attains the desired CSL at 

he lowest inventory investment. Boylan and Syntetos (2021) note 

he difficulty of developing NNs for intermittent demand forecast- 

ng and the extra caution needed to study their predictive perfor- 

ance. Hence, in accordance with the main scope of this paper, 

e do not include a NN method in this study. 

.3. Comparative studies 

Overall, research seeking to demonstrate the superiority of any 

articular parametric or nonparametric approaches to forecasting 

pare parts with intermittent demand is inconclusive. Syntetos et 

l. (2015) compare the performance of WSS, SES, CM, and SBA us- 

ng inventory efficiency curves finding marginal superiority of WSS 

ver the parametric methods when lead times are short, and de- 

and is moderately irregular. However, SBA is the best performer 

iven more irregular demand and longer lead times. Considering 

he SBA, VZ, and WSS methods, Hasni et al. (2019) show that fore- 

asting method performance is sensitive to the problem’s length 

f demand history, replenishment cycle lead time, demand dis- 

ribution parameters, and cost parameters. Research findings, us- 

ng computer generated demand, reveal: (i) SBA has lower inven- 

ory cost than VZ for problems with higher coefficient of variations 

or demand interval and/or nonzero demand, (ii) for long demand 

istories, VZ is the best performing method if the variability of 

onzero demands is low, but SBA outperforms the bootstrapping 

pproaches as variability increases. For highly variable nonzero de- 

ands, WSS outperforms VZ, but not SBA, and (iii) for short de- 

and histories, SBA is dominant for short lead times, VZ is best 

ith low nonzero demand variability, and WSS is preferred only 

hen nonzero demand variability and lead times are high. Us- 

ng empirical datasets on 50 0 0 aircraft spare parts, SBA leads to 

he lowest inventory holding and backorder cost in 82.4% of the 

est problems. As expected, the estimator with the highest inven- 

ory level coincides with the highest fill rate, and visa-versus. In 

 comprehensive survey of intermittent demand forecasting meth- 

ds, Pince et al. (2021) find that SBA and CM seem to be bet-

er choices for industry application than other parametric meth- 

ds, and the WSS method is usually superior to the other non- 

arametric methods in terms of accuracy (57% to 43%) and inven- 

ory (63% to 28%) measures. In general, the nonparametric meth- 

ds outperform parametric methods on accuracy measures (64% to 

5%) and inventory measures (60% to 33%), but they conclude that 

t is difficult to provide clear-cut recommendations between para- 

etric and nonparametric methods in terms of inventory perfor- 

ance and empirical data type. This difficulty is at least partially 

ue to limited diversity of the demand patterns in the empirical 

nd simulated datasets used by the existing studies. Hence, spe- 

ific models perform best on datasets aligned with their model as- 

umptions, but they have limited flexibility to address the variety 

f complex demand patterns beyond the model assumptions. 

We contribute to the body of research by developing and test- 

ng an empirical Bayes-based bootstrapping approach (EBBA) that 

s structurally analogous to the WSS bootstrap heuristic. However, 

t is considerably more flexible in dealing with extremely irregular 

emand patterns and strongly interdependent demand intermit- 

ency. Using a large empirical dataset, we evaluate and compare 

ur approach’s performance against the most proven nonparamet- 

ic and parametric approaches and a comparable Bayesian method 

CPB) in the literature. Our analysis shows that the new Bayesian 

ethod is superior to the other methods in terms of overall fore- 

asting accuracy and inventory performance for the large spare 

arts portfolio that displays extremely high complexity in demand 

atterns. 
259 
. MODEL description 

We propose a unique nonparametric Empirical Bayesian boot- 

trap approach (EBBA) to forecast spare parts demand. The method 

ccommodates interdependent demand intermittency and irregular 

onzero demand to overcome the weaknesses of the existing ap- 

roaches and provide a better foundation for inventory control. 

Following Willemain et al. (2004) , an intermittent demand 

ataset D T = ( D 1 , D 2 , . . . , D T ) is decomposed into two separate 

omponents. One is a two-state Markov chain, denoted by M T = 

 M 1 , M 2 , . . . , M T ) , of sequential 0–1 state indicator values. The 

ther has assumingly nonzero demand sizes in all periods, denoted 

y D 

+ 
T 

= ( D 

+ 
1 
, D 

+ 
2 

. . . , D 

+ 
T 
) . Both M T and D 

+ 
T 

are simulated from 

osterior distributions derived from the proposed Bayesian models. 

he forecast of the actual demand series is the Hadamard product 

f M T and D 

+ 
T 

, D T = M T ◦ D 

+ 
T 

; that is, all nonzero demand sizes in

 T are randomly intermitted by the “0 ′′ state in the accompanying 

 T . 

.1. Bayesian inference of the time interval between demand 

ccurrences 

Let M T be a time homogenous binary Markov chain of 0–1 state 

ndicator values with the one-step probability transition matrix 

 tr = 

[
p 00 p 01 

p 10 p 11 

]
, 

here p 00 = 1 − p 01 and p 11 = 1 − p 10 . It is worth noting that al- 

hough P tr is time independent, the n-step transition matrix P (n ) 
tr = 

 

n 
tr is generally dependent on the time steps n ≥ 2 . The likelihood 

unction of p 01 , p 10 is 

 ( M T | p 01 , p 10 ) = p 00 
t 00 p t 01 

01 
p t 10 

10 
p 11 

t 11 = ( 1 − p 01 ) 
t 00 p t 01 

01 
p t 10 

10 ( 1 − p 10 ) 
t 11 

here t i j is the number of one-step transition from state i to j in 

 T , and 

∑ 

i, j=0 , 1 t i j = T − 1 . The inference on p 01 , p 10 can follow 

ither a frequentist or Bayesian approach. Within the frequentist 

ramework, the maximum likelihood estimate of P tr is 

ˆ 
 tr = 

[
ˆ p 00 ˆ p 01 

ˆ p 10 ˆ p 11 

]
= 

[
t 00 

t 00 + t 01 

t 01 

t 00 + t 01 
t 10 

t 10 + t 11 

t 11 

t 10 + t 11 

]
. 

The k -step forecast of demand states, M T +1 , . . . , M T + k , are sim- 

lated from 

ˆ P tr conditioning on the current state M T . One draw- 

ack of this procedure is that it only provides pointwise estimates 

f p 01 , p 10 and thus, does not account for the full uncertainty about 

he two parameters. For instance, if one historical (i.e., sampled) 

ataset does not include any periods with zero demand, the fre- 

uentist estimate unreasonably rules out the possibility of future 

eriods with zero demand. In other words, ˆ p 01 = ˆ p 10 = 0 . 

ˆ 
 tr = 

[
0 0 

0 1 

]

In this case, a properly chosen parametric model (e.g., com- 

ound Poisson distribution) may perform better than the WSS ap- 

roach if the data appear to be generated from the assumed dis- 

ribution. 

The Bayesian approach infers the posterior distribution of 

p 01 , p 10 , f ( p 01 , p 10 | M T ) , by updating the prior distribution 

( p 01 , p 10 ) using observed values M T . Hence, a potential benefit 

f the Bayesian estimation over its frequentist counterpart is that 

t considers the full demand distributional form, and thus full un- 

ertainty about the values of p 01 , p 10 . Following the above exam- 

le, even if a historical dataset includes all nonzero demands, the 

ayesian posterior samples of p 10 still contains positive p 10 > 0 . 

hat implies there is still a possibility of observing zero demand in 

he future, representing a more reasonable parameter estimation. 
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s a result, this Bayesian treatment can better deal with a change 

n demand intermittency pattern over time. 

To obtain the distributional estimates, we must specify the 

rior distribution π( p 01 , p 10 ) , but there are not any set rules gov- 

rning how a prior distribution should be placed on the model 

arameters. As such, prior specification is essentially subjective. 

n Bayesian inference for a probability parameter p, the conven- 

ional choice is to assign it a Beta distribution, π(p) ∼ Beta ( α, β) . 

or the bivariate parameter vector ( p 01 , p 10 ) , a natural extension 

f the Beta prior is the bivariate Dirichlet prior π( p 01 , p 10 ) ∼
ir ( α01 , α10 ) . But, because it requires p 01 + p 10 = 1 , the Dirichlet 

rior implicitly assumes the n-step transition matrix P (n ) 
tr is time- 

ndependent (i.e., P (n ) 
tr = P n tr = P tr ). This assumption is rather unre- 

listic for most real-world scenarios. Another possible alternative 

s to assign a Beta prior (e.g., Beta ( 0 . 5 , 0 . 5 ) ) separately to p 01 and 

p 10 . However, this prior imposes a strong presumption that p 01 and 

p 10 are independent of each other, which may not reflect the ac- 

ual situation in our problem. 

Instead, we use a Jeffrey’s prior on p 01 , p 10 , which is defined in 

erms of the Fisher information 

( p 01 , p 10 ) ∝ I ( p 01 , p 10 ) 
1 / 2 

here the Fisher information I( p 01 , p 10 ) is given by 

 ( p 01 , p 10 ) 
1 / 2 = E 

[
−∂ 2 L ( M T | p 01 , p 10 ) 

∂ p 01 ∂ p 10 

]
. 

A simple functional form of the Jeffrey’s prior, derived in 

ssoudou and Essebbar (2004) , is 

( p 01 , p 10 ) ∝ 

[
( T − 1 ) ( p 01 + p 10 ) − 1 + ( 1 − p 01 − p 10 ) 

T −1 
] 1 

2 

[
( T − 1 ) p 01 ( p 01 + p 10 ) + p 10 ( 1 − p 01 − p 10 ) 

T −1 
] 1 

2 

p t 01 −1 / 2 
01 ( 1 − p 01 ) 

t 00 −1 / 2 p t 10 

10 ( 1 − p 10 ) 
t 11 −1 / 2 

( p 01 + p 10 ) 
−2 

. (1) 

With this prior setting, the model doesn’t rely on either of the 

wo aforementioned assumptions, thus suggesting a better fit for 

eal-world data. The Bayesian posterior distribution f ( p 01 , p 10 | M T ) 

or the Jeffrey’s prior can be easily estimated, for example, by 

pplying the Independent Metropolis-Hastings (IMH) algorithm 

 Robert & Casella, 2013 ). 

.2. Bayesian bootstrapping inference of nonzero demand size 

The WSS approach forecasts the nonzero demand size by ran- 

omly sampling, with replacement, from the historical set of 

onzero demands. The most obvious advantage of this method is 

hat it does not depend on standard distributional assumptions. In- 

tead, all observations in the historical dataset are equally likely to 

e selected according to a uniform resampling distribution, with 

eplacement. While this assumption is intuitively justified under 

he frequentist framework, it is less reasonable in the Bayesian do- 

ain. 

The Bayesian analogy to the classical bootstrapping method- 

logy assumes a prior distribution of resampling probability as 

prior ∼ Dirichlet ( αn ) , which is a Dirichlet distribution with the 

yperparameter vector αn = [ α1 , α2 . . . , αn ] wher e n is the size 

f the observed data sample (in our case, the sample of all 

onzero demand data). The posterior distribution can be given 

s πposterior ∼ Dirichlet ( 1 n + αn ) , where 1 n is an all-ones vector 

 1 1 , 1 2 , . . . , 1 n ] . To see it, simply consider that an observed nonzero 

emand sample of size n , d + = ( d + 
1 

, d + 
1 

. . . , d + n ) , is one realiza- 

ion of random resampling on its own. The parameter vector π = 

 π , π , . . . , πn ) is the probabilities of each demand data point 
1 2 

260 
eing selected into this resampling sample, whose likelihood func- 

ion conditional on the sample is 

 

(
π| d 

+ ) ∝ 

n ∏ 

i =1 

πi , 

hich is the multinomial likelihood function. We assign πprior ∼
irichlet ( αn ) because it is conjugate to the multinomial data dis- 

ribution. Then, the posterior distribution of π is given as 

posterior ∝ L 
(
π| d 

+ )πprior ∝ 

n ∏ 

i =1 

π1+ αi −1 
i 

, 

hich is Dirichlet ( 1 n + αn ) . This classical bootstrapping method 

s a special case of the general Bayesian model in which we let 

n → 0 n = [ 0 1 , 0 2 . . . , 0 n ] ( Hastie et al., 2017 , p.272) and thus use 

 strong uninformative prior distribution πprior ∼ Dirichlet ( 0 n ) to 

o the resampling. In this limit when αn = 0 n , we concentrate the 

robability mass on one data point in the sample at random indis- 

riminately. Thus, all sample data points have an equal probability 

f appearing in the new sample. 

We, instead, estimate αn based on the empirical probabil- 

ty density function (EPDF) values of observed nonzero demand 

izes. Denoting ˆ f ( d + n ) = [ ̂  f ( d + 
1 
) , ˆ f ( d + 

2 
) , . . . , ˆ f ( d + n ) ] as the vector 

f EPDF values computed at the observed nonzero demand sample 

 

+ 
n , we assume αn has the value in the form: 

n = 

ˆ f 
(
d 

+ 
n 

)
/ ̂  f 

(
d 

+ 
n 

)
1 

o that 

prior ∼ Dirichlet 

(
ˆ f 
(
d 

+ 
n 

)
/ ̂  f 

(
d 

+ 
n 

)
1 

)
(2) 

here ˆ f ( d + n ) / ̂  f ( d + n ) 1 is ˆ f ( d + n ) scaled by its L 1 - norm. For the sam-

le item discussed in Section 2.2 , this prior distribution suggests 

hat we should select the demand size of 462 into a resampling 

ample with only a 0.26% probability, significantly lower than the 

niform probability of 3.33% ( = 1 / 30 ) as in the classical bootstrap-

ing. On the other hand, the classical bootstrapping will select de- 

and size of 1 with 36.7% ( = 11 / 30 ) probability, which is lower

han the probability of 48.18% ( = 4 . 38% × 11 ) as suggested by the

prior in (2). Alternatively, the Bayesian bootstrapping assuming 

his prior distribution yields the order-up-to level for the same 

erm based on a 95% targeted CSL to be 8 with a 95.83% achieved

SL that matches the target rate. So the prior distribution provides 

 more reasonable resampling procedure for spare part demand 

ata because demand sizes with higher (or lower) empirical den- 

ity values are more likely (or less likely) to appear in resampling. 

In essence, EBBA can be considered as an improvement to 

SS that significantly enhances its flexibility to deal with inter- 

ependence of demand intermittency and irregular nonzero de- 

and distribution. The implementation procedure for the proposed 

ayesian method is summarized below. 

Bayesian Forecasting Procedure 

1: Separate an observed demand dataset d T into the two-state Markov chain 

part m T and the all-positive demand part d + n , n ≤ T . 

2: Repeat Steps 3–6 N times to produce posterior samples of k -step demand 

forecast values 

3: Simulate one posterior transition matrix conditional on m T and the 

Jeffrey’s prior in (1). 

4: Generate one k- step two-state Markov chain forecast m 

f 

k 
given the current 

state using the posterior matrix simulated in Step 3. 

5: Repeatedly select k values from d + n based on the prior resampling 

distribution in (2) and jitter the selected values based on Equation (7) in 

Willemain et al. (2004) to be the nonzero demand forecast values d f + 
k 

. 

6: Compute the Hadamard product of m 

f 

k 
and d f + 

k 
as one posterior sample of 

k -step demand forecast values. 

7: Sum the k forecast values in each of the N posterior samples to provide 

posterior samples of replenishment cycle demand; i.e., k = L k = L for the 

continuous review, fixed order quantity (Q, r) model and k = T + L for the 

periodic review (T, R) inventory model. 
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Table 1 

Summary Bi-weekly Statistics of Truck Spare Parts Industry. 

Demand interval Demand size Demand per period 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Minimum 1.00 0.00 1.05 0.21 0.22 0.50 

25th Percentile 1.01 0.12 3.08 2.30 1.64 2.24 

Median 1.26 0.59 6.54 5.22 4.29 4.97 

75th Percentile 1.84 1.30 19.78 14.59 15.49 14.13 

Maximum 6.09 12.91 69,481.98 253,421.14 62,433.09 253,421.14 
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. COMPARATIVE assessment of model performance 

The comparative assessment of forecasting and inventory per- 

ormance includes EBBA and the most proven methods in the lit- 

rature; parametric methods include SES, CM, SBA, TSB, and CPB, 

nd nonparametric methods include WSS and VZ. A description of 

he forecasting methods and the procedural steps for each method 

re given in Appendix B . Since WSS, VZ and EBBA estimate the 

ntire RCD distribution, traditional point estimate error metrics, 

uch as the mean absolute deviation (MAD) of forecast error, fall 

hort in assessing the accuracy of the nonparametric forecasts. We 

vercome this difficulty by evaluating forecast accuracy and perfor- 

ance on two dimensions: (i) pooled percentile estimates of the 

CD distribution and (ii) inventory performance in a periodic re- 

iew order-up-to inventory system. 

In practice, EBBA provides considerable statistical information 

hat is not available from parametric estimation methods. The ap- 

roach is highly flexible and robust to accommodate varying in- 

ermittent and irregular demand features without prior knowledge 

f demand characteristics. It is equally applicable in continuous 

nd periodic review inventory systems. EBBA implementation is 

traightforward with reasonable CPU computing times. This study 

as run using parallel computing and performed in R by run- 

ing an instance with 48 v CPUs on the Amazon Elastic Com- 

ute Cloud (EC2). It took less than 4 hours to process all the 

6,272 demand datasets. Considering the rapid advancements in 

usiness analytics computing, these times would be considerably 

ower on high performance systems and are expected to fall rapidly 

ver time. We illustrate one sample forecast output of EBBA in 

ppendix C . 

.1. Industrial dataset 

We assess forecasting performance using the empirical truck 

pare parts data described earlier in the paper. The test datasets, 

elected in consultation with company executives and subject mat- 

er experts, include approximately three years of bi-weekly de- 

and data for 46,272 SKUs that are stocked at the firm’s largest 

istribution center. The SKUs are a subset of 85,900 SKUs satisfy- 

ng the following criteria: (i) demand exceeds a total of 30 units 

uring the most recent three years, (ii) at least 20 percent of the 

1 bi-weekly time periods have nonzero demand occurrences and 

3) there are at least two nonzero demand points in the first 56 

i-weekly periods. 

Table 1 reports some summary statistics of the data. In 

ppendix D , Fig. D1 illustrates the actual demand and kernel es- 

imates of the empirical probability distributions for six typical 

KUs. The table and figure reveal two novel features of our de- 

and dataset. First, the time periods with zero or non-zero de- 

and often appear consecutively in clusters, suggesting strong in- 

erdependence of demand intermittency. Second, the nonzero de- 

and has extremely irregular distributions (e.g., multimodal, flat- 

opped, extremely long-tailed, relatively symmetric, or nonstation- 

ry). The extreme irregularity of the demand distributions is most 

ften a consequence of frequent but unexpected occurrence of cer- 
261 
ain demand sizes, which cannot be considered as the “normal”

bnormal observations under a probability distribution of standard 

orm. 

.2. Forecast distributional accuracy assessment 

As in Willemain et al. (2004) , we note that the nonzero demand 

ccurrences are sparse for each SKU, which suggests using the last 

eplenishment cycle’s k- period demand forecast for evaluation. We 

se the item’s earlier demand periods as the in-sample periods for 

stimating the k -step RCD posterior samples for predicting the RCD 

istribution based on some forecasting method. For i th SKU in our 

ataset , i = 1 , 2 , . . . , 46 , 272 , denote F RCD (D ) i as the cumulative

CD distribution predicted by one forecasting method. We com- 

ute the probability of no stock out for this SKU during the last 

rder cycle as F RCD ( d i ) i , where d i is the holdout sample’s demand 

alue. As a result, we obtain a large sample set of probabilities 

f no stock out P D = { F RCD ( d 1 ) 1 , F RCD ( d 2 ) 2 , . . . , F RCD ( d 46 , 272 ) 46 , 272 } . 
ccording to the universality of the uniform, if the forecasting 

ethod predicts all F RCD (D ) i s correctly, P D should follow a stan- 

ard uniform distribution. That is that the 20% percentile of P D is 

elineated at 0 . 2 , the median at 0 . 5 , and 99% percentile at 0 . 99 . A

igher degree of conformance of the estimated percentiles to the 

tandard uniform distribution is an indicator of a more accurate 

stimation of the RCD distribution by one forecasting method. 

Willemain et al. (2004) find the distributional accuracy of the 

SS method is higher than the SES and CM heuristics for replen- 

shment cycle lengths of 1, 3 and 6 time periods. We expand the 

omparison to include eight forecast methods. For CM, SBA, TSB, 

nd SES, we study situations where demand is assumed to be nor- 

ally distributed as suggested by Willemain et al. (2004) , or neg- 

tive binomially distributed as in Babai et al. (2021) . In Appendix 

 , Table E1 presents the estimated percentiles of the probability 

et P D inferred from the different forecasting methods. The results 

how that, overall, the EBBA percentile estimates have a higher de- 

ree of conformance to the uniform distribution than the others. 

ut EBBA consistently overestimates the high percentiles. Accord- 

ngly, this means EBBA tends to underestimate the probability of 

arger demand size, which is expected for our proposed method. 

hen one SKU has high variation in its demand size, especially 

ecause of some change in demand distribution over time, its em- 

irical demand distribution (which governs the resampling proce- 

ure in EBBA) estimated from one observed demand data sample 

an be inaccurate. Meanwhile, every SKU’s nonzero demand size is 

aturally bounded by zero from below and unbounded from above. 

n consequence, the inaccurate inference of empirical demand dis- 

ribution is most likely reflected in its underestimation of the prob- 

bility of larger demand size. We observe that the assumption of 

egative Binomial demand distribution generally works better than 

he Normal distribution assumption, which is consistent with the 

ndings in the literature ( Syntetos et al., 2013 , 2012 ). The rela-

ively inferior performance of CPB is not a surprise. This result 

emonstrates how model misspecification can affect one paramet- 

ic model’s forecasting performance. CPB assumes customer de- 

and over n periods is a Levy process with independent and iden- 
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Table 2 

Summary Experimental Results for all SKUs. 

Target Service Level 99% 

Stock on-hand Backorder FR (%) CSL (%) 

Median Mean Median Mean Median Mean Median Mean 

CM 18.62 188.06 0.00 16.48 100.00% 96.08% 100.00% 96.58% 

SBA 18.5 205.72 0.04 9.72 98.95% 95.69% 96.00% 96.01% 

TSB 18.06 189.44 0.05 55.60 98.94% 95.33% 96.00% 95.46% 

SES 29.8 252.70 0.00 10.13 100.00% 96.34% 100.00% 96.82% 

WSS 25.88 259.01 0.00 2.73 100.00% 97.99% 100.00% 98.23% 

VZ 20.94 246.99 0.00 6.34 100.00% 96.27% 100.00% 95.14% 

CPB 28.02 71.63 0.00 82.14 100.00% 93.77% 100.00% 88.13% 

EBBA 15.44 90.25 0.00 7.84 100.00% 95.31% 100.00% 94.85% 

Target Service Level 95% 

Stock on-hand Backorder FR (%) CSL (%) 

Median Mean Median Mean Median Mean Median Mean 

CM 11.55 107.40 0.24 18.28 95.60% 92.29% 92.00% 92.61% 

SBA 10.70 109.16 0.36 12.27 93.93% 91.03% 92.00% 90.79% 

TSB 10.56 105.74 0.36 57.70 94.00% 90.65% 92.00% 90.13% 

SES 15.20 123.21 0.24 12.37 95.65% 92.31% 92.00% 92.94% 

WSS 16.34 105.16 0.00 6.57 100.00% 95.89% 100% 95.89% 

VZ 13.44 94.77 0.04 12.91 99.20% 93.00% 96.00% 90.60% 

CPB 10.90 46.85 0.12 92.10 95.65% 87.59% 96.00% 77.20% 

EBBA 9.42 63.27 0.24 13.26 95.92% 90.91% 92.00% 89.23% 

Target Service Level 90% 

Stock on-hand Backorder FR (%) CSL (%) 

Median Mean Median Mean Median Mean Median Mean 

CM 8.64 81.86 0.48 20.49 89.49% 86.44% 88.00% 88.24% 

SBA 7.64 80.37 0.68 16.09 91.86% 88.70% 88.00% 85.16% 

TSB 7.60 79.40 0.68 60.15 89.35% 86.67% 88.00% 84.67% 

SES 10.38 88.97 0.52 15.30 91.67% 88.22% 92.00% 88.79% 

WSS 11.96 80.74 0.08 9.66 98.25% 93.41% 96.00% 92.36% 

VZ 9.63 71.09 0.24 18.11 95.00% 89.63% 92.00% 86.45% 

CPB 7.72 42.66 0.44 94.12 88.24% 84.12% 92.00% 73.04% 

EBBA 7.16 52.67 0.48 16.37 92.32% 87.64% 88.00% 84.85% 

Target Service Level 85% 

Stock on-hand Backorder FR (%) CSL (%) 

Median Mean Median Mean Median Mean Median Mean 

CM 7.00 68.52 0.68 22.67 85.71% 82.91% 88.00% 84.16% 

SBA 5.98 66.17 0.96 19.69 88.71% 85.61% 80.00% 80.00% 

TSB 6.00 65.74 0.96 62.55 85.61% 82.99% 80.00% 79.71% 

SES 8.18 73.68 0.76 18.08 88.35% 84.97% 84.00% 85.16% 

WSS 9.50 67.39 0.24 12.19 95.45% 90.99% 92.00% 89.31% 

VZ 7.56 59.66 0.48 20.54 91.43% 86.64% 88.00% 82.92% 

CPB 6.26 40.73 0.72 94.99 83.68% 81.38% 84.00% 70.00% 

EBBA 5.90 45.78 0.72 18.73 89.30% 85.00% 84.00% 81.28% 
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ically distributed (i.i.d) increments. However, demand intermit- 

ency in our data shows a strong correlation between different pe- 

iods. Ignoring the strong data interdependence in demand fore- 

asting is especially concerning in that it may accumulate fore- 

asting error over time. The assumption that demand follows an 

dentical parametric distribution in every period is also not valid 

or our dataset. As a result, the posterior predictive demand distri- 

ution for many SKUs in our dataset can be ill-behaved. 

.3. Assessing forecast and inventory performance of the forecasting 

ethods 

We conduct a comparative assessment of the inventory effi- 

iency and achieved customer service level performance among 

he forecast methods. The experiments use the datasets for the 

6,272 SKUs of the automotive parts distributor. The first 56 time 

eriods are the in-sample data for establishing the forecast method 

arameter values and the prior distribution. 1 The remaining 25 
1 For the parametric methods, the demand of the first 12 periods are used as an 

nitialization sample to computer the beginning nonzero demand size and demand 

nterval. If no demand occurs in the first 12 time periods, the initial demand inter- 

al is set as 1 for CM, SBA, and TSB. 

i

B

2  

m

d
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eriods constitute the out-sample data for evaluating the perfor- 

ance of the forecasting methods. 

As suggested by Gardner and Koehler (2005) , Syntetos et al. 

2015) , Turrini and Meissner (2019) , and Babai et al. (2021) , we

easure forecast performance based on its impact on the firm’s 

nventory system efficiency in terms of average inventory, backo- 

der levels, fill rate and achieved customer service level. We sim- 

late the periodic review (TR) inventory system with order-up-to 

evel R . The review interval T and lead time L are both set equal

o one bi-weekly time period, equating to a 4-week replenishment 

ycle, as is common for the majority of the firm’s SKUs. R is up- 

ated for each out-of-sample period to meet a target replenish- 

ent cycle service level (CSL), as defined by the probability of no 

tock-outs during a replenishment cycle. Forecast method perfor- 

ance is evaluated at CSL targets of 85%, 90%, 95% and 99%. For 

ach of these service levels, we also calculate the associated fill 

ate (FR) as defined by the fraction of demand that is served by 

tock on-hand, which is a widely accepted customer service metric 

n industry ( Guijarro, Cardos & Babiloni, 2012 ; Teunter, Syntetos & 

abai, 2017 ). 

Due to its support by empirical evidence (i.e., Babai et al., 

021 ; Syntetos & Boylan, 2006 ; Syntetos et al., 2015 ), the para-

etric forecast methods (CM, SBA, TSB, and SES) model lead-time 

emand using the Negative Binomial distribution (NBD) to esti- 
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Table 3 

Summary Experimental Results for the Subset with Superior EBBA Performance (Top 80%). 

Target Service Level 99% Target Service Level 95% 

Stock on-hand Backorder FR (%) CSL (%) Stock on-hand Backorder FR (%) CSL (%) 

CM 112.27 3.14 97.13% 97.69% CM 72.2 3.56 93.61% 94.26% 

SBA 119.51 0.89 96.73% 97.09% SBA 72.77 1.59 92.34% 92.51% 

TSB 111.46 19.33 96.53% 96.77% TSB 71.5 19.93 92.08% 92.03% 

SES 135.32 0.92 97.27% 97.84% SES 82.73 1.38 93.77% 94.67% 

WSS 138.03 0.19 99.02% 99.40% WSS 83.55 0.32 97.86% 98.29% 

VZ 128.23 1.85 97.65% 97.11% VZ 75.09 3.14 95.16% 94.13% 

CPB 61.66 33.03 94.49% 92.97% CPB 37.06 39.21 91.42% 84.08% 

EBBA 73.49 0.35 97.80% 98.33% EBBA 51.59 1.07 94.31% 94.26% 

Target Service Level 90% Target Service Level 85% 

Stock on-hand Backorder FR (%) CSL (%) Stock on-hand Backorder FR (%) CSL (%) 

CM 57.44 4.11 90.05% 90.28% CM 49.43 4.78 86.89% 86.46% 

SBA 56.89 2.74 87.98% 87.38% SBA 48.57 3.88 84.21% 82.56% 

TSB 56.7 20.58 87.87% 87.01% TSB 48.64 21.32 84.24% 82.37% 

SES 64.49 2.02 89.97% 91.09% SES 55.17 2.71 86.76% 87.78% 

WSS 65.48 0.54 96.05% 96.30% WSS 55.09 0.87 93.97% 93.94% 

VZ 57.45 4.78 92.28% 90.99% VZ 48.15 5.22 89.46% 87.95% 

CPB 32.68 40.57 88.06% 80.32% CPB 30.64 41.17 85.20% 77.32% 

EBBA 42.55 1.81 91.19% 90.57% EBBA 36.03 2.48 88.52% 87.33% 
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ate the order-up-to level. The order-up-to level for period t is 

 t = φ−1 
L + T,t 

( F R ) , where φ−1 
L + T,t 

(·) is the inverse of the cumulative 

BD of demand during the replenishment cycle ( Babai et al., 2021 ). 

he mean and variance of NBD are calculated as ( L + T ) · F t and 

 L + T ) · MS E t , where F t and MS E t are the forecast and smoothed 

ean squared forecast error calculated for period t . The NBD re- 

uires the variance to be greater than the mean. Thus, if the vari- 

nce is less than the mean, we set the variance at 1.05 times the 

ean ( Babai et al., 2021 ). For the CPB method, we follow Babai et

l. (2021) to model lead-time demand using the Poisson-Geometric 

istribution and obtain the RCD distribution based on the proce- 

ures illustrated in Appendix B with 10 0 0 sampling replications. 

or the nonparametric methods (EBBA, WSS, and VZ), the RCD dis- 

ribution is generated using the empirical data with 10 0 0 sampling 

eplications. 

The sequence of events in each period is as follows: inven- 

ory position is observed, a replenishment order is submitted, 

he incoming replenishment order placed is received, and cus- 

omer demand is filled (Cachon and Terwiesch, 2017). The fore- 

ast and order-up-to level are updated at the end of the pe- 

iod for use in period t + 1. The opening and closing inven- 

ory are calculated as follows: ope n t = clos e t−1 and clos e t = 

pe n t + deli v er y t − deman d t . Correspondingly, on-hand opening 

nventory is open + t = max ( ope n t , 0 ) , closing on-hand inventory is 

lose + t = max ( clos e t , 0 ) . Inventory shortage in period t , is s t = 

ax ( deman d t − ( open + t + deli v er y t ) , 0 ) . The average stock on-hand 

uring period t is i t = ( open + t + close + t ) / 2 , and the backorder b t = 

ax ( −clos e t , 0 ) . CS L t = 1 if a stock-out does not occur in period 

 , otherwise CS L t = 0. The average fill rate F R , achieved CSL , in-

entory or stock on-hand SOH , and number of backorders BO are 

etermined for the N out-of-sample periods. Specifically, F R = 

 −
∑ N 

t=1 s t ∑ N 
t=1 deman d t 

, CSL = 

1 
N 

∑ N 
t=1 CS L t , SOH = 

1 
N 

∑ N 
t=1 i t , and BO = 

1 
N 

∑ N 
t=1 b t . The objective of the forecast and inventory simulation 

s to minimize the average stock on-hand subject to meeting the 

arget CSL. 

Table 2 summarizes the experimental results of the full product 

ortfolio. There is a considerable discrepancy between the median 

nd mean values of the performance measures, suggesting that the 

KUs have skewed demand distributions. Overall, the experimen- 

al results support some findings reported in the literature. As re- 

orted in Rego and Mesquita (2015) , WSS maintains, on average, 

ore stock on-hand resulting in few backorders and higher fill 

ates and achieved CSL than the parametric methods. Consistent 

ith Hasni et al. (2019) , the VZ method has higher average stock 
r

263 
n-hand and fill rates than the SBA method. The results also sup- 

ort Syntetos et al. (2015) where the CM achieves higher average 

SLs than the SBA method. 

A disconcerting finding is that all the experimental forecasting 

ethods had difficulty in achieving the target CSLs. WSS was by 

ar the best performer on this dimension. This finding is not sur- 

rising. As illustrated in Section 2 for WSS, the occurrence of a sin- 

le irregularly large demand size can dramatically lift its required 

tock on-hand, enabling it to achieve a higher CSL in the pres- 

nce of highly complex demand patterns. The SES and CM methods 

ere the second and third-best performers, respectively. The para- 

etric CPB is the standout worst performer on achieved CSL. TSB 

nd EBBA methods round out the bottom three CSL performers. As 

xpected, the WSS, the best CSL performer, ranked in the bottom 

alf of the methods in terms of average stock on-hand. Similarly, 

PB, the worst CSL performer, maintained the lowest average stock 

n-hand, but it had by far the highest number of backorders across 

ll methods. EBBA had the second-lowest average stock on-hand 

ut ranked in the top half of the methods with fewer backorder 

umbers. The experimental methods’ backorder and fill rate per- 

ormances are as anticipated based on their mean respective in- 

entory levels and achieved CSLs. 

Overall, the EBBA method’s inventory efficiency is encouraging, 

ut its effectiveness in achieving target CSLs compromises its ap- 

lication in practice. This raises the question: Does EBBA systemi- 

ally underperform on meeting a target service level or is its un- 

erperformance attributed to specific demand characteristics asso- 

iated with a subset of the SKUs in the dataset? If so, is there 

n identifiable demand pattern that compromises EBBA’s perfor- 

ance? We investigate these questions in the following section. 

.4. Robustness of EBBA’s performance 

As seen in Table 2 , EBBA’s achieved CSL performance ranges 

rom approximately four to six percent below target with signifi- 

antly lower stock on-hand. We seek to better understand EBBA’s 

erformance by examining its performance at the 99% CSL in more 

etail. We begin by ranking the experimental results at 99% target 

SL for all the SKUs according to EBBA’s performance from best 

o worst in the ordered sequence on three metrics: achieved CSL, 

tock on-hand, and backorder. We do a multiple-level sorting us- 

ng achieved CSL in descending order as the first level, stock on- 

and in ascending order as the second level, and backorders in as- 

ending order as the third level. Based on the sorted simulation 

esults, we organize the top-ranked 37,0 0 0 SKUs (approximately 
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Fig. 1. (a). Stock on-hand versus backorders. (b). Stock on-hand versus FR. (c). Stock on-hand versus CSL. 
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0 percent of the total number of SKUs) into a subset denoted 

s S EBBA 
Superior 

. Similarly, the remaining 9272 SKUs with inferior per- 

ormance of EBBA are included in subset S EBBA 
In ferior 

. We conduct the 

mpirical forecast-inventory analysis on each SKU subset and re- 

ort the results for S EBBA 
Superior 

in Table 3 and S EBBA 
In ferior 

in Appendix E ,

able E2 . For consistency with the earlier studies (e.g., Babai et al., 

021 ; Hasni et al., 2019 ; Syntetos et al., 2015 ), we report the mean

alues of the performance metrics for comparison. 

Table 3 reveals that for S EBBA 
Superior 

, WSS remains the best perform- 

ng method in terms of achieving the target CSLs, but is the worst 

erformer in terms of average stock on-hand. Conversely, CPB re- 

uires the least average stock on-hand but is the worst performer 

n attaining target CSLs by a large margin. EBBA’s performance for 

 

EBBA 
Superior 

is much improved over the full dataset. EBBA now exceeds 

wo of the target CSLs and is within 1% of meeting two targets. 

xcept for WSS, all the other methods either have similar or lower 

chieved CSLs in comparison with EBBA. Meanwhile, exception for 

PB, EBBA requires substantially less average stock on-hand than 

he other competing methods. In terms of the number of back- 

rders and fill rate customer service metrics, EBBA ranks second 

ven though it requires substantially less inventory than the other 

ethods with the exception of CPB. 

In order to draw a more conclusive understanding of the fore- 

asting methods’ relative inventory efficiency, we constructed three 

radeoff curves using Table 3 ’s results Fig. 1 a- 1 c compare the av- 

b

264 
rage inventory on hand versus the three customer service met- 

ics: backorders, fill rate and CSL, respectively. In Fig. 1 a, the lowest 

urve is the best, while the highest curve is best in Figs. 1 b and 1 c.

hese results indicate EBBA more efficiently deploys inventory in 

chieving higher levels of customer service across the three met- 

ics. As such, the performance concerns suggested by Table 2 ap- 

ear due to a relatively small proportion (20%) of SKUs in our 

ataset. This supports the notion that EBBA’s flexibility to effec- 

ively modeling a wide variety of demand pattern characteristics 

upports its robustness in finding relatively high quality solutions. 

e also performed a similar analysis for each of the other seven 

ethods, but none of them demonstrated substantial performance 

mprovement in achieving target CSLs with low average on-hand 

nventory and backorder levels. 

For completeness, we provide summary results for the analy- 

is of the S EBBA 
In ferior 

in Appendix E , Table E2 , which indicates, as ex-

ected, substantially lower performance of EBBA in achieving tar- 

et CSLs. To ensure proper application of our proposed method, 

e must answer a critical question: What demand pattern wors- 

ns EBBA’s performance? In this regard, Syntetos, Boylan and Cros- 

on (2005) categorize demand patterns based on the average inter- 

emand interval (ADI) and the squared coefficient of variation of 

emand size C V 

2 . They suggest demarcation values of 1.32 and 

.49 for ADI and C V 

2 , respectively Fig. 2 . presents the four demand

ategories with the number of SKUs from the full empirical dataset 

elonging to each of the categories Table 4 . reports the proportion 



Y. Ye, Y. Lu, P. Robinson et al. European Journal of Operational Research 303 (2022) 255–272 

Fig. 2. SKU Demand Pattern Classification and Number of SKUs per Category. 

o

s
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Table 4 

Proportion of SKUs Belonging to the Two Subsets. 

Demand Category S EBBA 
Superior 

S EBBA 
In ferior 

Erratic 5872(66.77%) 2923(33.23%) 

Lumpy 12,485(79.96%) 3130(20.04%) 

Smooth 8287(76.79%) 2504(23.21%) 

Intermittent 10,356(93.54%) 715(6.46%) 

p
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f SKUs in each category belonging to the S EBBA 
Superior 

and S EBBA 
In ferior 

sub- 

ets, respectively. 

The results suggest that EBBA performs best for intermittent 

KUs and worst for erratic SKUs. But this demand pattern clas- 

ification, based solely on ADI and CV 

2 , may not sufficiently ex- 
Fig. 3. Over Time Change in Demand Distribution fr

265 
lain the highly contrasting performance of EBBA shown in Tables 

 and E2. This is because, except for the intermittent category, in 

he other three categories, the proportion of SKUs belonging to the 

wo subsets is not much different from the proportion of the two 

ubsets in the full dataset. 

Instead, the simulation results presented in Table E1 in 

ppendix E give a more convincing explanation: EBBA may ex- 

ibit inferior performance due to its underestimation of larger de- 

and sizes caused by specific changes in a demand distribution 

ver time. To confirm this answer, we evaluate relative changes 

ver time of several measures of the demand distributions from 

he 56 in-sample periods to the 25 out-sample periods for each 

KU in the two subsets. That includes the nonzero demand mean, 

tandard deviation and C V 

2 for measuring the demand distribution 

ocation and variation, skewness and Kurtosis for measuring the 

istribution shape, and ADI for measuring the distribution’s inter- 
om In-sample Periods to Out-Sample Periods. 
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ittency. The relative change is calculated as the difference of one 

easure’s out-sample value and in-sample value as proportion of 

he in-sample value. For example, if one SKU has in-sample mean 

f 100 and out-sample mean of 150, its relative change in mean 

s 0.5, which means 50% increase in nonzero demand’s mean from 

he in-sample periods to the out-sample periods. 

Fig. 3 presents a comparison of SKUs in the subset S EBBA 
Superior 

ith those in the subset S EBBA 
In ferior 

on the 1% to 99% percentiles of 

he relative changes in the different distribution measures. 2 We 

ote that the relative changes in skewness and Kurtosis have sim- 

lar percentile values between the two subsets. This implies the 

BBA’s performance difference between the two subsets is not no- 

ably caused by any particular distribution shape and its changes 

ver time. For the distribution location and variation, the relative 

hange in C V 

2 displays a similar pattern between the two subsets 

hat suggests the demand’s standard deviation changes in propor- 

ion with its mean consistently for the SKUs across the two sub- 

ets. But it is shown that most SKUs in the subset S EBBA 
In ferior 

have 

n upward shift in the demand’s mean (also in standard devia- 

ion since it changes in proportion with the mean). Moreover, more 

han 50% of SKUs in this subset experience a relative change higher 

han 0.4 (i.e., increase by more than 40%) in the mean. By con- 

rast, 80% of SKUs in the subset S EBBA 
Superior 

have a relative change in 

he mean between −0.4 and 0.4. Only 5% of SKUs in this subset 

ave a relative change higher than 0.4, while the other 15% show a 

arge downward shift in the mean demand with a relative change 

ower than −0.4. Furthermore, there is a clear difference between 

he two subsets on the relative change in ADI: More than 20% of 

KUs in the subset S EBBA 
Superior 

have ADI increasing by higher than 40%; 

y contrast, only 2% of SKUs in the subset S EBBA 
In ferior 

have an increase 

n ADI by higher than 40%. 

In summary, our study shows EBBA is robust against a down- 

ard shift or a mild upward shift in the nonzero demand’s mean 

and standard deviation) over time and adapts quickly to a change 

n demand intermittency pattern (especially, a sharp increase in in- 

ermittency frequency), which align with our previous discussion 

f technical features of this method. Moreover, following our ar- 

ument in Section 2 and demonstrated by the empirical results 

n this section, as a bootstrapping-based forecasting method EBBA 

an flexibly adjust to irregular shapes of nonzero demand distri- 

ution and its changes over time. On the other hand, one clear 

erformance constraint for this method is a significant upward 

hift in the mean (and standard deviation) of the nonzero demand. 

n Appendix F , Figs. F1 - F3 illustrate three typical SKUs from our

ataset for which EBBA generally outperforms the other methods, 

nd another SKU for which it performs inferiorly is illustrated in 

ig. F4 . 

. DISCUSSION and conclusion 

Over the last two decades, the research on inventory forecast- 

ng has proposed many analytical methods for forecasting spare 

arts demand. Concurrently, intensive empirical studies have been 

onducted to evaluate and compare forecasting performance of 

hese methods based on empirical industry data. These compar- 

tive studies often reach different conclusions on which method 

erforms best that inevitably depend on the particular demand 

atterns reflected by the empirical datasets used in the studies. 

n consequence, the demand forecasting literature has a two-fold 

mpact on inventory management practices. On the one hand, in- 

entory managers have a rich forecasting toolkit from which they 
2 In order to enhance readability of Figure 3 , we do not include the minimum 

0% percentile) and maximum (100% percentile) relative changes in the figure. 
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an select the best performing technique to model their demand 

ata, assuming the data matches the demand pattern for which 

he model is best suited. On the other hand, new challenges al- 

ays emerge in inventory control of spare parts. One particular 

hallenge faced by our industrial collaborator is that the company 

s managing a large spare parts portfolio that displays highly com- 

lex demand patterns due to (a) strong interdependence of de- 

and intermittency and (b) highly irregular demand distribution 

haracterized by frequent but unexpected occurrence of certain de- 

and sizes. Such demand distributions are not well governed by 

ny standard probability distribution. We anticipate this challenge 

oncerns a wide range of companies. Our study shows that popu- 

ar forecasting methods may not provide a satisfying solution for 

his challenge. The currently available methods have limited flex- 

bility, and each performs ideally for a narrow range of demand 

atterns. Parametric methods are constrained by their specific de- 

and distribution assumptions. Although some distribution as- 

umptions, such as compound Poisson distributions, fit spare parts 

emand data better than the others, none of them can satisfy- 

ngly deal with our scenario of strongly interdependent demand 

ntermittency and an extremely wide range of different demand 

atterns. The existing nonparametric bootstrapping methods have 

een shown to perform relatively better for complex demand dis- 

ribution. But those methods have their roots in Efron’s frequentist 

ootstrapping approach and thus are essentially subject to a strong 

ninformative prior assumption that can significantly impact their 

erformance when the demand distribution’s complexity sharply 

ncreases. 

To respond to this challenge, we develop a new nonparamet- 

ic Bayesian approach to forecasting spare parts demand with its 

oots in the empirical Bayes paradigm. The new method (EBBA) 

s aimed to be a ‘one for all’ forecasting approach that is subject 

o few performance constraints and is highly flexible in dealing 

ith extreme demand complexity caused by interdependence of 

emand intermittency and irregular demand distribution. EBBA has 

everal attractive features. First, for each forecast item, EBBA re- 

amples observed demand data based on their empirical probabil- 

ty density values enabling it to adjust to widely different demand 

atterns associated with different items and even accommodate 

onstationary distribution to some extent. Secondly, EBBA mod- 

ls the mechanism of demand intermittency using a more flexible 

ayesian approach so that it adapts quickly to a change in demand 

ntermittency pattern. We assess the forecasting performance of 

BBA against other popular nonparametric and parametric meth- 

ds using an empirical demand dataset for 46,272 spare part SKUs 

rom the heavy truck industry. The dataset includes items with a 

ariety of challenging demand patterns. Our experimental results 

how that EBBA achieves the best overall forecast-inventory per- 

ormance for a majority of the SKUs. It requires significantly less 

nventory on hand to satisfy a target customer service level, min- 

mize backorders, and provide high inventory fill rates. The only 

erformance weakness shown in our study occurs with a signif- 

cant upward shift in the mean (and standard deviation) of the 

onzero demand over time. Another relevant insight revealed by 

ur study is that the dataset employed in our study can be used 

s a heavy stress test for the existing methods to check their flex- 

bility in dealing with highly complex demand patterns. Such de- 

and complexity is not explicitly reflected in the demand pattern 

lassification suggested in Syntetos et al. (2005) . While most of the 

xisting methods included in our study tend to fall short in attain- 

ng target customer service levels, we note the superiority of WSS 

n meeting this goal in the presence of high complexity in demand 

attern (but with a considerably larger inventory requirement.). As 

uch, WSS may be an alternative to EBBA for SKUs with demand 

haracteristics not well-suited for EBBA as identified in the paper. 
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It should be noted that EBBA inevitably requires more CPU than 

ome simple methods such as SES. Also, our model structure is 

ore complex than that of WSS which is already difficult for prac- 

itioners to understand ( Syntetos et al., 2015 ). Furthermore, its the- 

retical foundations include advanced Bayesian concepts that can 

e challenging for many practitioners too. But this new method 

an be much simpler than the other methods in the challenge of 

 spare parts portfolio with highly complex demand patterns. In 

uch a case, to properly use some conventional methods, managers 

ust devote many efforts to developing a thorough understand- 

ng of the many different demand patterns in their managed in- 

entory portfolio. By contrast, we should expect good overall fore- 

asting results for this portfolio by using EBBA as long as it does 

ot contain many items showing a significant upward shift in their 

onzero demand mean and standard deviation over time. Boylan 

nd Syntetos (2021) note that what constitutes “simple” and “com- 

lex” methods and how the best tradeoffs are achieved should be 

learly revealed in intermittent demand forecasting. So, we suggest 

ractitioners carefully weigh between the technical and theoreti- 

al complexity of this new method and the complexity of demand 

atterns appearing in inventory portfolios they are managing. If 

he latter clearly overweighs the former, we recommend using this 

ew method to produce forecasts. 

We suggest several promising future research directions. First, 

o the authors’ best knowledge, our study is the first demonstra- 

ion of the usefulness of empirical Bayes methods in forecast- 

ng spare parts demand. We hope this study stimulates future 

esearch efforts on developing forecasting methods in this cate- 

ory, which can be more flexible than both traditional frequen- 

ist and Bayesian methods. Second, we suggest more research ef- 

orts toward developing novel forecasting methods that can bet- 

er deal with nonstationary demand distribution. The recent liter- 

ture shows Bayesian model searching and averaging techniques 

ave promising applications in this area ( Hadj-Amar, Rand, Fiecas, 

évi & Huckstepp, 2020 ). Third, an effective combination of expert 

pinions and statistical forecasting can always improve forecast ac- 

uracy and inventory performance. But the real-world case moti- 

ating our work indicates that to formulate their expert opinions, 

ractitioners need more advanced knowledge about managing high 

omplexity in spare parts demand. This can also be a promising di- 

ection for future research in inventory management. 
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ppendix A: Mathematical description of Empirical Bayes 

pproach 

Theoretically, as described in Carlin and Louis (20 0 0) , suppose 

n observed data sample y = [ y 1 , y 2 , . . . , y n ] is generated from 

 distributional model p( X| θ ) with the unknown parameter θ
which is π in our study). To obtain the Bayesian estimate of θ
rom y, we use Bayes’ theorem 

p ( θ | y ) = p ( y| θ ) p ( θ ) / f ( y ) 

here p( θ | y ) is the posterior distribution of θ given y and p(θ ) 

s its prior distribution. Let p(θ ) condition on a hyperparameter η
267 
which is αn in our study), p( θ | η) , and we have 

p ( θ | y, η) = p ( y| θ ) p ( θ | η) /p ( y| η) . (A.1) 

Then, we believe information about η is captured by the data 

istribution p( y| η) so that we can estimate η as a function of 

, ˆ η = ˆ η(y) . Consequently, we approximate the posterior distribu- 

ion of p( θ | y ) ∼= 

p( θ | y, ˆ η) , instead of marginalizing out η. As such, 

mpirical Bayes can be considered as an approximation to a fully 

ayesian treatment of a hierarchical model. 

The empirical Bayes paradigm also has a technical justification. 

e alternatively write the equation (A.1) to be 

p ( η| y, θ ) = p ( y| η) p ( η| θ ) /p ( y| θ ) (A.2) 

o that (A.1) and (A.2) form a conceptual structure for Gibbs sam- 

ling (Casella and George, 1992) in Bayesian data analysis: Choose 

rbitrary starting values θ = θ (0) and η = η(0) and initiate an iter- 

tion process: 

Step 1 : draw θ (1) ∼ p( θ | y, η(0) ) 

Step 2 : draw η(1) ∼ p( η| y, θ (0) ) . 

Then, do the process again but using θ (1) and η(1) as new 

tarting values to complete one iteration. After repeating this it- 

ration sufficiently many times, we will obtain good approxima- 

ions to p( θ | y ) and p( η| y ) . Empirical Bayes data analysis is quali- 

atively equivalent to partially executing this Gibbs sampler by us- 

ng an estimate of η from observed data, ˆ η = ˆ η(y) , to approximate 

p( θ | y ) ∼= 

p( θ | y, ˆ η) . So technically we may view empirical Bayes as 

requentist intervention on a fully Bayesian data analysis. 

ppendix B: Description of the other seven forecasting 

ethods 

y t : Actual demand of an item in period t. 

ˆ y t : Estimate of demand for an item in period t. 

ˆ z t : Estimate of demand size for an item in period t. 

ˆ p t : Estimate of demand occurrence indicator for an item in pe- 

iod t. 

Method1: Croston’s method (CM) 

ˆ z t = { ˆ z t−1 i f y t = 0 

ˆ z t−1 + α( y t − ˆ z t−1 ) i f y t 
 = 0 

ˆ p t = { ˆ p t−1 i f y t = 0 

ˆ p t−1 + β( Q − ˆ p t−1 ) i f y t 
 = 0 

Q = { Q + 1 i f y t = 0 

1 i f y t 
 = 0 

ˆ y t = 

ˆ z t 
ˆ p t 

Method 2: Syntetos-Boylan Approximation method (SBA) 

ˆ z t = { ˆ z t−1 i f y t = 0 

ˆ z t−1 + α( y t − ˆ z t−1 ) i f y t 
 = 0 

ˆ p t = { ˆ p t−1 i f y t = 0 

ˆ p t−1 + β( Q − ˆ p t−1 ) i f y t 
 = 0 

Q = { Q + 1 i f y t = 0 

1 i f y t 
 = 0 

ˆ y t = ( 1 − α
2 ) 

ˆ z t 
ˆ p t 

Method 3: Teunter, Syntetos, and Babai’s method (TSB) 

ˆ z t = { ˆ z t−1 i f y t = 0 

ˆ z t−1 + α( y t − ˆ z t−1 ) i f y t 
 = 0 

ˆ p t = { ˆ p t−1 + β( 0 − ˆ p t−1 ) i f y t = 0 

ˆ p t−1 + β( 1 − ˆ p t−1 ) i f y t 
 = 0 

ˆ y t = ˆ z t ̂  p t 
Method 4: Simple exponential smoothing method (SES) 

ˆ y t = αy t + ( 1 − α) ̂  y t−1 

Method 5: Willemain, Smart, and Schwarz’s method (WSS) 

Step1: Obtain historical demand data in chosen time buckets 

e.g., days, weeks, months); 

Step 2: Estimate transition probabilities for a two-state (zero vs. 

on-zero) Markov model; 

https://doi.org/10.1016/j.ejor.2022.02.033
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Fig. C1. Histogram of a randomly selected item. 
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Step 3: Conditional on last observed demand, use the Markov 

odel to generate a sequence of zero/non-zero values over the 

orecast horizon; 

Step 4: Replace every non-zero state marker with a numerical 

alue sampled at random, with replacement, from the set of ob- 

erved non-zero demands; 

Step 5: Jitter the nonzero demand values. 

Jittered = 1 + INT {X 

∗+ Z 
√ 

X ∗}, if Jittered ≤ 0 , then Jittered = X 

∗. 

Step 6: Sum the forecast values over the horizon to get one pre- 

icted value of LTD. 

Step 7: Repeat Step3–6 several times. 

Step 8: Sort and use the resulting distribution of LTD values. 

Method 6: Viswanathan and Zhou’s method (VZ) 

Step 1: Obtain histogram of the historical demand 

ata(including both demand size data and demand interval 

ata) in a chosen time bucket. 

Step 2: Randomly generate demand interval according to the 

orresponding histogram. Update the time horizon, which is used 

o count the time passing by. 

Step 3: If the time horizon is equal to or less than the leadtime,

andomly generate demand size according to the demand size in- 

erval histogram.Then go to Step2. Else, sum the generated demand 

izes over the leadtime and get one predicted value of the leadtime 

emand. Then go to Step4. 

Step 4: Repeat Step 2–3 10 0 0 times. 

Step 5: Sort and use the resulting distribution of LTD values. 

Method 7: Compound-Poisson Bayesian (CPB) 

Actual demand y t is assumed to follow a compound Poisson- 

eometric distribution P G ( y t | λ, θ ) in which demand arrivals have 

 Poisson distribution with the parameter λ and the demand sizes 

ave a Geometric distribution with the parameter θ . In addition, 

he accumulation of actual demands over n periods is assumed 

o be a Lévy process so that the aggregate demand T = 

∑ n 
i =1 y i 

as the distribution P G ( T | nλ, θ ) . Meanwhile, λ is assigned the ex- 

onienal prior distribution, f (λ) = e −λ, λ ∈ ( 0 , ∞ ) , and θ is as- 

igned the uniform prior distribution f (θ ) = 1 , θ ∈ [ 0 , 1 ] . As such,

he prediction distribution of y t , P ( y t | T ) , is given by 

 ( y t | T ) ∝ 

∫ ∫ 
P G ( y t | λ, θ ) P G ( T | nλ, θ ) e −λd λd θ
Fig. C2. Histogram of forecaste
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ppendix C: Sample forecast output of EBBA 

We illustrate the BBA’s forecasting output for a randomly se- 

ected item from the empirical datasets Fig. C1 . displays the item’s 

istogram of bi-weekly demand Fig. C2 . shows the corresponding 

istributional forecasts (posterior distributions) associated with re- 

lenishment cycle durations of one, two, three, and six bi-weekly 

ime periods. The X-axis and Y-axis indicate the demand values 

nd their occurrence frequencies, respectively. As illustrated, the 

osterior distributions emulate the characteristics of the empirical 

emand distributions, while smoothing demand randomness to ar- 

ive at the demand forecast for the replenishment cycle. 

The distributional forecasts provide sufficient data for calculat- 

ng the item’s mean, standard deviation, and probability of zero de- 

and during the replenishment cycle. Moreover, this approach en- 

bles estimating the target order-up-to inventory level to achieve a 

pecified in stock service level. Assuming a periodic review (TR) or- 

er up to inventory model, Table C1 illustrates the type of manage- 

ial information that can be derived from the distributional fore- 

ast. The table data assumes a one-period review interval (T) and 

elivery lead time (L) of zero, one, two, or five bi-weekly time pe- 

iods, respectively. For example, assuming a two-period replenish- 

ent cycle (i.e., L = 1 and T = 1), the predicted mean demand is

.26 units, the standard deviation is 7.50, and the probability of 

ero demand is 0.35. The order-up-to level R for no stock out ser- 
d demand distributions. 
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Table C1 

Illustrative Managerial Output Provided by EBBA for an SKU. 

Lead Time Review Interval Mean Standard deviation Probability of zero demand Order-up-to level based for varying Service Levels 

50% 80% 90% 95% 99% 

0 period 1 period 2.79 5.41 0.55 0 5 8 11 31 

1 period 1 period 5.26 7.50 0.35 3 9 13 19 37 

2 periods 1 period 7.68 9.21 0.23 5 12 18 29 42 

5 periods 1 period 14.85 13.10 0.07 12 23 33 43 58 

Fig. D1. Observed Biweekly Demand of Six Spare Parts and Kernel Approximations of Nonzero Demand. 

v  

s

p

m

A

D

T

D

ice levels of 90, 95 and 99 percent are 13, 19 and 37 units, re-

pectively. The approach is equally applicable for reorder point and 

eriodic review inventory systems with adjustments for replenish- 

ent cycle duration. 
A

able E1 

istributional Accuracy of the RCD Pooled Sample. 

Replenishment 

Cycle Length 

Method MIN Estimated Percentiles o

20% 40% 

1 period EBBA 0.00 0.22 0.35 

WSS 0.00 0.22 0.33 

VZ 0.00 0.30 0.40 

CPB 0.00 0.23 0.39 

Normal Distribution 

269 
ppendix D: Summary Statistics and Illustrations of Demand 

ata Pattern in Our Empirical Dataset 

. 

ppendix E: Empirical Assessment of Performance of EBBA 
f the RCD Pooled Sample 

50% 60% 80% 90% 95% 99% MAX 

0.47 0.57 0.83 0.95 0.98 1.00 1.00 

0.44 0.50 0.75 0.87 0.94 0.99 1.00 

0.50 0.63 0.85 0.94 0.97 1.00 1.00 

0.57 0.71 0.94 0.98 0.99 1.00 1.00 

( continued on next page ) 



Y. Ye, Y. Lu, P. Robinson et al. European Journal of Operational Research 303 (2022) 255–272 

Table E1 ( continued ) 

Replenishment 

Cycle Length 

Method MIN Estimated Percentiles of the RCD Pooled Sample 

20% 40% 50% 60% 80% 90% 95% 99% MAX 

CM 0.00 0.24 0.34 0.40 0.47 0.71 0.89 0.97 1.00 1.00 

SBA 0.00 0.25 0.36 0.43 0.51 0.79 0.94 0.99 1.00 1.00 

TSB 0.00 0.24 0.34 0.40 0.47 0.72 0.90 0.98 1.00 1.00 

SES 0.00 0.25 0.35 0.41 0.47 0.72 0.89 0.97 1.00 1.00 

Negative Binomial 

Demand Distribution 

CM 0.00 0.21 0.37 0.47 0.61 0.82 0.92 0.96 0.99 1.00 

SBA 0.00 0.23 0.40 0.51 0.65 0.86 0.94 0.98 1.00 1.00 

TSB 0.00 0.21 0.35 0.47 0.59 0.81 0.92 0.96 1.00 1.00 

SES 0.00 0.23 0.36 0.46 0.59 0.80 0.91 0.96 0.99 1.00 

2 periods EBBA 0.00 0.18 0.41 0.47 0.60 0.86 0.97 0.99 1.00 1.00 

WSS 0.00 0.16 0.34 0.44 0.51 0.75 0.89 0.96 1.00 1.00 

VZ 0.00 0.15 0.32 0.44 0.56 0.82 0.94 0.98 1.00 1.00 

CPB 0.00 0.10 0.20 0.27 0.39 0.83 0.97 0.99 1.00 1.00 

Normal Demand 

Distribution 

CM 0.00 0.07 0.18 0.23 0.29 0.45 0.62 0.79 0.99 1.00 

SBA 0.00 0.08 0.19 0.24 0.30 0.48 0.68 0.86 1.00 1.00 

TSB 0.00 0.08 0.18 0.22 0.28 0.45 0.62 0.80 0.99 1.00 

SES 0.00 0.08 0.18 0.23 0.29 0.46 0.63 0.80 0.99 1.00 

Negative Binomial 

Demand Distribution 

CM 0.00 0.03 0.14 0.21 0.29 0.57 0.78 0.89 0.98 1.00 

SBA 0.00 0.06 0.18 0.25 0.35 0.63 0.81 0.92 0.99 1.00 

TSB 0.00 0.05 0.15 0.20 0.27 0.56 0.77 0.88 0.99 1.00 

SES 0.00 0.06 0.15 0.21 0.32 0.55 0.75 0.87 0.98 1.00 

3 periods EBBA 0.00 0.14 0.38 0.50 0.64 0.91 0.98 1.00 1.00 1.00 

WSS 0.00 0.12 0.31 0.41 0.52 0.78 0.92 0.98 1.00 1.00 

VZ 0.00 0.11 0.31 0.42 0.53 0.82 0.95 0.99 1.00 1.00 

CPB 0.00 0.06 0.11 0.15 0.23 0.62 0.97 0.99 1.00 1.00 

Normal Demand 

Distribution 

CM 0.00 0.02 0.10 0.15 0.20 0.34 0.47 0.65 0.96 1.00 

SBA 0.00 0.03 0.11 0.15 0.20 0.36 0.51 0.72 0.99 1.00 

TSB 0.00 0.02 0.10 0.15 0.20 0.34 0.52 0.70 0.97 1.00 

SES 0.00 0.02 0.10 0.15 0.20 0.38 0.53 0.72 0.97 1.00 

Negative Binomial 

Demand Distribution 

CM 0.00 0.00 0.05 0.09 0.15 0.39 0.62 0.80 0.99 1.00 

SBA 0.00 0.01 0.07 0.12 0.19 0.45 0.68 0.84 0.99 1.00 

TSB 0.00 0.01 0.07 0.10 0.15 0.42 0.69 0.86 1.00 1.00 

SES 0.00 0.01 0.07 0.11 0.18 0.44 0.60 0.77 0.98 1.00 

Table E2 

Summary Experimental Results for the Subset with Inferior EBBA Performance (20% of SKUs). 

Target Service Level 99% Target Service Level 95% 

Inventory on hand Backorder FR (%) CSL (%) Inventory on hand Backorder FR (%) CSL (%) 

CM 490.51 69.71 91.90% 92.12% CM 247.89 77.04 87.01% 86.05% 

SBA 549.77 44.92 91.53% 91.69% SBA 254.38 54.87 85.78% 83.89% 

TSB 500.60 200.32 90.53% 90.24% TSB 242.39 208.42 84.90% 82.53% 

SES 721.08 46.87 92.59% 92.75% SES 284.71 56.24 86.49% 86.02% 

WSS 741.76 12.86 93.91% 93.59% WSS 191.41 31.54 88.02% 84.41% 

VZ 720.93 24.26 90.77% 87.24% VZ 173.31 51.88 84.34% 76.49% 

CPB 111.46 278.13 82.90% 68.81% CPB 85.92 303.19 72.28% 49.71% 

EBBA 157.14 37.69 85.46% 80.96% EBBA 109.88 61.92 77.36% 69.15% 

Target Service Level 90% Target Service Level 85% 

Inventory on hand Backorder FR (%) CSL (%) Inventory on hand Backorder FR (%) CSL (%) 

CM 179.33 85.81 83.30% 80.10% CM 144.71 94.06 80.48% 74.98% 

SBA 174.07 69.34 81.41% 76.28% SBA 136.39 82.78 78.11% 79.78% 

TSB 169.96 218.05 80.73% 75.32% TSB 133.98 227.04 77.54% 69.09% 

SES 186.64 68.29 81.23% 79.59% SES 147.55 79.41 77.81% 74.68% 

WSS 141.59 46.05 82.84% 76.64% WSS 116.45 57.34 79.08% 70.83% 

VZ 125.52 71.28 79.06% 68.56% VZ 105.57 81.66 75.38% 62.83% 

CPB 82.47 307.82 68.40% 43.97% CPB 81.01 309.76 66.13% 40.56% 

EBBA 93.03 74.45 73.47% 62.08% EBBA 84.67 83.55 70.96% 57.10% 

270 



Y. Ye, Y. Lu, P. Robinson et al. European Journal of Operational Research 303 (2022) 255–272 

A

T

R

A  

A  

A  

B  

B  

B  

B

B  

B

B  

C  

C

C  

C

C

D

D

D

E  

E

F

ppendix F: Illustrations of Demand Distribution Change Over 

ime 

Fig. F1 , Fig. F2 , Fig. F3 , Fig. F4 

Fig. F1. Downward Shift in Nonzero Demand Mean and Standard Deviation. 

Fig. F2. Increase in Demand Intermittency with Strong Interdependence. 

Fig. F3. Irregular Nonzero Demand Distribution with Extreme Tail Behavior. 
271 
Fig. F4. Upward Shift in Nonzero Demand Mean and Standard Deviation. 
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