
UNIVERSITÀ POLITECNICA DELLE MARCHE
DOCTORAL SCHOOL ON INFORMATION ENGINEERING

CURRICULUM "COMPUTER, MANAGEMENT AND AUTOMATION

ENGINEERING"

Encoding & Characterization of
process models for Deep Predictive

Process Monitoring.

Author:
Andrea CHIORRINI

Supervisors:
Prof.ssa Claudia DIAMANTINI

Prof. Domenico POTENA

iii

“The greatest challenge to any thinker
is stating the problem in a way that will allow a solution”

Bertrand Russell

v

Abstract

Ever-increasing digitalization of all aspects of life modifies the operative ex-
ecutions of most human tasks and produces a huge wealth of information,
in the form of data logs, that could be leveraged to further improve the gen-
eral quality of such executions. One way of leveraging such information is
to predict how the execution of such tasks will unfold until their completion
so as to be capable of supporting the managers in determining, for example,
whether to intervene to prevent undesired process outcomes or how to best al-
locate resources. In the present thesis, it is proposed an approach that uses the
information about the parallelism among activities for the Predictive Process
Monitoring tasks, by representing process executions with their corresponding
Instance Graph and processing them using deep graph convolutional neural
networks. Also, to define the scope to best apply such an approach is devised
a novel metric that manages to effectively measure the parallelism in a busi-
ness process model. Lastly, the definition of a set of metrics that describe the
execution context of an activity inside a process to represent the activity itself
is presented. This is used both to define a querying mechanism for activities in
processes and to introduce the notion of "location" as a further relevant predic-
tion target for Predictive Process Monitoring techniques. The proposed tech-
niques have been experimentally evaluated using several real-world datasets
and the results are promising.

vii

Abstract

La sempre crescente digitalizzazione di molti aspetti della vita, sta mod-
ificando l’esecuzione operativa di molte attività umane, producendo anche
una grande quantità di informazione sotto forma di log di dati. Questi pos-
sono essere sfruttati per migliorare la qualità di queste esecuzioni. Un modo
per sfruttare queste informazioni è usarle per predire come l’esecuzione di
un’attività umana possa evolvere fino al suo completamento, così da support-
are i manager nel determinare, per esempio, se intervenire per prevenire delle
situazioni indesiderate o per meglio allocare le risorse a disposizione. Nella
presente tesi, si propone un approccio che usa l’informazione relativa al par-
allelismo presente tra le attività per eseguire i task tipici del Predictive Pro-
cess Monitoring. Questo viene fatto rappresentando le esecuzioni di processo
con il corrispondente Instance Graph e processandole utilizzando delle graph
convolutional neural networks. Inoltre, per definire gli ambiti in cui tale ap-
proccio funziona al meglio nel presente elaborato si illustra una nuova met-
rica ideata per misurare il parallelismo all’interno dei processi di business.
Infine, è presentato un insieme di metriche che descrivono il contesto di es-
ecuzione di una attività all’interno di un processo per rappresentare l’attività
stessa. Questo è utilizzato sia per definire un meccanismo di "querying" per le
attività all’interno dei processi sia per introdurre la nozione di "location" come
un ulteriore obiettivo di predizione per le tecniche di Predictive Process Moni-
toring. Gli approcci proposti sono stati valutati utilizzando vari dataset reali e
i risultati ottenuti sono promettenti.

ix

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Contribution of this work . 2

2 Related Work 5
2.1 Predictive Process Monitoring . 5
2.2 Measuring & Encoding . 8

2.2.1 Measuring Parallelism in Processes 8
2.2.2 Encoding Process Structure in Activities 9

2.3 Dataset . 10

3 Preliminaries 11

4 Instance Graphs for Predictive Process Monitoring 15
4.1 Methodology . 15

4.1.1 Building Instance Graphs 16
4.1.2 Data Encoding . 18

Prefix-IG generation . 18
Multi-Perspective Prefix-IG Enrichment 19

4.1.3 Deep Graph Convolutional Neural Network 22
4.2 Experiments . 24

4.2.1 Experimental Setup . 24
4.2.2 Parameter settings . 25
4.2.3 Evaluation metrics . 26

4.3 Results and Discussion . 27

5 Measuring Parallelism in Process Models 33
5.1 Use Cases Description . 33

x

5.2 Metrics for Process Parallelism Evaluation 36
5.2.1 Metrics Based on Model perspective 36

Average Degree of Transition 36
Degree of Parallelism . 36
Comparison between DoP and ADT 37

5.2.2 Metrics Based on Instance Graphs 37
Parallel Complexity (PC) 38
Scaled Parallel Complexity (SPC) 39

6 A new representation for Events in Processes 41
6.1 A Process Model-based Encoding 41

6.1.1 Methods . 42
Path Length . 42
Optionality . 43
Parallelism . 44
Parallelism Path Length 45
Self Loopable . 46
Long Loopable . 46

6.1.2 Case Study . 47
Settings . 47
Results . 49

6.2 Next-location prediction for process executions 51
6.2.1 Defining process locations 52
6.2.2 Methodology . 54

Problem statement . 55
Data Encoding . 55

6.2.3 Experiments . 56
Experimental setup . 57

6.2.4 Results and discussion . 59
Example of predicted output 59
Analysis of prediction performance 60

7 Conclusion 65

xi

A Further PhD activities 69
A.1 Reinforcement Learning for Predictive Process Monitoring . . . 69

A.1.1 Background . 70
A.1.2 Methodology . 72
A.1.3 Evaluation . 76

A.2 Consulting Activities . 79

Bibliography 83

1

Chapter 1

Introduction

1.1 Overview

In the last years, we are witnessing a profound and ever-increasing digital-
ization of most aspects of life. Where it is applied, this digitalization not only
modifies the operative execution of tasks but also produces a wealth of data, in
the form of logs, that could be leveraged to further improve the general quality
of such executions. As a consequence, today’s organizations store lots of data
from their business processes. These business processes may be the running
of a hospital or a factory, granting a loan, or booking a vacancy. In general,
we may say that any flow of related activities executed by people and/or ma-
chines to achieve a specific goal is a business process. The increasing availabil-
ity of process-related data enabled the development of advanced techniques
to support process analysis and improvements, such as Process Mining ones
which can extract knowledge from event logs commonly available in today’s
information systems. These techniques provide means to discover, monitor and im-
prove processes in a variety of application domains. There are two main drivers for
the growing interest in process mining. On the one hand, more and more events are
being recorded, thus, providing detailed information about the history of processes. On
the other hand, there is a need to improve and support business processes in compet-
itive and rapidly changing environments. [1] Lately, with the rise and spread of
machine learning a new research field is emerging under the name of Predic-
tive Process Monitoring in the process mining scientific community. Predictive
Process Monitoring can be described as a set of tasks that aim to predict how a
running execution of a process will unfold up until its completion. Such tasks

2 Chapter 1. Introduction

may be the outcome of a process execution, its completion time, as well as the
sequence of its future activities, or the full execution time of each of them[2].
Such capacity of " looking ahead" during a process execution can support the
managers in determining, for example, whether to intervene to prevent unde-
sired process outcomes or how to best allocate resources [3].

Notably, process executions are characterized by (complex) control-flow
constructs, like concurrency, choices, and loops [4]. However, these struc-
tures are flattened in the event log, since traces only record the sequence of
executed activities, possibly with additional data properties. Consequently, a
single construct flow can correspond in the event log to several different se-
quences of events. For instance, a parallel construct involving two or more
activities can correspond to a number of sequences equal to all the possible or-
der permutations of the activities. Despite this fact, little work has been done
in the literature on leveraging such control-flow information to the predictive
process monitoring tasks. Hence, the present thesis.

1.2 Contribution of this work

The present work aims at proposing novel approaches, and methodologies for
the Deep Predictive Process Monitoring tasks. The main focus of the thesis and
all its proposed contributions regards leveraging the control-flow information,
especially the one regarding parallelism, for the next activity prediction task.

Indeed, its main contributions are the following.

• the introduction of an approach that uses the information about the par-
allelism among activities for the PPM tasks. This is done by representing
each trace with its corresponding Instance Graph and processing them
using deep graph convolutional neural networks designed to natively
manage graph structures.

• the definition of a novel metric that manages to effectively measure the
parallelism in a business process model, this is done to investigate a way

1.2. Contribution of this work 3

of characterizing processes so as to determine a way to possibly iden-
tify where the previous Instance Graph-based approach can lead to good
results.

• the definition of a set of metrics that describe the "execution context" of
an activity inside a process to represent the activity itself. This is done to
extend the work of previous contributions so as to take into account all
the information that a process model provides about a particular activ-
ity. This set of metrics is used both to define a querying mechanism for
activities in processes and to introduce the notion of "location" as a fur-
ther relevant prediction target for PPM techniques. We remark that such
"execution context" is derived from the process model of the considered
activity and it is explicitly devised to take into account the control flow
information about the activity itself.

The rest of the thesis is organized as follows: in Chapter 2 we present some
related work both on the Predictive Process Monitoring tasks and on the mea-
suring and encoding of processes and processes activities, as well as the bench-
mark datasets used throughout the whole thesis. In Chapter 3, some core defi-
nitions used throughout the thesis are introduced. In Chapter 4, it is presented
the design and implementation of the Instance Graph-based approach to the
next activity prediction task. Chapter 5 addresses the problem of evaluating
the level of parallelism in a business process, proposing a novel metric to do it
and its scaled variant. Chapter 6 is devoted to the presentation of an encoding
of activities in processes and the usage of such encoding to compare processes
and define a novel prediction task in the predictive process monitoring field.
Finally, Chapter 7 draws conclusions and discusses future work. In Appendix
A.1 it is shown a preliminary study on the application of Reinforcement Learn-
ing to Predictive Process Monitoring.

5

Chapter 2

Related Work

This Section outlines some of the most relevant contributions related to the
present work that can be found in recent literature. At the end of this chapter,
all the datasets available in the literature and used in this thesis are described.

2.1 Predictive Process Monitoring

Predictive process monitoring made its appearance as a process mining task in
the first decade of the 2000s [5]–[7], receiving increasing attention in the latest
years, as witnessed by the number of recent surveys and the volume of re-
search products [8]–[10]. Three kinds of predictions can be considered [8], [9]:
prediction of (typically continuous) measures of interest like the remaining ex-
ecution time, overall duration, or cost of an ongoing case [7], [11], [12]; predic-
tion of categorical values like the final outcome or class of risk of a case [9], [13];
predictions related to the sequence of next activities that will be performed
[14]. In [15], the authors propose how to deal with more than one of these
tasks. As another dimension, approaches can be distinguished into model-
aware and model-agnostic. In model-aware approaches, predictions rely on
a formal process model, either designed by domain experts or discovered by
process discovery techniques, whereas model-agnostic approaches only con-
sider traces contained in the event log [13]. Leveraging a process model allows
to exploit some form of control-flow information. On the other hand, when
the model describes the prescribed or most common behaviors, overlooking
exceptions, or sensible deviations from it, predictions for real executions may
suffer from this abstraction. Furthermore, other perspectives can be taken into

6 Chapter 2. Related Work

account besides control-flow, like the time or duration of events and resources
performing activities.

For what concerns the next-activity(ies) prediction task, few proposals rely
on some kind of process model in combination with traditional machine learn-
ing techniques. [14] adopts both a process mining algorithm to discover a
general process model and decision trees to calculate transition probabilities
from a given activity to neighboring activities from instance specific data, so
as to define an instance-specific probabilistic process model for each process
execution. Assuming a Markov property for processes, the approach does not
consider the path information of previously executed activities to train deci-
sion trees, but only data that is progressively produced during the execution
of the process starting from the first task. Path information is instead explic-
itly represented in the approach proposed by [16], which proposes different
encoding models to represent the parallel branch each activity belongs to, de-
rived from the overall process model using token-replay principles. [15] relies
on annotated transition systems, where (Naïve Bayes) classifiers and (∈-SVR)
regressors are used for annotations to predict remaining time and the sequence
of next activities. Authors introduce a notion of similarity among the states of
the transition system to deal also with non-fitting traces, taking into account
also the issue of non-stationary processes. A different approach to deal with
event logs involving exceptional behaviors has been proposed by [17], which
employs sequential pattern mining techniques to derive partial process models
that are then used to train classification or regression models. [13] introduces
a framework to mine probabilistic finite automata from data by grammatical
inference.

Recently, Deep Learning techniques have gained increasing interest in pre-
dictive process monitoring as it is well described in a recent survey [18]. The
approaches rely upon the power of deep architectures to build complex fea-
tures and on the success of recurrent architectures in processing sequential
data, like log traces are. Hence the majority of approaches are model-agnostic.
For what concerns the next-activity prediction, Long Short-Term Memory (LS-
TM) is one of the first and most adopted architectures [19]–[21]. LSTM trained
with a Generative Adversarial Nets learning scheme has also been proposed

2.1. Predictive Process Monitoring 7

[22], tackling the lack of sufficient training data that often impacts perfor-
mances. An alternative approach is that of [23] where it is proposed to trans-
form traces into image-like data, thus unleashing the full potential of Con-
volutional Neural Networks (CNN). Although more traditional Deep Learn-
ing architectures like Multi Layer Perceptrons have been largely overlooked,
in [24] experiments demonstrate that they can achieve good performance on
some datasets. Other approaches like reinforcement learning or transformers
have also been experimented [25], [26]. In all these proposals, different learn-
ing architectures, different input data encodings and attributes characterize the
approaches. However, a common feature is the inherently sequential structure
of inputs and the consequent inability to fully capture the structure of process
executions. Few previous studies have proposed to encode structural informa-
tion from the process model for Recurrent Neural Network models. For exam-
ple, [27] proposes an approach which first detects loops in log traces and then
uses this information to improve the results of a LSTM-based next-activity clas-
sifier. Their approach also allows to incorporate domain knowledge related to
execution constraints.

In [28], [29] also proposed a different strategy to take into account process
structure for the next activity classification task, by using graphs to represent
the processes.

A proposal to directly process graphs to predict the next activity has been
done by [24]. This approach has some similarities with the proposal presented
in this thesis. First of all, it adopts a process discovery approach (inductive
mining with Directly-Follows Graphs) for building a model of the process.
Second, it adopts a Graph Convolutional Neural Network (GCNN) to learn
the prediction. With respect to [24], our approach adopts a different, instance-
specific, graph model in the form of Instance Graph, managing also non-fitting
traces. Furthermore, in [24] the network architecture is composed of a single
graph convolutional layer followed by two fully connected layers, while here
a variation of the Deep Graph Convolutional Neural Network (DGCNN) of
[30] is exploited. As another difference, if many events in a trace correspond
to the same activity, only the features of the most recent event are retained in
[24], whereas the Instance Graphs adopted in this work can present the same

8 Chapter 2. Related Work

activity more than once.

2.2 Measuring & Encoding

2.2.1 Measuring Parallelism in Processes

Several metrics have been devised to measure relevant aspects of business pro-
cesses [31]–[33]. Among them, one of particular interest is how much parallel
a process is. It is acknowledged that increasing the number of activities per-
formed in parallel is a way to improve the performance of a business process
[34], although this improvement comes at the cost of a more complex process
design, development, and maintenance. Having a synthetic metric to quantify
the parallelism of a process may thus provide an assessment of the process and
guide certain design choices.

In literature, a widely adopted metric is the Degree of Parallelism (DoP),
defined as the maximum number of parallel activities that can be executed in
that process [31], [35]. In particular, [35] proposes different algorithms to com-
pute the DoP for three classes of BPMN processes. In [31] it is observed that
the DoP, theoretically, can be computed by determining the bound of a Petri
net, which is the maximum number of tokens in a marking of the net. The
computation of such bound requires the construction of the reachability graph,
whose derivation is known to be an NP-complete problem or ever harder for
some classes of Petri nets [36], [37]. A more efficient general procedure is then
proposed for a wide class of BPMN processes, which exploits the notion of
Labeled Transition System and model checking. An extension [38] considers
timed business processes modeled in BPMN, where execution times are asso-
ciated with BPMN constructs such as activities and flows. The DoP metric is
concerned with the “worst” case scenario, i.e. the portion of process presenting
the highest number of parallel activities, neglecting other parts of the process.

Other metrics aimed at assessing the overall complexity of a business pro-
cess are discussed in [32]. In particular, it is argued that complexity of the
parallelism of a process can be measured by the Average Degree of Transitions

2.2. Measuring & Encoding 9

(ADT) which is the average number of incoming and outgoing arcs of transi-
tions in a Petri net.

2.2.2 Encoding Process Structure in Activities

When event logs tracking process executions are available, process mining
techniques can be used to derive alternative representations of process exe-
cutions. This can be done either by combining information from the event log
and the process model, as done by, e.g., alignments or trace replay techniques,
or inferring directly follows mappings directly from the event log [39], [40].
Over time, the need to browse and query processes has induced the scientific
community to investigate further possible representations. In [41] the authors
present the usage and comparison of various possible techniques, in particular
graph matching techniques, alignment techniques and causal footprint, i.e. an
abstract representations of the behavior captured by a process model to define
similarity metrics at a process model level of granularity.

In contrast to these techniques, the present work focuses on a finer granu-
larity, i.e. at the level of single activities. Lately, due to the attention that has
been devoted to predictive tasks in the process mining field, how to encode the
information regarding a business process is becoming crucial. Several works
[40], [42], [43] have tackled the problem of encoding traces, i.e. the sequence of
activities or events that represent a particular process execution, but only few
works exist regarding the representation of a singular activity in a process.
Other works have also tried to encode the information regarding only a partial
trace, in order to leverage such information to perform predictions [24], [44],
[45]. Another recent proposal [46] consists in the usage of neural networks to
learn a representation of activities, logs, and process models in order to derive
an informative and low-dimensional embedding. In [47] word2vec has been
used in conjunction with an LSTM network to label nodes in business process
models. It is worth noting that approaches based on neural network repre-
sentations don’t have a clear semantic. Differently from those approaches we
purposely design each feature to measure a well-defined structural character-
istic and to be more suited to human comprehension.

10 Chapter 2. Related Work

TABLE 2.1: Overview of benchmark dataset. |σ| represents the
trace length.

Dataset N.traces Tot.events N.act.types Min |σ| Max |σ| Avg |σ|
Helpdesk 3804 13710 9 1 14 3
BPI12W 9658 72413 6 1 74 20

BPI12 13087 262200 23 3 175 38
RfP 6886 50568 21 1 20 7
TP 7065 86581 51 3 90 12
ID 6449 72151 34 3 27 11
PC 2099 18246 29 1 21 9

2.3 Dataset

For our experiments in this thesis, we selected some of the benchmark datasets
commonly used in literature, whose characteristics are reported in Table 2.1.

The Helpdesk dataset [48] contains traces from a ticketing management pro-
cess of the help desk of an Italian software company.

The BPI12 dataset [49] tracks personal loan applications within a global fi-
nancing organization. The event log is a merge of three parallel sub-processes.
We considered both the full BPI12 and the BPI12W sub-process, related to
the work items belonging to the application. We retained only the completed
events in the two logs, as done in previous work.

The BPI20 dataset[50] is taken from the reimbursement process at TU/e.
The data is split into travel permits and several request types from which we
selected four datasets. Requests for Payment (RfP) sub-log contains cost decla-
ration referred to expenses that should not be related to trips. Travel Permit
(TP) includes all related events of travel permits declarations and travel dec-
larations. International Declarations (ID), contains events pertaining to interna-
tional travel expense claims. Prepaid Travel Cost (PC) contains events pertaining
to travel expense claims for prepayment. In all four latter datasets, the resource
performing the activity is included in the activity itself, thus producing a lot of
different activity types.

11

Chapter 3

Preliminaries

In this Chapter, we introduce some core definitions used throughout the thesis.

Definition 1 (Labeled Petri Net) A labeled Petri net is a tuple (P, T, F, A, ℓ)
where P is a set of places, T is a set of transitions, F ⊆ (P × T) ∪ (T × P) is the
flow relation connecting places and transitions, A is a set of labels for transitions, and
ℓ : T ↛ A is a partial function that associates a label with a subset of the transitions
in T. Transitions not associated with any label are called invisible transitions.

Figure 3.1 shows the Petri net obtained from a real-life process concern-
ing the ticketing management process of the help desk of an Italian software
company [48].

Transitions represent process activities, namely well-defined tasks that have
to be performed within the process, and places are used to represent states.
Invisible transitions do not correspond to process activities and are used for
routing purposes. We indicate the set of invisible transitions as TH ⊆ T.

Specific executions of a process, so-called process instances, are typically
recorded in logs. More precisely, the execution of an activity generates an event,
which is a complex entity characterized by a set of properties.

Definition 2 (Event, Trace, Log) Let AL be the set of all activity names, C be the set
of all case (aka, process instance) identifiers, H be the set of all timestamps, U a set of
variable values, V a set of variable names. An event e = (a, D, c, i, t) ∈ AL × (V ̸→
U)× C × J × H is a tuple consisting of an executed activity a ∈ AL, a function D
which assigns a value to some process variables (possibly all of them), a case identifier
c ∈ C and a number i ∈ J ⊆ N+. A case corresponds to a single process execution;

12 Chapter 3. Preliminaries

FIGURE 3.1: Petri net mined with the Inductive Miner from
the Helpdesk event log. Transition labels are displayed below
each transition, while inside each square is the corresponding

acronym.

Case ID Activity Timestamp
Case 2 Start 03/04/2012 16:55
Case 2 Assign seriousness 03/04/2012 16:55
Case 2 Take in charge ticket 03/04/2012 16:55
Case 2 Resolve ticket 05/04/2012 17:15
Case 2 End 05/04/2012 17:15
Case 3 Start 29/10/2010 18:14
...

TABLE 3.1: Excerpt from the HelpDesk event log

the number i identifies the position of the event within the sequence of events that
occurred within a case, finally t ∈ τ is the timestamp. The set of events is denoted by
E . An event trace σL ∈ E∗ is a sequence of events with the same case id. An event
log is a multi-set of event traces L.

Table 3.1 shows an excerpt of the event log for the Helpdesk process men-
tioned above. Through this thesis, we will use the notation act(e), case(e),
pos(e), time(e), and var_name(e) to refer to, respectively, the activity, the case
id, the position in the sequence, the timestamp and the attribute named var_name
of an event e. For instance, let e2 be the second event in Table 3.1; act(e2) is “As-
sign seriousness", while time(e2) is “03/04/2012 16:55". Here we introduce
also the projection operator πAtt(x), which is used to build the projection of a

Chapter 3. Preliminaries 13

tuple x on a subset of its attributes Att. For instance, given an event ei we can
define the projection πAL,C,J(ei) = (act(ei), case(ei), pos(ei)).

With a slight abuse of notation, we extend this operator to traces as follows:
πAL,C,J(σi) = ⟨πAL,C,J(e1), . . . , πAL,C,J(en)⟩.

Definition 3 (Prefix trace) A prefix of length k of a trace σ = ⟨e1, e2, . . . en⟩ ∈ E∗,
is a trace pk(σ) = ⟨e1, e2, . . . ek⟩ ∈ E∗ where k ≤ n.

For example, let us indicate with σ1 the trace involving the events with case
id Case 2 in Table 3.1. The prefix of length 3 of σ1 is
p3 = ⟨ (Start, {}, Case 2, 1, 03/04/2012 16:55), (Assign seriousness, {}, Case 2,
2, 03/04/2012 16:55), (Take in charge ticket, {}, Case 2, 3, 03/04/2012 16:55)⟩.
Note that, in this example, the function D corresponds to an empty set, since
we don’t have any additional data attributes in the log.

A well-known issue of log traces is that events are logged in a trace accord-
ing to the timestamp of the corresponding activities, thus hiding possible con-
currency among activities. To address this issue, log traces can be converted
in so-called Instance Graph [51]. These are directed, acyclic graphs which rep-
resent the real execution flow of process activities.

Definition 4 (Causal Relation) A Causal Relation (CR) is a relation on the set of
activities, CR ⊆ A × A. a1 →CR a2 denotes that (a1, a2) ∈ CR.

Elements of CR represent the order of execution of a pair of activities of
a process. In this work, we consider causal relations extracted from existing
process models. To this end, given a labeled Petri net (P, T, F, A, ℓ) repre-
senting a process model, we introduce the notion of direct path between tran-
sitions t1, t2 ∈ T as follows: dp(t1, t2) if and only if ∃p ∈ P s.t. (t1, p) ∈
F ∧ (p, t2) ∈ F. It should be noted that t1, t2 can be either transitions with
or without labels (i.e., hidden transitions). In this setting, a1 →CR a2 if and
only if l(t1) = a1 ∧ l(t2) = a2 ∧ (∃dp(t1, t2) ∨ (∃s = ⟨th1 , . . . , thn⟩ s.t. each
thi ∈ TH ∧ ∃dp(t1, th1) ∧ ∃dp(thn , t2) ∧ ∀i, j ∈ {1, . . . , n}, i < j ∃ dp(thi , thj))).
Informally, this definition considers a causal relation only a direct connection
between two labelled transitions, where the first one generates one of the input
tokens for the second one, disregarding possible (hidden) transitions occurring
in between.

14 Chapter 3. Preliminaries

(A) (B)

FIGURE 3.2: IG for σ1 (a) and its prefix of length 3 (b)

Definition 5 (Instance Graph) Let σ = ⟨e1, . . . , en⟩ ∈ L be a trace and let σ′ =

πAL,J(σ) be its projection on the activity and position sets. An Instance Graph (or
IG) γσ of σ is a directed acyclic graph (E, W) where:

• E = {e ∈ σ′} is the set of nodes, corresponding to the events occurring in σ′;

• W = {(eh, ek) ∈ E × E | h < k ∧ act(eh) →CR act(ek) ∧ (∀eq ∈ E(h <

q < k ⇒ act(eh) ̸→CR act(eq)) ∨ ∀ew ∈ E (h < w < k ⇒ act(ew) ̸→CR

act(ek)))} is the set of edges, defining a partial order over E;

Similarly to what we have done for trace and trace prefixes, starting from
the definition of IGs we can introduce the notion of Graph prefix.

Definition 6 (Prefix Instance Graph (prefix-IG)) Let (E, W) be the instance graph
of some trace σ. Let ˜︁Ek be the set of events in the prefix trace pk(σ) of size k. We define
the prefix instance graph of size k of σ as the graph pk((E, W)) = (˜︁Ek, W ∩ (˜︁Ek ×˜︁Ek)). Informally, a prefix graph pk(gj) is a subgraph of gj involving only k nodes of
gj, i.e., nodes included in the corresponding prefix trace.

Consider σ1 and the set CR derived from the Petri net in Figure 3.1. In
Figure 3.2, Figure 3.2a shows the IG corresponding to the trace, while Figure
3.2b shows its prefix of length 3. For the sake of simplicity, we only use ac-
tivity acronyms to label the graph nodes rather than showing the index and
the complete names. We will adopt the same simplification when drawing IGs
throughout the rest of the thesis.

15

Chapter 4

Instance Graphs for Predictive
Process Monitoring

This chapter introduces a novel approach to tackle the next-activity prediction
challenge. The approach uses information about the parallelism among activi-
ties for the task. This is done by representing each trace with its corresponding
Instance Graph and processing them using deep graph convolutional neural
networks designed to natively manage such graph structures. This work has
also been published in [52].

4.1 Methodology

Here we introduce a novel approach to tackle the next-activity prediction chal-
lenge. Formally, this problem corresponds to learning a classifier able to label
a prefix trace with the activity to be executed next. Figure 4.1 shows the pro-
posed approach. Given an event log and its process model expressed as a
Petri net, the approach i) represents each trace with its corresponding Instance
Graph (IG), ii) enriches the built IG with additional perspectives regarding the
sequential execution and, when available, additional event attributes, and iii)

FIGURE 4.1: The BIG-DGCNN methodology pipeline

16 Chapter 4. Instance Graphs for Predictive Process Monitoring

processes such IGs through graph neural networks, designed to work with
graph data structures, to train a classifier to perform the next-activity predic-
tion task. The approach used to build the IGs is robust against the possible
presence of outliers or anomalous behaviors. In other words, even in the pres-
ence of anomalous behaviors the approach returns instance graphs without
structural anomalies and that provide a high-quality model for the correspond-
ing process behaviors. The set of instances graphs is then used to train the
graph neural network. For the classifier, among the various architectures pro-
posed in the literature, we chose to adopt the Deep Graph Convolutional Neu-
ral Network (DGNN) [30]. In the following, we will refer to our methodology
as BIG DGCNN and to its multi-perspective enriched variants as Multi-BIG-
DGCNN. The following subsections delve into each step of the approach.

4.1.1 Building Instance Graphs

This step takes as input an event log and a process model and converts each
sequential trace in the event log into an Instance Graph. It should be noted
that we assume to have a single starting and a single ending activity for each
process execution. This is necessary to ensure that possible parallelism at the
beginning or at the end at the execution can be properly modeled. This con-
straint, however, does not pose a significant limitation to the applicability of
the approach. In fact, it is always possible, if necessary, to apply a simple data
preprocessing procedure to the log and to the model to introduce artificial start
and end activities. As regards the process model, this can be either provided
by a domain expert or extracted by a process discovery algorithm.

To generate the IGs, in this text we refer to the Building Instance Graph
(BIG) algorithm proposed in [51], which is able to handle traces that do not
conform to the model. BIG is a two-steps algorithm. First, an IG is built for
each trace as in Definition 5, by using the set of causal relations extracted by
the process model provided in input. In the presence of non compliant events,
however, this procedure generates anomalous, low-quality IGs. As an exam-
ple, let us consider the following trace:1 σ2 = ⟨(1, S), (2, SI), (3, AS), (4, TC),

1For the sake of simplicity, we directly show the projected trace obtained by another trace
from the Helpdesk log. Furthermore, for the sake of readability, we only use activity acronyms.

4.1. Methodology 17

(A) IG built for trace σ2 (B) Repaired IG built for trace σ2

FIGURE 4.2: IG repair examples

(5, W), (6, E)⟩. This trace is not compliant with respect to the model in Figure
3.1 since the activity SI is executed before AS and the activity RT is missing.
Figure 4.2a shows the IG built for this trace according to Definition 5. The
anomalies mentioned above led to generate a disconnected graph, since W
and TC should both be linked to RT. Furthermore, connections among nodes
do not reflect the temporal order of occurrence of the events, in particular for
SI. In terms of semantics, these models over-generalize the process behavior.
For example, the only execution constraint for SI is to be executed before W.
Even worse, activities of each part of the disconnected graph can be executed
in any order with respect to the activities of the other part. To deal with the
issues mentioned above, in [51] an IG repairing procedure is applied to IGs
corresponding to anomalous traces, which transforms them into graphs capa-
ble of also representing the anomalous traces without over-generalizing. First,
anomalous traces (and, hence, IGs) are recognized in the event log by means
of a conformance checking technique [53]. Then, tailored rules are applied
for repairing IGs with deleted and inserted events. For deleted events, the re-
pairing consists in identifying the nodes which should have been connected to
the deleted activity properly connecting them. For the insertion repairing, we
have to change the edges connecting the nodes corresponding to the event(s)
before and the event(s) after the inserted event, to connect such nodes with the
node corresponding to the inserted event in the graph, taking into account the
causal relations among its predecessors and successors in the trace.

Figure 4.2b shows the outcome of the repairing procedure for the IG cor-
responding to σ2. The repairing of the deletion of RT has been realized by
connecting its predecessors W and TC with its successor E while the inserted

18 Chapter 4. Instance Graphs for Predictive Process Monitoring

event SI has been connected to the events occurring before/after the anoma-
lous event in the trace. It should be noted that there are two main forces driv-
ing the repairing procedures. On the one hand, we want to obtain a represen-
tation as precise as possible of the occurred anomaly, limiting the number of
behaviors represented by the repaired IG. On the other, we want to preserve
concurrency relations described by the model. For this reason, the insertion of
the event SI after S is repaired by connecting SI to both the causal successors
of S2. It is worth noting that the repaired graphs do not fulfil Definition 5 with
respect to the original causal relation set CR; however, they still fulfil the def-
inition according to the new set of causal relation CR′, obtained by extending
CR to include all the pair of activities linked by edges added/modified during
the repairing procedure.

We would like to point out that the repairing procedure is an essential
component of the BIG algorithm. Without the repairing, the presence of even
few non-compliant events in a trace can lead to disconnected graphs and/or
graphs with a high degree of parallelism, which can hide temporal relations
among process activities. These graphs are likely to hamper the performance
of the classifier; therefore, we advocate that not-repaired IGs should not be
used to train the classifier.

4.1.2 Data Encoding

This step aims at building a labeled prefix-IG dataset, enriched with additional
data perspectives derived from the event log and can be further split into two
phases. First, we extract all the prefix-IGs from the set of IGs derived at the
previous step. Then, we enrich the prefixes according to the set of perspectives
that we want to consider for the analysis. Both steps are detailed below.

Prefix-IG generation

Given the set of n Instance Graphs IG, the goal of this step is to build the
dataset S = {(pi(gj), al)} where pi(gj) = (Ep, Wp) is a prefix-IG of length i of a

2Note that for deviations occurring within parallel constructs other repair configurations
are available, e.g., by adding an additional parallel branch involving the inserted activities.
Refer to [51] for additional details.

4.1. Methodology 19

E W Label
p2(g) {(1, S), (2, SI)} {((1, S), (2, SI))} AS
p3(g) {(1, S), (2, SI), (3, AS)} {((1, S), (2, SI)), ((2, SI), (3, AS))} TC

TABLE 4.1: prefix-IG of lenght 2 and 3 extracted from the IG in
Figure 4.2b

.

graph gj = (Ej, Wj), where i ∈ [1, ∥Ej∥ − 1], gj ∈ IG and al corresponds to the
next activity of the partial execution described by pi(gj). It is straightforward
to see that from each IG, we produce N − 1 pairs of S.

The building of the prefix-IG set is accomplished by using the total order of
the events in the trace. Indeed, recall that each node in an Instance Graph cor-
responds to an event in the corresponding trace (see Definition 5). Therefore,
it is possible to link each node in an IG to a progressive index representing
the position of the corresponding event in the trace. This index determines the
order of the nodes, which we use to progressively build the prefix-IG set.

In particular, given an IG g, the graph prefix p2(g) is obtained by selecting
the first two nodes and the edge(s) between them. This prefix is labelled with
the activity of the event in position 3. The next prefix is then derived by ex-
tending p2(g) with the node of index 3 and the edges connecting it to p2(g).
The associated label is the activity of the event in position 4. The procedure
is repeated until the activity corresponding to the last node of the graph is se-
lected as the label. As an example, let us consider the trace σ1 introduced in
Chapter 3, whose IG g is reported in Figure 4.2b. Table 4.1 shows two prefix-
IGs extracted by g, of length 2 and length 3, respectively.

Multi-Perspective Prefix-IG Enrichment

The prefix-IGs built at the previous step model the activity name and the corre-
sponding causal relations for each event of a process execution. This step aims
at enriching the prefix-IGs in order to incorporate additional data perspectives.
In practice, this is realized by linking each node of each prefix-IG with the set
of features which the analyst wants to take into account for the prediction. For-
mally, let M be the set of perspectives (aka, features) chosen by the analyst for
the prediction, G be the set of feature values and Val_M : M −→ 2G the function

20 Chapter 4. Instance Graphs for Predictive Process Monitoring

defining the values admissible for each feature. Given the set of IG-prefixes S
built at the previous step, the goal is to build the dataset S

′
= {(p′i(gj), al)},

where p′i(gj) = (Ep, Wp, Val_M) is a Multi-Perspective Enriched prefix-IG of
lenght i of a graph gj = (Ej, Wj), i ∈ [1, ∥Ej∥ − 1].

We consider two sets of features; direct features, corresponding to data at-
tributes stored in the event log, and indirect features, derived from the infor-
mation available in the trace. Note that the set of direct features corresponds
to the set D introduced in Definition 2; therefore, D ⊂ M. For the indirect
features, we are especially interested to time-related features, which are used
to encode information about the sequential execution order of the traces from
which the IGs have been extracted.

The use of this kind of information has been previously used in literature
[20], [23]. However, thanks to the use of instance graphs in place of log traces,
in our framework the temporal intervals are computed for each activity with
respect to its causal predecessor rather than with respect to the preceding activ-
ity in the sequence. We argue that such computation provides a more accurate
representation of what actually happened within the process execution, thus
providing more robust information to be used for the prediction in place of the
sequence-based features. These features are defined as follows.

Let CR be the set of causal relations defined among the activities of the
event log L. Let us consider the prefix pi(gj) ∈ S and let us indicate with ni the
node corresponding to the event at the i-th position in the trace corresponding
to gj. With a slight abuse of notation, in the following we use act(ni), time(ni)

to indicate the activity and the timestamp of the event ei. This is justified by the
fact that for each node of each prefix-IG there exists a unique mapping to the
position of the event of the corresponding trace, from which the corresponding
information can be accessed.

The first temporal feature we define is ∆tni
, which represents the time be-

tween the current event and its predecessor in the graph. For all nodes ni, let
predni = {nj | (act(nj), act(ni)) ∈ CR} denote the set of all nodes that are

4.1. Methodology 21

causal predecessors of ni. We define

∆tni
=

⎧⎨⎩0 if predni = ∅

minnj∈predni

time(ni)−time(nj)
∆maxe

otherwise

where time(ni) is the timestamp of the event at index i, and ∆maxe is the
maximum interval between two consecutive adjacent nodes. In addition to
∆tni

, we use two other temporal features. The first one represents for each event
the time it occurred with respect to the start of the process. The other feature
allows to take into account at which point an activity has occurred with respect
to the corresponding working week (i.e, since midnight on previous Sunday).
This can provide valuable information for the classifier, since activities of a
business process are likely to be carried out within office hours. Formally:

tdni
=

time(ni)− t0

∆maxt

; twni
=

time(ni)− tw0

∆tw

where tw0 is the timestamp of the last passed Sunday midnight, and t0 is
the start timestamp of the process. ∆tw is the amount of time in a week, while
∆maxt is the maximum trace duration. Note that ∆tw, ∆maxe and ∆maxt are nor-
malization factors computed on the entire event log to make features varying
in the range [0, 1], as it improves the performance of the network.

Once the direct features have been selected from the event log and the indi-
rect ones have been computed, we compute the mapping function Val_M for
each node of each prefix, thus generating the dataset S

′
.

As an example, Table 4.2 shows the prefixes discussed above enriched with
the temporal features. Note that since the first three events of σ1 all have the
same timestamps, the temporal features are all the same for these prefixes.

The final processing step consists in transforming the feature set in the for-
mat requested by the classifier. In particular, the Deep Convolutional Neural
Network we select for our architecture takes in input a vector FV = [FVe, FVW , Label]
where:

• FVe = { f v1, . . . , f vn} where f vi corresponds to a feature vector describ-
ing one node of the graph, i.e., f vi ∈ AL × Val_M. Note that we exploit

22 Chapter 4. Instance Graphs for Predictive Process Monitoring

E W Val_M Label
p′2(g){(1, S),

(2, SI)}
{((1, S),
(2, SI))}

{(1, {∆tni
= 0, tdni

= 0, twni
= 0.27}), AS

(2, ∆tni
= 0,tdni

=0,twni
= 0.27})}

p′3(g){(1, S),
(2, SI),

{((1, S),
(2, SI)),

{(1, {∆tni
= 0, tdni

=0,twni
=0.27}), TC

(3, AS)} ((2, SI),
(3, AS))}

(2, {∆tni
= 0, tdni

= 0, twni
=0.27}),

(3, {∆tni
= 0, tdni

= 0, twni
= 0.27})}

TABLE 4.2: Enriched prefix-IG of lenght 2 and 3 extracted from g.

the one-hot encoding to encode both the name of the activity and the pos-
sible categorical features in M.

• FVW = {(i, j) | 1 ≤ i, j ≤ |FVe|} is a set of tuples corresponding to the
set of the edges of the graph;

• Label corresponds to the classification label associated with the graph.

4.1.3 Deep Graph Convolutional Neural Network

As model architecture to perform the next-activity prediction we use a Deep
Graph Convolutional Neural Network (DGCNN) proposed in [30].

The DGCNN is composed of three sequential stages as shown in Figure
4.3.First it has several graph convolutional layers which extract the features
from the nodes local substructure whose features values can be used to define
a consistent vertex ordering. Second it has a SortPoolingLayer which sorts the
vertex features according to the order defined in the previous stage, selecting
the top nodes. In this way the dimension of the input is unified. At last, a
1-D convolutional layer and a dense layer take the obtained representation to
perform predictions.

The graph convolutional layer adopted by DGCNN is represented by the
following formula:

Z = f (D̃−1ÃXW) (4.1)

4.1. Methodology 23

where Ã = A + I is the adjacency matrix (A) of the graph with added
self-loops(I), D̃ is its diagonal degree matrix with D̃ii = ∑j Ãij, X ∈ Rn×c is
the graph nodes information matrix (in our case the one-hot encoding of the
activity labels associated with the nodes), W ∈ Rc×c′ is the matrix of trainable
weight parameters, f is a nonlinear activation function, and Z ∈ Rn×c′ is the
output activation matrix. In the formulas, n is the number of nodes of the input
graph (in our case, the graph prefix), c is the number of features associated with
a node, and c′ is the number of features in the next layer tensor representation
of the node.

In a graph, the convolutional operation aggregates node information in lo-
cal neighborhoods so to extract local structural information. To extract multi-
scale structural features, multiple graph convolutional layers (eq. 4.1) are stacked
as follows:

Zk+1 = f (D̃−1ÃZkWk) (4.2)

where Z0 = X, Zk ∈ Rn×ck is the output of the kth convolutional layer, ck is
the number of features of layer k, and Wk ∈ Rck×ck+1 maps ck features to ck+1

features.
The graph convolutional outputs Zk, k = 1, ..., h are then concatenated in

a tensor Z1:h := [Z1, ..., Zh] ∈ Rn×∑h
1 ck which is then passed to the SortPool-

ingLayer. It first sorts the input Z1:h row-wise according to Zh, and then re-
turns as output the top m nodes representations, where m is a user-defined
parameter. This way, it is possible to train the next layers on the resulting
fixed-in-size graph representation.

In the original proposal the DGCNN includes a 1-D convolutional layer,
followed by several MaxPooling layers, one further 1-D convolutional layer
followed by a dense layer and a softmax layer. Here we simplify the architec-
ture leaving only one 1-D convolution layer with dropout [54] followed by a
dense and a softmax layer. This is because the process mining domain tend
to present smaller graphs in comparison with those of typical application do-
mains of graph neural networks [55]. For further information we refer the
interested reader to [30].

24 Chapter 4. Instance Graphs for Predictive Process Monitoring

FIGURE 4.3: DGCNN architecture [30].

This section describes the experiments we carried out on multiple real-
world datasets to assess the performance of our approach w.r.t. state-of-the-
art competitors. We first provide a description of the experimental set-up, the
selected datasets and the competitors. Then, we discuss the obtained results.

4.2 Experiments

4.2.1 Experimental Setup

We compared our approach against a set of representative competitors from
the literature. In particular, we chose one representative of neural network ar-
chitecture per type used in next-activity prediction in previous work, namely,
LSTM, CNN, MLP, and GCNN. The criteria used to select the competitors
were:

• the availability of the source code to reproduce the experiments,

• a claim of good performance on one or more benchmark datasets com-
monly used in literature,

• the absence of a particular encoding mechanism apart from those neces-
sary to apply their architecture.

When in doubt, we selected the most acknowledged papers on the basis of
citations and place of publication. On the basis of these criteria we selected:

• [24] for MLP,

4.2. Experiments 25

• [24] for GCNN (specifically the Laplacian binary),

• [23] for the CNN,

• [20] for the RNN (LSTM to be specific).

We highlight that for [20] we had to reimplement the code since it was too
outdated w.r.t. the used python modules. Also, for the GCNN proposed in
[24], we had to add to the adjacency matrix self-loops in order to guarantee its
invertibility with every dataset, as done in other cases in the literature [30].
Finally, we remark that for each competitor we used the hyper-parameters
search methods provided in their code or, when not available, their claimed
best hyper-parameters. If neither was available, we used the parameters pro-
vided by their code. To provide an as fair as possible comparison we just used
the timestamp-based features so that no extra information is used with respect
to any of the competitors (though some of them may have used extra ones).
All the datasets used are those presented in sec. 2.3.

4.2.2 Parameter settings

The presented methodology involves two algorithms requiring the setting of
parameters: the infrequent Inductive Miner (iIM) [56], used to extract the pro-
cess model from a given event log, and the DGCNN. The iIM builds the model
after filtering out infrequent behaviours according to a noise threshold. We
changed the noise threshold in steps of 10% from 0% to 100% and selected
the smallest noise threshold that granted at least a 90% fitness (i.e., how much
the discovered model can accurately reproduce the cases recorded in the log3).
Using this criterion, the obtained models are capable of representing the vast
majority of traces while still maintaining a good degree of generalization, thus
providing a favorable setting for the classification task.

Regarding the parameters of the DGCNN, we set the number of 1-D con-
volutional layers to one, followed by a dense layer, both with 64 neurons.We
used ADAM [57] as optimization algorithm and trained the network for 100
epochs with an early stopping. We used as loss function the categorical cross

3Here we refer to the state-of-the-art notion of fitness proposed by Adriansyah et al ([53])

26 Chapter 4. Instance Graphs for Predictive Process Monitoring

entropy, a fixed batch size of 64 and a fixed dropout percentage of 0.1. For all
datasets, we tested all the methods using the same 67%-33% train-test split (of
chronologically ordered traces) and varied the following parameters:

• the number of nodes selected by the SortPooling layer (m), in {3,5,7,30}

• the number of stacked graph convolutional layer (h), in {2,3,5,7}

• the initial learning rate (lr), in {10−2, 10−3, 10−4}

The configurations that provide the best performance reported as (m, h, lr) are
(7,3,10−4), (7,2,10−4), (7,3,10−2), (7,3,10−2), (7,3,10−2), (7,3,10−3), (7,3,10−3), re-
spectively for Helpdesk, BPI12W, BPI12, BPI20 RfP, BPI20 TP, BPI20 ID, BPI20
PC.

For all datasets, the best number of selected nodes is always 7. The most
reasonable cause for this behaviour is that for all dataset the number of sam-
ples with a prefix shorter than 8 is the vast majority. We also notice that this
explanation also holds for the small number of stacked graph convolutional
layers. All the experiments have been performed using either pytorch geomet-
ric [58] with torch version 1.10.0 or tensorflow 2.5 [59], on an NVIDIA GeForce
GTX 1080 GPU, a Intel(R) Core(TM) i7-8700K CPU@3.70GHz, and a 32 GB
RAM.

4.2.3 Evaluation metrics

To compare the results obtained by the tested classifiers, we exploit two metrics
widely used for classification tasks, namely accuracy and F1 score.

The accuracy measures the proportion of the correctly classified samples
out of all samples, i.e., Accuracy = T

N , where N is the number of samples
and T is the sum of all the samples correctly classified. The overall F1 score is
computed as the weighted average of the F1 scores computed for each class,
weighted w.r.t. the corresponding number of samples. The F1 score for each
class F1i is computed as the harmonic mean of precision and recall for class i,
i.e. F1i = Pi·Ri

Pi+Ri
. The precision Pi is computed as Pi = TPi

TPi+FPi
and the recall

Ri is computed as Ri =
TPi

TPi+FNi
.TPi is the number of i-class samples correctly

classified, FPi corresponds to the number of samples wrongly classified as class

4.3. Results and Discussion 27

TABLE 4.3: Comparison results; measured accuracy and F score.

Dataset
Approach Helpdesk BPI12W BPI12 RfP TP ID PC
Multi-BIG Acc 86.15% 71.32% 76.09% 90.64% 78.50% 88.44% 85.80%
DGCNN F1 83.19% 69.89% 71.12% 87.51% 76.13% 86.28% 83.90%

BIG Acc 85.18% 70.85% 72.90% 90.03% 78.29% 73.72% 85.61%
DGCNN F1 82.93% 69.06% 68.31% 87.16% 76.08% 70.63% 83.14%

GCNN Acc 80.42% 64.75% 60.92% 88.16% 61.33% 81.74% 79.52%
F1 76.73% 59.77% 58.95% 86.05% 60.12% 78.05% 76.44%

MLP Acc 82.16% 66.17% 71.80% 89.81% 76.83% 86.82% 85.38%
F1 77.45% 62.11% 66.07% 87.38% 74.61% 84.31% 84.56%

CNN Acc 85.02% 66.36% 78.45% 89.11% 82.52% 88.89% 85.93%
F1 82.13% 63.48% 75.92% 85.62% 80.23% 86.18% 83.65%

LSTM Acc 74.49% 66.08% 79.06% 90.24% 76.89% 87.96% 82.65%
F1 72.13% 61.61% 75.48% 86.72% 72.60% 84.93% 79.74%

i (aka, false positives); while FNi corresponds to the number of samples of class
i wrongly classified as some other class (aka, false negatives).

Moreover, we evaluate the Average Ranking (AR), the Success Rate Ratio
Ranking (SRR) and the ranking (R) [60]. The former is simply the average of
ranks achieved by a given approach on all datasets. The SRR shows the suc-
cess rate ratio of approach i, and it is measured by first calculating the average
of accuracy (F1 score) ratios on all k datasets SRRi,j = (∑k

1 SRRk
i,j)/k, where

SRRk
i,j = Acck

i /Acck
j (F1k

i /F1k
j) is the ratio of accuracies (F1) achieved by ap-

proaches i, j on dataset dk. The SRR of the approach i (SRRi) is then obtained as
SRRi = ∑j SRRi,j/(m − 1), where m is the number of competitor approaches.
Finally, R is the ranking computed over the SRR.

4.3 Results and Discussion

Table 4.3 reports the results achieved by each approach over the tested data-
sets. The best values for each dataset are highlighted in bold. To assess the
impact of the enrichment phase on the classification performance, we tested

28 Chapter 4. Instance Graphs for Predictive Process Monitoring

two versions of our approach, i.e., the one exploiting only the control-flow in-
formation (BIG-DGCNN) and the one exploiting the enriched IGs (Multi-BIG-
DGCNN).

The first interesting insight is that considering multiple perspectives is over-
all beneficial for classification performance. In fact, Multi-BIG-DGCNN is con-
sistently better than BIG-DGCNN over all tested datasets. The strongest differ-
ences can be observed in BPI12, which shows improvements in accuracy and
the F1 score respectively of 3.19% and 2.81%, and in the ID dataset, where the
accuracy and the F1 score improved of, respectively, 14.72% and 15.65%. These
results suggest that the set of features used for the enrichment have strong pre-
dictive capabilities for these two datasets. On the other hand, focusing on the
pure workflow perspective, we can state that BIG-DGCNN is a better approach
than GCNN.

Moving to the comparison with the competitors, Multi-BIG-DGCNN achieves
best results in terms of F1 score on five datasets out of seven. In Helpdesk,
BPI12W and RfP Multi-BIG-DGCNN also achieves the best accuracy perfor-
mance. CNN turns out to be the best on TP and achieves the best accuracy
values on ID and PC, whereas LSTM is the best on BPI12. Overall, considering
the F1 score, it seems that Multi-BIG-DGCNN shows a better consistency over
all datasets. To demonstrate this, we report in Table 4.4 the overall comparison
expressed in terms of AR, SRR and R for both accuracy and F1 score figures of
merit. We observe that, for what concerns AR, Multi-BIG-DGCNN is the best
approach, followed by CNN and then BIG-DGCNN and LSTM. It also turns
out to be the best approach according to the SRR metrics, though values show
that it is basically comparable with CNN. Considering that the CNN encodes
a richer set of aggregated temporal features than Multi-BIG-DGCNN, results
are encouraging and demonstrate the viability of instance graphs processed
by DGCNN, since this kind of information may also be added when deemed
useful for prediction purposes.

It is also worth noting that the BPI12W dataset, where both our approaches
obtained the biggest improvement with respect to the second best approach,
is also the dataset with the highest percentage of activities in a short loop,

4.3. Results and Discussion 29

TABLE 4.4: Literature comparison, rankings

Approach
Accuracy F1

AR SRR R AR SRR R
Multi-BIG-DGCNN 1.50 1.248 1 1.43 1.255 1

BIG-DGCNN 2.88 1.206 5 2.88 1.210 3
GCNN 5.00 1.113 6 4.75 1.110 6
MLP 3.75 1.207 3 2.88 1.203 4
CNN 2.00 1.246 2 2.38 1.253 2
LSTM 3.25 1.206 4 3.88 1.198 5

which is known to be a difficult situation for next-activity prediction. A rea-
sonable explanation for this result is that the graph convolution mechanism is
naturally robust to such repetitions since it can aggregate the information of
nearby nodes, which is exactly the scenario we have when a specific activity is
repeated several times.

In addition to analyze the overall behavior of the approach, we are also
interested in understanding how it varies among the different prefix sizes.
Figure 4.4 shows the trend of the F1 score with respect to the different pre-
fix lengths across all the datasets. We compare the performance of Multi-BIG-
DGCNN (blue line) against those of LSTM (orange line). We chose to compare
these two approaches because the LSTM approach proposed by Tax et al. is
the one with the set of features more similar to ours. The main differences are
that we consider for each event the time w.r.t. the start of the process, rather
than within the day (i.e., w.r.t. midnight) and that we consider causal relations
in computing temporal intervals between an event and its successor(s), rather
than considering subsequent events in the trace (see Section 4.1.2). Therefore,
we can reasonably assume that differences in performance are likely to be due
either to the different architectures employed, i.e., sequential vs graph-based,
or to the explicit use of information on the process structure in the feature set.
In addition to the F1 score performance, in the figures a red, dotted line shows
how the sample size varies with the increase of the prefix length. To provide
some additional insights on the size of the sample set for the different prefix
lengths, a vertical, dotted black line is placed to separate results obtained on

30 Chapter 4. Instance Graphs for Predictive Process Monitoring

0 2 4 6 8 10 12 14
Prefix length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

0

200

400

600

800

1000

1200

Sa
m

pl
es

Multi-BIG-DGCNN
LSTM
#samples

(A) Helpdesk

0 10 20 30 40 50
Prefix length

0

1

F1
sc
or
e

0

500

1000

1500

2000

2500

3000

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(B) BPI12W

0 10 20 30 40 50 60 70
Prefix length

0.48

0.54

0.60

0.66

0.72

0.78

0.84

0.90

0.96

1.02

F1
sc

or
e

0

1000

2000

3000

4000

Sa
m

pl
es

Multi-BIG-DGCNN
LSTM
#samples

(C) BPI12

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Prefix length

0

1

F1
sc
or
e

0

500

1000

1500

2000

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(D) RfP

0 10 20 30 40 50
Prefix length

0

1

F1
sc
or
e

0

500

1000

1500

2000

2500

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(E) TP

0 5 10 15 20 25
Prefix length

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
sc
or
e

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(F) ID

0 2 4 6 8 10 12 14 16 18
Prefix length

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

F1
sc

or
e

0

100

200

300

400

500

600

700
Sa

m
pl

es

Multi-BIG-DGCNN
LSTM
#samples

(G) PC

FIGURE 4.4: F1 score of Multi-BIG-DGCNN and LSTM on the
tested datasets plotted against the prefix lengths, together with

the number of samples.

prefix lengths with at least ten samples (on the left of the line), to those ob-
tained on fewer samples (on the right of the line).

In the following, we focus the discussion on the prefixes on the left of the
black line, i.e., prefixes involving at least ten samples. This is justified by the
fact that for prefix lengths involving a very scarce number of samples, even a
difference of a few samples classified correctly or incorrectly can deeply impact
the results. Note that most of the F1 score plots in Figure 4.4 show a very
unstable result in the neighborhood of the black line for both classifiers, which
seems to confirm that a limit of 10 is reasonable for these datasets.

The figure shows that Multi-BIG-DGCNN usually performs close to or higher
than LSTM on the shorter prefixes; however, the performance get worse for
longer prefixes. Since the shorter prefixes correspond to the higher number of

4.3. Results and Discussion 31

samples, outperforming the competitor in the shorter prefixes allows Multi-
BIG-DGCNN to obtain a higher accuracy than LSTM in the corresponding
dataset. An exception is represented by the dataset BPI12, where LSTM ob-
tains comparable or better results along all the prefix lengths, which indeed
results in a higher overall average accuracy as shown in Table 4.3.

The reason for the worsening in performance of Multi-BIG is unclear. A hy-
pothesis can be related to the fact that the Deep Graph Convolutional Neural
Network needs more samples to train. Another justification can be found in
the architectural properties of the DGCNN. These networks determine which
nodes are the most important for the prediction exploiting the information
gained during the convolutional layers adopted during the training. In do-
ing so for the analyzed datasets, it is reasonable that the network gives higher
importance to nodes belonging to the shorter prefixes, since they are the most
frequent and the most relevant ones for the overall prediction performance.
However, these nodes are also the least informative ones for the longer, less
frequent prefixes, with the result of a drop in performance.

33

Chapter 5

Measuring Parallelism in Process
Models

This Chapter is devoted to the definition of a novel metric that manages to
effectively measure the parallelism in a business process model. This is done
to investigate a way of characterizing processes so as to determine where the
Instance Graph-based approach, presented in the previous Chapter 4, can lead
to good results. This work has also been published in [61].

Several notations exist to describe a process model, like Petri nets [62], or
BPMN [63]. In the following, we will discuss the properties of the different
metrics on a set of paradigmatic processes described in Petri nets notation.

Note that we focus on operational business processes, that are represented
by a sub-class of Petri nets called Workflow nets (WF-net). A WF-net has one
start place, one end place, and all transitions and all places are on a path from
start to end[64].

We recall that a specific execution of the process generates a so-called pro-
cess instance, which is the partially ordered set of activities that are performed
to achieve the completion of a single execution of a process, that can be mod-
eled by an IG.

5.1 Use Cases Description

In this section, we introduce 7 use cases, in the form of Petri nets. Although
simple, these processes have been designed to capture some paradigmatic sit-
uations allowing us to enlighten the properties of the different metrics from the

34 Chapter 5. Measuring Parallelism in Process Models

FIGURE 5.1: Use case 1

FIGURE 5.2: Use case 2

literature and those proposed here. These examples can also be easily scaled.
We designed use case 1 (Fig. 5.1), as a simple starting base case so to com-

pare the added structural complexity of the other models with it.
Use case 2, (Fig. 5.2) only adds to use case 1 a sequence of transitions after

the parallelism. Hence, for this model, it is desirable that a metric lowers its
score.

Concerning use case 3 (Fig. 5.3), we designed it to highlight the opposite
behaviour: it is basically a sequence of two use case 1, so it would be reasonable
to see an increase in the metric score.

Use case 4 (Fig. 5.4), has been designed so to compare it with both use cases
2 and 3. We expect to see an increased score w.r.t. the former, while it is more
difficult to compare the quantity of parallelism with the latter. Indeed, use
case 4 has a greater number of activities that can be performed simultaneously,
while use case 3 has a greater number of parallel block.

Similarly, we designed use case 5 (Fig. 5.5) as a problematic example to
compare with use cases 1 and 2, since there are a greater number of activities
in the parallel branch.

Use case 6 (Fig. 5.6) is introduced to show the effect of synchronisation on
the parallel complexity of the process with respect to use case 5.

Lastly, we consider use case 7 (Fig. 5.7) to show the effects of an or split on
the various metrics.

5.1. Use Cases Description 35

FIGURE 5.3: Use case 3

FIGURE 5.4: Use case 4

FIGURE 5.5: Use case 5

FIGURE 5.6: Use case 6

36 Chapter 5. Measuring Parallelism in Process Models

FIGURE 5.7: Use case 7

5.2 Metrics for Process Parallelism Evaluation

5.2.1 Metrics Based on Model perspective

In this subsection we introduce two popular metrics, whose values are calcu-
lated directly from the structure of the process.

Average Degree of Transition

The Average Degree of Transition (ADT) has been introduced in the context
of Petri net-based business process as a mean to measure control flow parallel

complexity [32]. It is defined as: ADT = ∑T
i deg(ti)
|T| , where T is the set of all

transitions in the Petri net, and deg : T → N is the function that associates
with a transition the number of its incoming and outgoing arcs. It is relevant
to notice that such metric assumes values in [2;+∞), a value of 2 represents a
purely sequential process whereas bigger values indicate the presence of more
parallelism. As examples, considering use case 1 we can compute the ADT as
10/4 = 2.5 whereas for the use case 2 it is 16/7 = 2.29.

Degree of Parallelism
The most commonly used metric to quantify the parallelism of a process is the
maximum number of activities that can be executed in parallel, called Degree
of Parallelism (DoP). It is computed by evaluating the number of activities
enabled by a marking of the Petri net. For example, for the use case 1 the
value of DoP is 2 due to the marking ⟨p1, p3⟩ which enables both transitions t2
and t4; for the process in Figure 5.4 the DoP is 3 since the marking ⟨p1, p6, p8⟩

5.2. Metrics for Process Parallelism Evaluation 37

enables the maximum number of transitions, namely t2, t7 and t8. Techniques
to calculate the DoP have been proposed in [31], [35].

Comparison between DoP and ADT

First of all we notice that as the DoP calculate a maximum parallelism, it is
hence suited to assess peak behaviours, whereas ADT shows a more compre-
hensive average complexity of the process. In order to highlight this fact, let us
consider use cases 2 and 3. The value of the DoP metric is 2 for both processes,
but the latter clearly shows a more complex behaviour due to the presence of a
further parallel block. This is captured by ADT whose value is increased from
2.29 to 2.5. Clearly DoP is able to capture the difference between processes in
Figures 5.2 and 5.4 passing from 2 to 3. ADT also detect the increased com-
plexity, although with a slightly minor relative increment passing from 2.29
to 2.5. We remark that the ADT metric returns the same value for use cases
3 and 4, demonstrating that ADT is unable to capture the increased complex-
ity inherent to a parallelism with a higher number of parallel activities. The
values of DoP and ADT metrics for all the use cases are shown in the last two
columns of Table 5.1. The limits discussed for the two metrics motivated us to
focus on a different aspect of a process model to define a metric. Specifically,
in the following subsection we describe two metrics which take into account
the number of variants represented by an IG.

5.2.2 Metrics Based on Instance Graphs

We can say that each IG represents a specific set of parallel branches that exist
in the process and that the parallel complexity of such set is as high as the num-
ber of variants, i.e. all the possible unique sequence of activities, represented
by the IG. On this basis, we introduce a metric called Parallel Complexity, and
a scaled variant, designed to overcome the limits of both ADT and DoP being
more sensitive to both overall and maximum parallelism.

38 Chapter 5. Measuring Parallelism in Process Models

Parallel Complexity (PC)

This metric is defined as PC =
|V|
|IG| − 1, where |V| is the number of distinct

variants allowed by the process model and |IG| is the number of distinct IGs
that represents those variants. The minus 1 is a scaling parameter used to re-
duce to 0 the Parallel Complexity in case of strictly sequential processes. Given
a process model, the set of IGs can be easily obtained by a two-step procedure.
First, the variants of a process are generated (play-out). Then, using causal
relations of the model, an IG is generated for each variant. Computing such
metric for the provided use cases, we can see that the metric shows an hybrid
behaviour with respect to DoP and ADT, i.e., it is sensitive to both overall par-
allelism and maximum parallelism. On the one hand, as regards the use cases
2 and 3 we can notice that PC scores respectively 1 and 3 managing to reflect
the increased overall parallelism as ADT does, but DoP does not. On the other
hand, for use cases 3 and 4, PC takes the values 3 and 5 respectively, highlight-
ing the difference between the two examples as DoP does but ADT does not.
Agreeing behaviours are displayed considering use cases 2 and 4 as both ADT
and DoP detect the increment. However, it should be noted that PC scores a
bigger relative increase. Indeed, the percentage increment of ADT, DoP and
PC are 9.2%, 50% and 400%, respectively. This is due to the fact that adding
a branch to a parallelism does not increase linearly its complexity as the pos-
sible actual executions of such parallelism grow combinatorially. A relevant
advantage of the PC metric is shown comparing use case 6 with use case 5.
The former adds to the latter a synchronisation place p9 which locks the exe-
cution of t3 to t7, therefore reducing the existing parallelism. In this situation,
ADT, instead of a reduction, even scores an increment due to the arcs used to
connect p9. DoP ignore the change altogether. On the contrary we note that
PC correctly reflects the change passing from 5 of Figure 5.5 to 4 of Figure 5.6.
A similar situation is displayed by use cases 3 and 5, where ADT lowers its
value instead of increasing it. Use case in Figure 5.7 shows that PC also works
well if choices exist in the process model, giving rise to more than one IG. Since
this use case is composed by a choice between 1 and 5, PC correctly returns a
score of 3 which is the average of its values for these two use cases. A similar

5.2. Metrics for Process Parallelism Evaluation 39

TABLE 5.1: Metrics for all use cases

Use case |IG| |V| |T| |S| PC SPC ADT DoP
1 1 2 4 2 1 0.5 2.5 2
2 1 2 7 2 1 0.2 2.29 2
3 1 4 8 4 3 0.75 2.5 2
4 1 6 8 2 5 0.83 2.5 3
5 1 6 8 2 5 0.83 2.25 2
6 1 5 8 3 4 0.8 2.5 2
7 2 8 12 4 3 0.375 2.33 2

behaviour is displayed by ADT which scores 2.33 which is in-between the com-
posing use cases ADT values. The main limit of PC is that it doesn’t scale well
with respect to process length. To explain the point, let us consider use cases
1 and 2. The former shows a higher overall parallelism, since a larger portion
of process 2 is strictly sequential. Instead, PC values for both processes is 1,
whereas this difference is captured by ADT. This motivates the introduction of
a scaled variant of the PC.

Scaled Parallel Complexity (SPC)

In order to overcome the described limit of the proposed metric, we devised
a scaling mechanism that takes into account the number of activities. SPC =

PC
(|T| − |S|) , where |T| is the total number of transitions in the model and |S| is

the number of transitions that have more than one outgoing or incoming arcs.
They in fact represent the point where a parallel branch starts (AND split)
and where a parallel branch synchronises (AND merge) respectively. We can
see from Table 5.1 that this new metric maintains all the good behaviours that
PC has. It also displays the desired behaviour that PC does not have: when
considering use cases 1 and 2, we can note that SPC decreases as required
thanks to the scaling factor that takes into account the presence of the sequence
in use case 2. We also notice that this scaling leads to smaller relative increment
with respect to PC. In contrast to PC, when considering use case 7 we see that
SPC fails to produce a coherent value. Indeed, use case 7 is a process with an
alternative choice between use case 1 and use case 5. Nevertheless, SPC score
drops to 0.375 which is not in the range of scores for use cases 1 and 5. This is

40 Chapter 5. Measuring Parallelism in Process Models

due to how the scaling is implemented. Currently the mechanism considers all
transitions in the process model even though the number of transitions in the
derived IG could be far less. This is because an IG only displays the activities
from one of the optional branches of the process. This over-reduces the score
by over-estimating the denominator of the SPC formula. This makes the actual
SPC formula unfit for many kinds of processes as it doesn’t manage properly
choice structures. We plan on improving this metric by modifying the scaling
mechanism, for instance by applying it previously to the number of variants
produced by a specific instance-graph and then computing the average of such
values.

41

Chapter 6

A new representation for Events in
Processes

This Chapter presents a set of metrics that describe the "execution context"
of an activity inside a process to represent the activity itself. This is done to
extend the work of the previous Chapters so as to take into account all the in-
formation that a process model provides about a particular activity. The set of
metrics is used both to define a querying mechanism for activities in processes
and to introduce the notion of "location" as a further relevant prediction target
for PPM techniques. We remark that such "execution context" is derived from
the process model of the considered activity and it is explicitly devised to take
into account the control flow information about the activity itself.

Section 6.1 presents the metrics and their usage in a case study to show how
they can be used to derive measures of similarities. This is also presented in
publication [65].

Section 6.2 presents how such metrics can be used to introduce a novel
PPM task that does not predict directly the next activity but, instead, predicts
the "execution context" of the next activity. This work is also published in [66].

6.1 A Process Model-based Encoding

In this section we introduce a set of features that describe the context of an
activity inside a process, thus embedding the process structure in the activity
representation. We introduce the features, explain the rationale under them,

42 Chapter 6. A new representation for Events in Processes

and discuss how they can be used to derive a measure of similarity among
activities.

6.1.1 Methods

This section describes the proposed features. They have been designed for
Petri nets, which is the best-investigated formalism for process modeling [67].
In particular, in this work we focus our investigation on block-structured Petri
net. Each set of such features represents a single process activity describing
its execution context, intended as the control-flow constructs in which the ac-
tivity is involved (e.g., parallelism, choice, loop), so that activities with similar
structural properties will be close to each other in the feature space.

Path Length

This feature represents the position of the activity w.r.t. the beginning of the
process. Given an activity ai in the set of all process activities A, we define the
longest path LP(ai) as the maximum number of activities in a path from the
beginning of the process to ai, excluding hidden activities and loops. The Path
Length for ai is then computed as follows:

PL(ai) =
LP(ai)

max
aj∈A

LP(aj)
(6.1)

The Path Length assumes values in]0, 1], where small values indicate that
the activity is located near the beginning of the process and values close to 1 are
of activity near the end of the process. For the first activity in the process the

value is
1

max
aj∈A

LP(aj)
, while for the farthest one it is 1. It should be noted that

the farthest activity is not necessarily the last activity in the process, although
the two concepts often coincide. The feature is computed using the longest
path so to ensure coherent order among all process activities representation,
w.r.t. the process model. To better understand this, consider activities c and e
in Figure 6.1, we can notice that if we used the shortest instead of the longest
we would obtain a value of 3

4 for activity c and of 2
4 for activity e, but activity

6.1. A Process Model-based Encoding 43

FIGURE 6.1: Example Petri net 1

e is always executed after activity c, according to the model. Hence, wanting
to maintain in the feature the relative order of the activities in the process the
shortest path would be inadequate.

In Figure 6.1, the maximum length of the longest path is 6, namely <

a, b, c, e, f , h > (or < a, b, c, e, g, h >). Hence, for the first and last activities

we have PL(a) =
1
6
= 0.17 and PL(h) = 1, which correspond to the lowest

and highest value of the feature respectively. The activities b and d have the
same value because they both have to wait for one activity to be executed be-
fore they can be activated (PL(b) = PL(d) = 0.33), whereas c has to wait for
both a and b to be executed (PL(c) = 0.5). Regarding the activity e, it should
be noted that it can be started only if the parallel block preceding e is termi-
nated, that is both branches < b, c > and < d > are executed. So the delay of e

depends on the longest branch and is PL(e) =
4
6
= 0.67.

Optionality

This feature captures the degree of optionality of a specific activity. Optional-
ity is computed as the reciprocal of the number of the maximum alternative
branches in which an activity is involved, as follows:

Opt(ai) = 1 − 1
n#(ai)

(6.2)

where n#(ai) represents the number of alternative branches for the activity ai.
We note that the "number of the maximum alternative branches" means

that - in the case of nested choice structures - we take into account all the pos-
sible alternative branches to the considered activity, and count the number of

44 Chapter 6. A new representation for Events in Processes

branches that can be alternatively executed at most. Branches with hidden
activity are only count once, in case of nested choices.

The feature assumes values in [0, 1[, where 0 represents an activity that is
not involved in any alternative branches and values close to 1 are related to
activities in choice block with many possible branches. The feature is not com-
puted for hidden activities, and backward branches (i.e., defining loops) are
not taken into account in the formula.

Let’s consider again the example in Figure 6.1. Here we have two choice
blocks: after the activity a and before the activity h. For the former, we have
Opt(b) = Opt(c) = Opt(d) = 0.67 because there are three possible alterna-
tives: execute the activities b and c, perform d or neither (passing through the
hidden activity t1 in the lowest branch). For the latter, we do not consider the
branch with t2 because it represents a loop, so Opt(h) = 0. The optionality for
all other activities in the process model assumes the value 0.

Parallelism

This feature is used to calculate the degree of parallelism of an activity, i.e.
with how many activities it is in parallel. It is calculated counting the number
of parallel branches to the activity. The Parallelism (Par) for the activity ai is
computed as follows:

Par(ai) = 1 − 1
n ∥ (ai)

(6.3)

where n ∥ (ai) represents the number of parallel branches for the activity ai. In
the case of nested parallel blocks, the maximum number of possible branches
in parallel is considered.

We note that the "maximum number of possible branches in parallel" means
that - in the case of nested parallelism block - we take into account all the
possible parallel branches to the considered activity, and count the number of
branches that can be parallelly executed at most. The feature assumes values
in [0, 1[, where 0 represents a sequential activity and the closer the value is to
1, the higher the number of parallel branches. The feature is not computed for
hidden activities.

6.1. A Process Model-based Encoding 45

FIGURE 6.2: Example Petri net 2

In Figure 6.2, we have two parallel blocks: one from hidden activity t4 to
activity n, and the other from n to t5. As for the former, we have Par(j) =

Par(k) = Par(l) = Par(m) = 1 − 1
3

= 0.67, whereas in the latter block
Par(o) = Par(p) = 0.5. The feature for the activity n assumes the value 0,
since it can not be executed in parallel with any other activity.

Parallelism Path Length

This feature is based on the PL feature; namely, it captures the position of an
activity within the parallel block in which the activity is located. The formula
is the same, except that the starting point from which to compute the longest
path is the beginning of the parallel block. The feature is computed as follows:

PPL(ai) =
LP∥ (ai)

max
aj∈A

LP∥ (aj)
(6.4)

Where, LP∥ (aj) is the length of the longest path for the activity aj within the
parallel block. The path takes into account activities in any parallel branch
plus the last activity of the parallel block (i.e., the synchronization point); so
the activity from which the parallelism stems is not considered. For activities
that aren’t in a parallelism’s branch the value of PPL is equal to 0. The same
considerations made for PL take to this feature, but limited to the sub-process
related to the parallel block.

Let us consider the two blocks in Figure 6.2. For the former (from t4 to n),
the longest path is formed by 3 activities (i.e., < j, k, n >), hence PPL(j) =

PPL(l) = PPL(m) = 0.33 and PPL(k) = 0.67. In the latter parallel block (from

46 Chapter 6. A new representation for Events in Processes

FIGURE 6.3: Example Petri net 3

n to t5), the length of the longest path is 1 because the path starts after the
first activity of the block and the synchronization point is and hidden activity
which is not considered. Hence, PPL(o) = PPL(p) = 1.

Self Loopable

This feature evaluates if an activity can be consecutively repeated. In particu-
lar, the Self Loopable (SL) feature for the activity ai is equal to 1 if the activity
ai is in a self-loop, 0 otherwise.

Long Loopable

This feature is concerned with representing if an activity belongs to a sub-
process that can be repeated. In this case the Long Loopable (LL) feature as-
sumes the value 1, otherwise 0. The same considerations made for a Straightly
Loopable activity also hold here.

Let us consider Figure 6.3, which involves two loops. In the former the
activity s can be repeated consecutively, whereas in the latter the sub-process
from r to w can be repeated. Since only s is in a self-loop, we have SL(s) = 1
and for all others activities SL takes the value 0. The LL, instead, takes the
value 1 for all activities in the loop block from r to w (i.e., LL(r) = LL(s) =

LL(u) = LL(v) = LL(w) = 1). For all others activities, LL is equal to 0.

6.1. A Process Model-based Encoding 47

6.1.2 Case Study

This section discusses a case study which serves as a proof of concept for the
features introduced in the present work. We focus on two versions of a loan
application process of a Dutch financial institute, the first one is BPI12 [49]
and the second is one from 2017 [68] (BPI17). The latter model has some sub-
stantial differences from the former, since a new workflow system has been
implemented in the company. We argue that this context represents a good
case study for our approach. First, the two models under analysis represent
the same process, possibly with some variation. Therefore, it is reasonable to
assume that the semantics of (part of) the activities overlaps, at least to some
degree, which simplifies the analysis of the detected structural similarities and
differences. Second, there are several studies available in the literature on these
processes, which provide us with useful insights to elaborate upon the obser-
vations derived by the structural comparison.

Settings

The embedding strategy has been implemented as a python library1. Note that
the implementation of the features discussed in Section 6.1 requires to investi-
gate the state space of the process. To this end, here we exploit so-called process
trees [69], which provide a block-structured representation of a process from
which the control-flow relations for each activity can be inferred. We use the
pm4py library2 to derive a process tree from a given Petri net. The construction
and analysis of process trees is a more efficient alternative to the exploitation
of reachability graphs. As a drawback, it requires a block-structured process
model. We argue that this is not a strong limitation, since block-structures nets
are widely adopted to support different process analysis tasks, and they are the
default representation of well-known state-of-the-art process discovery meth-
ods (e.g., Inductive Miner [70]). Figure 6.4a and 6.4b show the Petri Nets for
bpi2012 and bpi2017, respectively. The models have been extracted by apply-
ing the Inductive Miner algorithm with the default settings on the event logs
provided at [49], [68].

1https://github.com/KDMG/Embedding-Structure-in-Activities
2https://pm4py.fit.fraunhofer.de/

https://github.com/KDMG/Embedding-Structure-in-Activities
https://pm4py.fit.fraunhofer.de/

48 Chapter 6. A new representation for Events in Processes

(A) BPI12 (B) BPI17

FIGURE 6.4: Process model for a loan application in 2012(a) and
2017(b)

6.1. A Process Model-based Encoding 49

The two Petri nets look quite different from each other, thus making it chal-
lenging for a human to identify meaningful mappings of similar portions. This
highlights the needs for a set of features able to guide the analyst. We first em-
bedded each activity in both processes in a feature vector composed of the
features previously introduced. Then, we applied k-means to determine clus-
ters that group activities of both processes. We leveraged a grid search in [4; 20]
to determine the best k, that resulted in k = 14.

Results

Table 6.1 shows the detected activity clusters, grouping on columns activities
belonging to different processes. In this way, we define a mapping from the
two sets of activities. Note that if a cluster contains only activities of the same
process, such a mapping is not defined. Hence, for the sake of space, we limit
our analysis to inter-process clusters, that is clusters containing activities from
both processes These clusters are highlighted in Figures 6.4a and 6.4b with a
labeled dotted red rectangle. Hereafter we briefly discuss these clusters.

c1: Process initialization The first cluster involves the first sequence of activ-
ities in both processes, interrupted with the occurrence of a XOR operator.

c2 and c4:Offer management The second and fourth clusters show two activ-
ity mappings related to the management of the offer. In both cases, one activity
from bpi2012 activities has been mapped to a set of activities in bpi2017, which
may indicate, for instance, that a more fine-grained modelling has occurred for
the second model. Furthermore, the order between the activities of the first and
of the second mapping reflects the order of the original activities OSELECTED
and OSENT. The activities A_validation and W_Call incomplete f iles are not
included in the mapping to OSENT because of the presence of a self-loop.

c3: Decision on application These clusters maps together activities related to
decisions taken over an application. It is worth noting that the cluster of ac-
tivities in bpi2012 is not straightforward to derive. Since AACCEPTED and
OCREATED occur before in the process and are in parallel with a different
activity, analyzing the overall process structure, it would seem natural to ei-
ther separate these activities in different clusters or merge them with the other

50 Chapter 6. A new representation for Events in Processes

TABLE 6.1: Cluster Table

Cluster 2012 2017

c1 START; ASUBMITTED; START; A_Create ApplicationAPARTLYSUBMITTED

c2 OSENT O_Refused; A_Pending;
O_Returned; A_Incomplete

c3 AFINALIZED; OCREATED; A_Denied; O_AcceptedOCANCELLED; AACCEPTED

c4 OSELECTED
W_Complete application;
O_Sent (mail and online);

O_Create Offer;A_Complete

c5
AACTIVATED; OACCEPTED;

A_Cancelled; O_CancelledAAPROVED; ACANCELLED;
AREGISTERED

occurring nearby. However, by focusing on structural features from the ac-
tivity perspective, their similarities emerge; indeed, all of these activities are
optional, occur in a similar position in the process, have a similar degree of
parallelism and do not occur in a self-loop. These characteristics also justify
the inter-process mapping with the corresponding activities in bpi2017.

c5: Application finalization Here we have multiple finalization activities from
bpi2012 mapped to two finalization activities in bpi2017. This is in line with the
fact that in the 2017 model the closure of the process has been significantly sim-
plified w.r.t. the 2012 model. The inclusion of the activity ACANCELED in this
mapping set shows consistency between the mappings; indeed, in the original
process this activity occurs immediately after the OSENT activity, and in the
new process it occurs immediately after the activities mapped to OSENT. Such
relation would be quite challenging to identify from a visual inspection.

While this case study is mostly intended as a preliminary proof of concept
for the introduced features, the clusters discussed above show that our local
notion of similarity allows to generate non-contiguous partitions of the pro-
cess model, thus uncovering relations among activities occurring in different
section of the model that would be easily missed by a human analyst or by
adopting graph-based, global similarity metric.

6.2. Next-location prediction for process executions 51

6.2 Next-location prediction for process executions

State-of-the-art approaches for the next activity prediction task are focused on
predicting which specific process activity will be executed next given the cur-
rent process execution. This information, however, does not provide the ana-
lyst with any insights into the execution context in which the predicted activity
is executed. For instance, in the presence of a parallelism it can be argued that
a human analyst would like to be informed also on which other activities could
occur at that point of the process (and are hence likely to happen shortly after)
even though with lower probability. This is particularly true when the chances
of execution of the activities are close to each other. In addition, an analyst may
want to understand whether the activity to be executed may belong to a cycle,
or to know at which point of the process the execution is, e.g. at the beginning
or close to the end. If the predictor only returns the activity in output, the only
way for the analyst to derive such information consists of a manual inspection
of the process model which can be a challenging and error-prone task, since
real-life processes can involve complex combination of control-flow constructs
with many activities and variants. To tackle this challenge, in this work we in-
troduce an approach that, given an ongoing process instance, aims at predict-
ing the execution context that the process will enter in the next step, hereafter
referred to as location. Informally, a location is a set of activities with the same
structural features, defined on the basis of workflow patterns commonly used
in the process modeling domain. We argue that the notion of location provides
us with a useful formalism to define activity execution contexts in a rigorous,
yet intuitive, way. We provide a precise characterization of the notion of loca-
tion, and we investigate three possible strategies to predict a location, namely
i) an extension of the next-activity prediction problem, where the label of a
single activity is predicted and mapped to its location, ii) a direct prediction of
the numeric feature vector representing the structural properties of a location,
and iii) a direct prediction of the label of the next location. To validate our
approach, we carry out a set of experiments on real-world datasets frequently
used as benchmarks within the Predictive Process Monitoring (PPM) field. The
results obtained show the capability of the approach to support the analyst in
the exploration of the process evolution.

52 Chapter 6. A new representation for Events in Processes

The rest of the section is structured as follows. Section 6.2.1 formally in-
troduces the notion of location; Section 6.2.2 provides the problem statement
and the methodology to address it; Section 6.2.3 describes the experiments de-
signed to assess the validity of the methodology and discusses the results.

6.2.1 Defining process locations

Given a reference model for the process under analysis, to determine the lo-
cation of each process activity we exploit seven model-based features to rep-
resent the structural characteristics of process activities, as introduced in [65]
and here described in 6.1. More precisely, let A denote the set of process ac-
tivities, we define an embedding fe : A → R7 which maps each activity into
a vector of seven structural features, each characterizing a specific property of
the activity with respect to the morphology of the overall process.

The idea underlying this representation is that activities with similar struc-
tural properties will be close to each other in the feature space. The proposed
features have been designed taking inspiration from the standard workflow
patterns[71], which capture concepts related to well-known control flow con-
structs, thus generating an embedding that is understandable for the human
analyst. Note that while these features can, in principle, be derived for every
process model able to represent the aforementioned control flow constructs, in
this work we focus on workflow nets. All the features are the ones described in
section 6.1, except for the "Not in Model" which is described right below here.

Not in Model: is a binary feature equal to one when the activity is not
present in the given model, 0 otherwise. This feature represents the fact that
when an activity is missing from the process model no structural information
is available.

To better understand the notion of location let us consider the process model
in Petri net notation reported in Figure 6.5. Table 6.2 shows for each activity
the values for the structural features introduced above.

Activities with identical feature values determine a location. We use dotted
squares to represent locations in Figure 6.5.

Locations L1 and L6 correspond to activity A and H, the only activities
occurring at the beginning and at the end of the process respectively. From

6.2. Next-location prediction for process executions 53

TABLE 6.2: Structural features computed for the process model
in Figure 6.5.

Activ-
ity

Path
length

Optio-
nality

Parallelism
path
length

Paral-
lelism

Self
loop-
able

Long
loop-
able

Not
in
model

Loca-
tion
label

A 0.25 0.0 0 0.0 0 0 0 L1
B 0.5 0.0 0.5 0.67 0 0 0 L2
C 0.5 0.0 0.5 0.67 0 1 0 L3
F 0.75 0.0 1.0 0.67 0 1 0 L4
D 0.5 0.0 0.5 0.67 0 0 0 L2
E 0.75 0.0 1.0 0.67 1 0 0 L5
G 0.75 0.0 1.0 0.67 1 0 0 L5
H 1.0 0.0 0.0 0.0 0 0 0 L6

the Table, we can see that the location provides the analyst with additional
insights on these activities. First, we can immediately see that none of them
is involved in any parallel, choice, or loop construct, since the corresponding
features are zero. From the path length, we also get a good idea on where the
activity occurs within the process. L2 involves B and D, since they both occur
at the beginning of the parallelism immediately after A; note that C is instead
in a different location, L3, since it is involved in a loop. From the parallelism
value, we can derive that each of these activities (except A and H) occur in
parallel to other two (indeed, we have a total of 3 branches); furthermore, they
occur halfway in the parallelism, since the parallel branch they belong to only
has two activities in total. L4 and L5 involve activities occurring at the same
position in the process, but that differ because of the presence of a self loop for
E and G, while F is involved in a long loop.

We argue that the notion of location in the context of predicting process
monitoring is an abstraction that can provide the process analyst with a higher-
level overview of what can be expected next in the process execution. For in-
stance, after the execution of A, traditional next-activity prediction techniques
would return either B, C or D, whilst using the notion of location, either L2

or L3 is reported. This higher-level information allows the analyst to grasp
important insights on the execution context of the ongoing process instance

54 Chapter 6. A new representation for Events in Processes

FIGURE 6.5: Example process model with activity locations

which can, in turn, help in getting decisions regarding the next steps. Keep-
ing the notion of location in predicting the next execution steps in the process
model in Figure 6.5, after one of the activities in L2 or L3 has been executed,
the process can either stay in the same location (which suggests that multi-
ple parallel branches are usually initiated before proceeding within a specific
branch), or move towards L4 or L5, suggesting whether the process moves to-
wards a potential repetition of multiple/single activities respectively.

6.2.2 Methodology

In this work, we introduce an extension of the next-activity prediction prob-
lem, hereafter referred to as next-location problem. In particular, we propose
a robust approach that exploits both information regarding the process struc-
ture, extracted from a process model describing the prescribed process behav-
iors, and knowledge regarding the sequential execution order for the predic-
tion. The proposed approach involves three main steps: i) extraction of location
features, ii) data encoding, which transforms the event log in a set of prefix traces
labeled with the corresponding location, and iii) classifier training to perform
the prediction. The extraction of location features has already been discussed
in Section 6.2.1. Hence, in the following subsections we first give a formal

6.2. Next-location prediction for process executions 55

definition of the next-location problem statement, then we delve into the data
encoding step. We do not discuss the classifier architecture and training, since
off-the-shelf techniques can be applied.

Problem statement

In our setting, we assume the availability of an event log tracking the executions
of the process under analysis and of a process model describing the prescribed
process behaviors, either provided by domain experts or mined with process
discovery techniques. Note that, within the context of this work, we assume
that the provided model is able to properly represent (at least) the core process
behaviors. Clearly, a poor quality model will heavily impact the performance
of the classification, since the control-flow information used to determine the
different locations would not correspond to the real process behaviors. We
plan to investigate how to improve the robustness of the method w.r.t. the
model in input in future work. An event log consists in a collection of traces,
i.e., sequences of events, each corresponding to the execution of a process ac-
tivity. Formally, let Π be the set of all prefix traces extracted from L, Θ ⊂ R7

be the set of locations extracted by using the features defined in Section 6.2.1,
let S be a set of location labels, and let fm : Θ → S be a function mapping each
location to a location label.

The next-location prediction problem can be defined as the one of learning
a mapping function able to label each prefix trace with the process location of
the next state of the process.

Data Encoding

Given the the set Π of m trace prefixes that can be generated from L, the goal
of this step consists in determining a function mapping each prefix to its vec-
torial representation. Formally, let V be a vector of size j, we have to define the
function fv : Π → V. In this work, we investigate three strategies to generate
the prediction, which require three different kinds of encoding. The first one
corresponds to an enrichment of the output of a next-activity classifier, here-
after referred to as enriched next-activity prediction (ENAP). The construction of

56 Chapter 6. A new representation for Events in Processes

the prefix set for this strategy is the same as in traditional next-activity predic-
tion; namely, we build the dataset P = {(fv(pi), ai)}m

i=2 where pi is a prefix of
length k of a trace σ ∈ L and ai corresponds to the next activity of the par-
tial execution described by pi. Once an activity is returned by the classifier,
the function fm is applied to return in output its corresponding location label.
The second strategy aims at returning, given the current state of the process
execution, directly the process location label, without first predicting the next
activity. We refer to this strategy as next location label prediction (NLLP). To sup-
port this strategy, we build the dataset P = {(fv(pi), si)}m

i=2 where pi is a prefix
of length k of a trace σ ∈ L and si corresponds to the label of the next location
of the partial execution described by pi. Finally, the third strategy corresponds
to the prediction of the next location feature vector, instead of its label. In
practice this strategy corresponds to a regression problem, hereafter referred
to as direct next-location prediction (DNLP). For implementing this strategy, we
need to build a dataset P = {(fv(pi)), θi}m

i=2, where pi is a prefix of length k
of a trace σ ∈ L and θi ∈ Θ corresponds to the next location of the partial
execution described by pi.

In all the discussed strategies, the feature vector V can be computed in three
different ways; namely, one can generate the one-hot encoding of the process
activities, consider their corresponding location, or the combination of the two.

6.2.3 Experiments

This section describes the experiments we carried out on a set of real-world
datasets to assess the performance of our approach and to provide some ex-
amples on the kind of predictions that are returned.

In particular, we are interested in answering the following questions: RQ1:
How does the direct location prediction performs w.r.t. the location prediction via next-
activity prediction? RQ2: What is the impact of the use of the location features on the
prediction performance?

In the following, we first provide a description of the experimental setup
and the selected datasets; then, we discuss the results obtained.

6.2. Next-location prediction for process executions 57

FIGURE 6.6: Excerpt from the ID process model

Experimental setup

In order to answer RQ1, we recall that the prediction problem may be ap-
proached in one of the following way:

• Predict the next activity label, then associate it with the location it belongs
(ENAP),

• Predict the next location label (NLLP),

• Predict the next location (DNLP).

To answer RQ2, we consider 3 possible representation for the input data
encoding:

• only the one-hot encoding of each activity label (OHE);

• only the location of each activity (ENC);

• a combination of the two above (ALL).

We report the experiments only for the 4 combinations of prediction problem
and input representation that, after some first trials, seemed most promising,
but we plan to investigate all possible combinations in future works. In partic-
ular: ENAP + OHE, which implements the classification of the next activity
followed by the mapping to the location; DNLP + ENC, which determines the

58 Chapter 6. A new representation for Events in Processes

TABLE 6.3: Structural features computed for the activities of pro-
cess model in Figure 6.6

Activ-
ity

Path
length

Optio-
nality

Paral-
lelism
Path
Length

Paral-
lelism

Self
Loop-
able

Long
Loop-
able

Not
in
model

Loca-
tion
label

2 0.5556 0.6667 0.9 0.5 0 1 0 1
3 0.6111 0.6667 1.0 0.5 0 1 0 12
33 0.6667 0.8333 0.0 0.0 0 1 0 7
36 0.6667 0.8333 0.0 0.0 0 1 0 7
24 0.6667 0.8333 0.0 0.0 0 1 0 7
27 0.6667 0.8333 0.0 0.0 0 1 0 7
35 0.6667 0.8333 0.0 0.0 0 1 0 7
6 0.6667 0.0 0.0 0.0 0 0 0 16
14 0.7222 0.0 0.0 0.0 0 0 0 24
25 0.7222 0.5 0.0 0.0 0 1 0 15

location as a regression problem, returning in output the set of location fea-
tures; NLLP + ALL, which exploits both the location features and the activity
label, returning in output the location label; finally, NLLP +OHE, which only
exploits the activity label and returns in output the location label. All the ex-
periments have been performed using tensorflow 2.5 [59] and python 3.8.10 on
a machine with a Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 32GB on RAM
and two GPUs GeForce GTX 1080 with 6GB of dedicated memory each.

We selected for each approach the same neural network architecture: two
LSTM layers each with a dropout and a BatchNormalization layer after them
and, finally, a fully connected output layer. We also used the same optimizer,
Adam [57] and we used as loss function a mean absolute error for the ENC
approach and a categorical cross entropy for all the other approaches. For
any unexplained parameter the default value has been used. We also run
the tree-structured Parzen estimator (TPE) hyper-optimization algorithm [72]
with 30 as maximum number of iterations. In particular, the optimization
space was composed of the learning rate in the range [10−6, 10−2] and of the
LSTM units and dropout, respectively in the set {32, 64, 128, 256, 512} and in
the range [0, 1], for both the 1st and 2nd layer (separately), for a total of 5

6.2. Next-location prediction for process executions 59

hyper-optimized parameters. The process models were extracted using the In-
frequent Inductive Miner[73] with the lowest noise threshold that granted at
least a fitness of 90%. All the above have been performed in a 3-fold fashion
division of the dataset where a 20% of the training dataset have been used as
validation set.

We selected the following as benchmark datasets (see sec. 2.3):

• Helpdesk

• BPI12

• BPI20RfP

• BPI20TP

• BPI20PC

• BPI20ID

6.2.4 Results and discussion

Example of predicted output

To provide an example of the output returned by our approach, in Figure 6.6
we draw a portion of the model from the ID dataset. Table 6.3 shows the loca-
tion features and location labels for the activities in the Figure. Locations are
also represented in the Figure as grey rectangles.

Let us now discuss the predicted output obtained by the different encod-
ings when the process reaches the Endtrip activity. Using DNLP, the predictor
outputs a location feature vector describing the properties of the next loca-
tion. The most similar to this one among the all available true feature vectors
will be considered the predicted one. In our example, the predicted output
was [0.6567, 0.8463, 0.02, 0.09, 0.01, 0.98, 0.01]; the most similar location feature
vector is [0.6667, 0.8333, 0.0, 0.0, 0, 1, 0], whose label is 7. Using ENAP, the pre-
dictor first outputs a distribution of probabilities for each process activity; in
this case, the predictor returned 36, which is the most likely activity in the

60 Chapter 6. A new representation for Events in Processes

set {6, 20, 24, 27, 33, 35, 36}. That output is then converted in its correspond-
ing location, i.e., 7. This is an example of how it is possible to predict the
next location from the next activity. Using NLLP, the output will be a distri-
bution of probabilities of the next location classes; in this case, 7 was the most
likely location label from set {5, 7, 16}. We remark that this prediction is per-
formed without the intermediate activity-location mapping used in ENAP. As
regards the interpretation of the outcome, the user can determine the level of
abstraction she prefers, i.e., whether to have in output information only on the
location or also on the activity, choosing the appropriate format for the input
and the output. In some cases, it might be enough to know that the permit is
likely to be rejected by some authority, even without knowing the precise type
of rejection. Also, as discussed for the toy example in Section 6.2.1, the analysis
of the location feature equips the analyst with a good overview of the current
execution context with respect the overall model, which can be quite challeng-
ing to derive manually, given the size of the model. For instance, the analyst
is immediately aware that activities of location 7 can lead to work repetition,
since they are part of a long loop. This makes sense, since it is reasonable to
assume that if a permit is rejected, additional actions have to be taken. On
the other hand, activities of locations 16 and 5 do not belong to any cycle and
they are closer to the end of the process, as shown by the path length. Sum-
marizing, the used notion of location successfully manage to group together
all the activities connected to a rejection from a human controller that lead to
potentially restart the procedure business process. We would like to highlight
once more that the user can derive such information from our output directly,
without having to manually inspect the process model.

Analysis of prediction performance

Table 6.4 reports the results obtained over the selected datasets. The DNLP +

ENC approach is the one obtaining the worst results. This was expected, since
it cannot leverage information related to the specific activities, in contrast with
the the other approaches. Instead, there is no clear winner between the two
location prediction strategies, since both obtain very similar results. Also re-
garding the use of the location features no clear trend can be identified. Indeed,

6.2. Next-location prediction for process executions 61

TABLE 6.4: Classification results from the tested encodings. We
report the accuracy (acc) and the f1 score (fsc) for each fold, to-

gether with the average results

ENAP+OHE DNLP+ENC NLLP+ALL NLLP+OHE
Dataset fold acc fsc acc fsc acc fsc acc fsc

Helpdesk

0 0.85 0.85 0.81 0.80 0.86 0.85 0.86 0.85
1 0.85 0.85 0.81 0.80 0.86 0.85 0.86 0.85
2 0.86 0.85 0.84 0.83 0.86 0.85 0.85 0.85

avg 0.85 0.85 0.82 0.81 0.86 0.85 0.86 0.85

BPI20PC

0 0.56 0.58 0.42 0.44 0.53 0.55 0.56 0.58
1 0.88 0.86 0.69 0.69 0.88 0.86 0.88 0.86
2 0.89 0.88 0.62 0.60 0.77 0.71 0.88 0.86

avg 0.78 0.78 0.58 0.57 0.73 0.70 0.77 0.77

BPI20RfP

0 0.90 0.88 0.86 0.83 0.91 0.87 0.90 0.88
1 0.90 0.86 0.89 0.95 0.89 0.86 0.90 0.86
2 0.82 0.79 0.71 0.68 0.81 0.79 0.85 0.82

avg 0.87 0.84 0.82 0.79 0.87 0.84 0.88 0.85

BPI20TP

0 0.74 0.72 0.60 0.58 0.75 0.73 0.75 0.72
1 0.84 0.82 0.80 0.77 0.84 0.83 0.84 0.82
2 0.83 0.82 0.76 0.73 0.84 0.82 0.83 0.80

avg 0.80 0.79 0.72 0.70 0.81 0.79 0.80 0.78

BPI12

0 0.82 0.80 0.72 0.70 0.82 0.80 0.82 0.80
1 0.82 0.80 0.68 0.67 0.82 0.80 0.82 0.80
2 0.82 0.80 0.73 0.71 0.82 0.80 0.82 0.80

avg 0.82 0.80 0.71 0.69 0.82 0.80 0.82 0.80

BPI20ID

0 0.69 0.68 0.41 0.41 0.73 0.72 0.72 0.71
1 0.87 0.86 0.42 0.39 0.89 0.88 0.87 0.87
2 0.86 0.83 0.67 0.65 0.88 0.86 0.86 0.86

avg 0.80 0.79 0.50 0.48 0.83 0.82 0.82 0.81

62 Chapter 6. A new representation for Events in Processes

NLLP + ALL leads to some improvements w.r.t. NLLP +OHE for the TP and
the ID datasets; however, it obtains worse results for the RfP dataset and, in
particular, for the PC dataset, suggesting that in those experiments the use of
the structural features do not provide useful information for the classifier and,
instead, it likely introduced some noise. To shed some light on the reasons un-
derlying these results, we delved into the mined process models to understand
how locations were defined. In particular, we computed the ratio between the
number of the activities in the process model and the number of identified
locations. In this regards, it is worth noting that for the PC dataset, where
NLLP + ALL obtained the worst results, we have 24 locations for 30 activity
type; this suggests that the introduction of the location features does not bring
much abstraction, supporting the hypothesis that they likely introduce more
noise than useful information. The other datasets show a lower ratio, which
indicates that more activities could be grouped in the same locations, thus pre-
senting a more favorable condition for the application of our approach. Note
however that the mapping between the activities and the locations is not the
only factor affecting the classification performance. For instance, helpdesk also
presents a high activity-location ratio, without resulting in a reduction of per-
formance. This may depend on the fact that helpdesk is an easier problem,
having a very small number of activities and quite a linear structure.

Finally, we analyze the performance with respect to prefix lengths, to study
the stability of the outcome. Results are reported in Figure 6.7. Overall, the fig-
ures confirm the trends we already observed; the various approaches perform
very close to each other for most prefix lengths, even though the performance
of DNLP + ENC are consistently lower than the others. NLLP + ALL per-
forms quite close to NLLP + OHE in most cases, even though some peaks
in performance decrease occur for some prefix length, in particular for the
BPI20RfP dataset. BPI20TP and BPI12 show quite unstable results for all the
encodings for long prefixes, which is reasonable, since few samples are avail-
able for training.

6.2. Next-location prediction for process executions 63

0 1 2 3 4 5 6 7 8 9 10 11 12
prefix length

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

ENAP+OHE
DNLP+ENC
NLLP+ALL
NLLP+OHE

(A) Helpdesk

0 2 4 6 8 10 12 14 16 18
prefix length

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

ENAP+OHE
DNLP+ENC
NLLP+ALL
NLLP+OHE

(B) BPI20PC

0 2 4 6 8 10 12 14 16 18
prefix length

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

ENAP+OHE
DNLP+ENC
NLLP+ALL
NLLP+OHE

(C) BPI20RfP

0 10 20 30 40 50 60 70 80 90
prefix length

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

ENAP+OHE
DNLP+ENC
NLLP+ALL
NLLP+OHE

(D) BPI20TP

0 10 20 30 40 50 60 70 80 90
prefix length

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

ENAP+OHE
DNLP+ENC
NLLP+ALL
NLLP+OHE

(E) BPI12

0 2 4 6 8 10 12 14 16 18 20 22 24 26
prefix length

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

ENAP+OHE
DNLP+ENC
NLLP+ALL
NLLP+OHE

(F) BPI20ID

FIGURE 6.7: Accuracy across temporal windows.

65

Chapter 7

Conclusion

The present thesis aims at addressing the field of Predictive Process Monitor-
ing by introducing novel approaches and new perspectives on its problems.
The notion of Instance Graph is leveraged to be exploited for the next activ-
ity prediction task and to introduce a novel metric to measure parallelism. A
new encoding technique for the encoding of process activities is also proposed
and it is shown how to use it both to compare processes as well as to define
a new kind of task for the Predictive Process Monitoring field. In particu-
lar to leverage Instance Graph, BIG-DGCNN has been presented: a model-
aware neural approach to address the task of next activity prediction. The
model allows to represent process instances in the form of Instance Graphs,
thus maintaining information about parallel activities that is missed in the
traces recorded in event logs. Graphs are then natively processed by Deep
Convolutional Graph Neural Networks to synthesize a classification model
able to predict the next activity given a prefix of any length. The adoption
of BIG allows to build sound Instance Graphs even for non-fitting traces and
makes the approach suitable also for unstructured processes. Furthermore,
an extension is proposed which enriches the Instance Graph with additional
data perspectives. The comparison with state-of-the-art literature highlights
that BIG-DGCNN shows promising performance, especially considering that
competitor approaches all take into account some data perspective, whereas
BIG-DGCNN only encodes control-flow information. Endowing BIG-DGCNN
with temporal information,it demonstrates to favorably compare to other ap-
proaches. Further analysis of the performance trend with respect to the prefix

66 Chapter 7. Conclusion

length enlightens an interesting difference with respect to the LSTM architec-
ture, that is the decay of performance on longer prefixes.

To characterize the processes in which the BIG-DGCNN approach could
better work, it has been addressed the problem of evaluating the level of par-
allelism in a business process. The limits of the two best-known metrics in
the literature have been discussed and a novel metric has been introduced, the
Process Complexity and its scaled variant, both based on the notion of Instance
Graph. The idea underlying the proposed metric is that the parallel complex-
ity of a process linearly depends on the number of distinct variants allowed by
each IG, representing the possible executions of the process. This metric pro-
vides a sensible way to evaluate the overall complexity of the process model
due to the number and structural relations among parallel activities. None of
the metrics, on the other hand, is fully satisfactory showing some incoherent
behaviors with respect to the number of activities or the presence of alternative
branches. A possible conclusion is that more than one metric should be taken
into account when evaluating the parallelism of a process. The results are not
yet conclusive as they have been obtained on a set of synthetic use cases. Fu-
ture works may be devoted to confirming the results both theoretically and
empirically on a larger set of process models. Another research direction is
toward the introduction of different scaling mechanisms that takes the length
of a sequence of activities into due consideration.

Then, in order to exploit the information derived from the process model,
a set of features, characterizing the process activities on the basis of structural
properties of the control-flow constructs they are involved in, have been de-
fined. We discussed how these features can be used to address the problem of
activity identification and comparison between process models. In turn, this
enables more sophisticated analyses, ranging from retrieving process models
from a process repository starting from a given reference process to the eval-
uation of the changes that have occurred in a model over time. We applied
our embedding strategy on a case study involving two process models de-
scribing the same real-world loan management application process at different
times. In particular, we used such an embedding to realize an activity cluster-
ing between the two process models. The results are promising and show the

Chapter 7. Conclusion 67

capabilities of the adopted features to highlight similarities among activities
that would be hard to grasp adopting name-based or global similarity fea-
tures. Nevertheless, these experiments represent a first preliminary study to
investigate the potential of the approach. Furthermore, such a set of features
has been exploited to propose an approach aimed at predicting the location of
a process that is likely to be executed next. The notion of location provides
an abstraction mechanism from the level of the single activity, which can be
used to supply the process analyst with a higher-level overview of what can
be expected next in the process execution. We used seven structural features
representing common control-flow constructs to define the notion of location.
We provided three different formulations for the next-location prediction prob-
lem, with different assumptions on the format of the input and the output. We
tested our approach on a dataset involving five real-world event logs. The
obtained results have shown little differences among the tested formulations,
which obtained in any case good prediction performance. We also discussed
an example of the output, to better highlight differences in the output gen-
eration obtained by the different formulations and to show how the location
features can be used to support the analyst in grasping relevant insights on the
execution context.

A relevant research direction includes the refinement of the introduced
scaled parallel complexity and a study on its correlation with the performance
of both a parallelism-aware approach (like Multi-BIG) and a purely-sequential
approach. Future works also include the extension of the Instance Graph-
based encoding by the introduction of a set of features that represents the be-
haviors stored in the event log. This in turn also offers the opportunity to
extend the notion of Location and its possible applications and refinements.
Experiments on more datasets are for all the above a further research direc-
tion.

69

Appendix A

Further PhD activities

In this Chapter, some of the side activities carried on during the Ph.D. are de-
scribed. In particular, the work produced following the very first research
direction of the Ph.D. course and the consulting activities performed for the
Namirial s.p.a. R&D department.

A.1 Reinforcement Learning for Predictive Process

Monitoring

Here, it is described the first research direction followed at the beginning of the
Ph.D., in the hope that the adoption of the Reinforcement Learning paradigm
could result later in an evolution of the predictive process monitoring to pre-
scriptive. This particular research direction was then temporarily suspended
in favor of the more promising ones described in the thesis. Reinforcement
learning is gaining ever-increasing attention since 2015 when [74] trained an
agent that bested many human professional players over various Atari games.
This has led the scientific community to further investigate the techniques,
leading to various interesting results (e.g., [75], [76]), up until the latest aston-
ishing artificial agent [77] that managed to beat professional human players in
Starcraft II, an extremely complex real-time strategy game.

Reinforcement Learning is a particular kind of machine learning paradigm
that trains models to directly maximize a reward signal, without assigning
any label or necessarily trying to find some hidden structure in the data. An
interesting feature of this family of algorithms is that learning is guided by

70 Appendix A. Further PhD activities

an objective function that takes into account the chain of future decisions and
their effects, instead of focusing only on the decision at hand. This could be
an interesting feature in the predictive process mining field, where events to
be predicted are conditioned by the process workflow. Motivated by past suc-
cesses of Reinforcement Learning and this observation, we set as our goal to
study if it is possible to apply Reinforcement Learning to the field of predic-
tive process monitoring. At the best of our knowledge, this was the first study
of this kind. The only other study that applied reinforcement learning in the
process mining field is [78], where the problem of efficient resource allocation
is considered. Our results enlighten promising features of the approach and
interesting research issues towards a prescriptive generative approach to im-
prove processes.

As also confirmed by a successive work [79] where from two different data-
sets the authors manage to derive process simulations and, using two different
KPIs as loss functions, to train actors capable of prescript actions.

A.1.1 Background

In this section, we provide general background knowledge on the Reinforce-
ment Learning paradigm.

Reinforcement learning is learning what to do—how to map situations to ac-
tions—so as to maximize a numerical reward signal. The learner is not told which
actions to take, but instead must discover which actions yield the most reward by try-
ing them. A reinforcement learning problem is formalized using ideas from dynamical
systems theory, specifically, as the optimal control of incompletely-known Markov de-
cision process [80]. The learner (agent) interacts with an environment during a
sequence of timesteps composing the learning episode. In the domain of pro-
cess mining we can think the learning episode as the evolution of the trace,
and the occurrence of an event in it as a timestep. At each timestep, an inter-
action between agent and environment occurs through observations (x) of the
environment, actions (a) and rewards (r). The observation is the trace event,
the action is the prediction for the next event, and the reward is derived from
the comparison between the next event information and the predicted one.
The agent’s goal is to maximize its cumulative future reward performing its

A.1. Reinforcement Learning for Predictive Process Monitoring 71

actions, with respect to the state of the environment. The state si of the envi-
ronment is defined as the full sequence of observations and actions performed
until timestep i, formally: si = x1, a1, x2, ..., ai−1, xi. However, it is complex
to use a state composed of a variable number of observations and actions as
input. Hence, it is usually preferred to use a constant fixed number of obser-
vations and actions. In this chapter we refer to the number of past timesteps
considered to define the state as window size. Having fixed the window size to
a generic k, the state is written as si = xi−k, ai−k, xi−k+1, ..., ai−1, xi.

The objective function of the agent at timestep i can be expressed as:

Ri =
T

∑
t=i

γt−irt, (A.1)

where γ < 1 is the discount factor of future rewards, used to prioritize more re-
cent rewards, and T is the number of timesteps in the whole learning episode.
In particular, in this methodology we considers Q learning agents. This type of
agents tries to approximate the optimal action-value function Q∗(s, a), learn-
ing it from the transitions from a state si to a next state si+1 on the basis of
the performed action ai and the received reward ri. The optimal action-value
function may be expressed as:

Q∗(s, a) = max
π

E [Ri|s = si, a = ai, π] (A.2)

which is the maximum expected reward achievable after seeing sequence s
and taking action a, by following any behaviour policy π for mapping se-
quences to actions. This reinforcement learning algorithm is based on the fact
that knowing Q∗(s, a) an agent can choose the best sequence of actions at any
state, maximizing its reward. Obviously, perfectly knowing Q∗(s, a) it is not
always possible, especially in complex environment. Still it is possible to dis-
cover Q(s, a, θ), through a machine learning model, where θ are the parameters
of the trained model so that Q(s, a, θ) ≈ Q∗(s, a). In the case of deep Q net-
work (DQN) agents, the model adopted is a deep neural network, and θ are its
weights, used to approximate the optimal action-value function. In our study
we used as underlying model to approximate the Q-function an LSTM based

72 Appendix A. Further PhD activities

neural network. The network weights may be adjusted through training using
as loss function, that varies at each timestep, the mean squared error defined
as follows:

Li(θi) = E(s,a,r,s′)

[︃
r + γ max

a′
Q̃(s′, a′, θ−i)− Q(s, a, θi)

]︃2

(A.3)

in which γ is a discount factor determining a penalty for more future reward,
θi are the parameters of the Q-network at iteration i and θ−i are the network
parameters used to compute the target at iteration i used in place of the opti-
mal and unknown maxa′Q∗(s′, a′). Therefore, in contrast to supervised learn-
ing where targets are fixed before learning begins, the targets depends on the
network weights. Though, since θ−i is kept fixed at the ith optimization of
Li(θi), all the optimization problems at each iteration are well defined. In
our case we used a so called soft update of θ which updates the parameters
at each iteration on the basis of a coefficient β accordingly to the formula:
θ−i+1 = (1 − β)θ−i + βθi, where β ∈ (0, 1). It is worth noting that this algorithm
is model-free as it solves the Reinforcement Learning task directly, without es-
timating the system transition dynamics. Also it is an off-policy algorithm,
since it learns a greedy policy where a = argmaxa′Q(s, a′, θ) but it still en-
sure, through its behaviour policy, an adequate exploration of the state space
through a random action. This allows to discover if there are better actions
to perform with respect to the recommended one. In our particular case, for
training, we used a Boltzmann Q Policy, which builds a probability law on Q
values and returns an action selected randomly according to this law while,
for prediction purposes, a GreedyQPolicy is adopted which selects the action
with the highest reward.

For further details, the full description of the algorithm can be found in
[74], which originally proposed it.

A.1.2 Methodology

This section is devoted to describe the proposed methodology, which uses two
agents trained through reinforcement learning to predict activity and execu-
tion time of both the one step ahead event as well as the activities suffix and

A.1. Reinforcement Learning for Predictive Process Monitoring 73

trace time.
In the following, we first describe the pre-processing performed to make

event log data suitable for being fed to our system, and then the details on the
architecture adopted.

An event ei in the sequence given in input to the LSTM used here, is logi-
cally represented by 4 components, namely the activity ai, and three temporal
features. Each activity is expressed by a binary vector built using the one-hot
encoding of the activity type. One-hot encoding has been chosen as it is an ef-
fective and popular way of representing categorical data. Its main advantage
is that one-hot encoding transformation does not introduce any order or simi-
larity among the representation of categorical data. Regarding the three added
temporal features, the first is the time passed between Sunday midnight and
the event ei (twi in eq. A.4) which is useful to express the seasonality of the
process. The second is the time passed between the completion of an event ei

and the completion of the previous event ei−1 (tei in eq. A.5), thus substantially
corresponding to the event duration (plus possible idle time between the two
events). The last temporal feature is the time passed between the start of the
trace and the event ei (tti in eq. A.6), which gives information about the pro-
gression of the trace. This last one is particularly relevant since there may be a
strong correlation between the performed actions and the "age" of the process
case.
Formally:

twi =
ti − tw0

∆tw
(A.4)⎧⎨⎩ tei = 0 if i = 1,

tei =
ti−ti-1
∆maxe

otherwise
(A.5)

tti =
ti − t0

∆maxt

(A.6)

where ti is the timestamp of the event at index i, tw0 is the timestamp of
the last passed Sunday midnight, and t0 is the start timestamp of the process.
∆tw ∆maxe and ∆maxt are normalization factors to make features varying in the
range [0, 1], as it improves the performance of the network. ∆tw is the amount
of time in a week, while ∆maxe and ∆maxt are, respectively, the maximum event

74 Appendix A. Further PhD activities

duration and the maximum trace duration. It is also worth noting that given
tei and both twi-1 and tti-1 , it is possible to derive the value of both twi and tti .

Regarding the overall architecture, we show it in figure A.1: the dashed
lines enlighten the learning phase, while solid lines refer to the prediction
phase. In the system, we have two different agents. Both take as input a se-
quence of events, in which every event is defined by the three temporal fea-
tures and the one-hot encoding of the activity as explained before. One agent
predicts the one step ahead activity, the next one that will be performed, while
the other is devoted to predict its completion time. As said, every DQN agent
has an underlying neural network that models the reward function. For each
of our two agents, we used an LSTM based neural network to learn and ap-
proximate the optimal Q∗(s, a), instead of training them using ground-truth
labels, typical of supervised learning. This is done, through the agents’ inter-
action with their respective environment, thanks to which they receive their
reward. The LSTM architecture have been chosen because of its widespread
adoption in predictive process mining. We hasten to note that DQN agents
only work with a discrete action space and therefore they are unable to pro-
duce continuous outputs. To address this issue we divided the output time
in bins, each representing the range in which the estimated time falls, and we
designed the time agent so as to produce bin indexes as outputs.

As explained in section A.1.1, the learning process of our RL agents is based
on the notion of transition from a state of the environment to another on the
basis of the performed action and its associated reward at each timestep.

We set the reward functions in each environment as binary reward func-
tions: in the time environment, the reward gives a plus one when the predicted
bin included the true time, and zero otherwise; similarly in the activity envi-
ronment the reward gives a plus one when the prediction is correct and a zero
otherwise.

For the one step ahead prediction of the next activity and time the two
agents work in isolation exploiting their underlying LSTM network model to
perform their prediction. For suffix prediction the situation is more complex,
as each agent has access only to the information of the first part of the trace. In
particular, it reads only the first k events where k is the window size. Hence,

A.1. Reinforcement Learning for Predictive Process Monitoring 75

each agent needs to rely both on its own prediction and on the other agent’s
prediction to have all the required inputs for predicting more than one step
ahead, as the true information is not available. In a way, the two agents co-
operates exchanging messages to inform the other of their prediction, at each
timestep. This way the whole sequence may be predicted using the predicted
information when the true one is not available. All this is iterated until the end
of the trace is predicted.

Formally, at the first iteration we consider the sequence σk =< e1, e2, . . . , ek >

of events of length k (window size), where ej be the j-th event of a trace, which
is characterized by the tuple < aj, twj , tej , ttj >. The time predictor agent αt and
the action predictor agent αa are defined as follows:

αt : σk ↦→ t′ek+1
,

αa : σk ↦→ a′k+1,

where apex denotes the predicted value. Each agent will inform the other of its
prediction and therefore the predicted next event e′k+1 will be characterized by
the tuple < a′k+1, t′wk+1

, t′ek+1
, t′tk+1

>, where t′wk+1
and t′tk+1

are derived from t′ek+1
,

ttk and twk . Then a new prediction will be performed by each agent using as
input σk+1 =< e2, . . . , ek, e′k+1 >. Iterating at the i-th step, the sequence σi will
be formed by k − i real events and i predicted ones. The algorithm is iterated
until the end event of the process is predicted.

FIGURE A.1: Overall architecture.

76 Appendix A. Further PhD activities

A.1.3 Evaluation

In this section we describe the experimental setup used and empirically eval-
uate the performance of the proposed approach. Results are compared with
those of other approaches using LSTM networks for uniformity reasons, so to
remark the contribution of RL paradigm.

The experimental dataset used here is BPI12W (see sec. 2.3. As done in
[20], to perform our experiments we used chronologically ordered first 2/3
of the traces as training data, and evaluate the activity and time predictions
on the remaining 1/3 of the traces. The dataset has been pre-processed as
explained in section A.1.2. For what concerns the setting of bins defining the
output values of the time agent, we analyzed the whole distribution of events
duration in the dataset. This allowed to set the various ranges so as to both
balance the number of elements in a bin and to maintain a reasonable similarity
between elements in the same bin. The resulting bin endpoints are [0, 1, 10,
60, 120, 240, 480, 1440, 2880, 4320, 7200, 10080, 14400, 20160, 30240, 40320,
50400] expressed in minutes. Also note that the chosen endpoints correspond
to meaningful time frames such as hours, days or weeks. Figure A.2 shows the
distribution of events duration in the dataset. The x-axis is in logarithmic scale
for visualization purposes.

FIGURE A.2: te distribution in bins

We performed the experiments using Keras-rl [81], running on a machine
with two NVIDIA GeForce GTX 1080, a i7 8700K CPU @3.70 GHz and 32GB
RAM. Each agent was trained for 600000 steps and is characterized by the use
of a sequential memory of dimension 500000, a BoltzmannQPolicy clipped in
range (-15,15) as behaviour train policy, and a GreedyQPolicy as test policy; the

A.1. Reinforcement Learning for Predictive Process Monitoring 77

target function was updated through soft update using β = 10−2 as coefficient.
The underlying neural network has two hidden LSTM layers with 200 neurons
each and ReLU activation; during training we used an Adam optimizer with
a learning rate of 10−3. This configuration was kept for all the tested window
size, as it had the best performance for approximating the Q function, between
those tested.

In order to properly compare our results with previous work, we adopted
the same evaluation metrics. For the One-step Ahead Prediction, we evaluate
our results in terms of accuracy, and in terms of mean absolute error (MAE) in
days, for the predicted time. For the purpose of comparison with the baselines
we use the MAE but it is important to remember that our time agent predicts
ranges of time. Therefore, since we need a continuous value for the time in
order to compute the MAE, we choose for this the inferior endpoint of the bin
predicted as value. For example, if the predicted bin is the third one, which
corresponds to range [10, 60), the time used for computing the MAE will be 10
minutes. For the Suffix Prediction, and in particular, for the suffix completion
time prediction we consider the absolute trace duration error (TDE)

TDE = |t′t f
− tt f | (A.7)

where, with some abuse of notation, f refers to the final event in the true and
estimate trace, hence tt f (t′t f

) represents the total duration of the true (esti-
mated) trace. The TDE is then averaged over all traces. For evaluating the ac-
curacy of the activity Suffix Prediction the most well-known and used distance
is the Damerau-Levenshtein distance, which is defined as the minimum num-
ber of deletion, insertion, substitution and transposition operations needed to
transform the first string to the second. In particular, this distance can be nor-
malized dividing its value for the length of the longer string. What we adopted
for comparison purposes is the Damerau-Levenshtein similarity expressed as
one minus the normalized Damerau-Levenshtein distance.

Regarding the results, in Table A.1 we present the performances achieved
for the one step ahead prediction tasks. For next completion time prediction
(Table A.1.(a)) we compare our results with the best reported by Tax et al. [20]

78 Appendix A. Further PhD activities

TABLE A.1: Comparison of performances for the one step ahead
prediction tasks. (a) Next completion time. (b) Next activity.

MAE (days)
Window size Ours Tax et al.

2 1.34 1.69
10 1.05 1.45
20 0.62 0.98
All 1.17 1.59

Accuracy
Ours Tax et al. Camargo et al.
71.3% 76% 77.8%

(a) (b)

for different window sizes. Table A.1.(b) reports the accuracy of the next ac-
tivity prediction of our method, and the ones reported by Tax et al. [20] and
Camargo et al. [21]. In [21] the next completion time task is not addressed. In
Table A.1.(a) the row "All" reports the average performance over all the tested
window sizes. In [20] these correspond to all the values in the range [2,20],
whereas in our case we considered the set {2,3,4,5,6,7,10,20}.

It can be seen that our performance in the next completion time prediction
are clearly better than the baseline, whilst our accuracy is worse. In particular,
the relative improvement in the case of completion time prediction is about
27%, and the relative accuracy degradation is only about 8% with respect to
best result provided by [21]. These results may be justified as follows. DQN
agents optimize a cumulative reward function that takes into account rewards
on future actions, in a sense trying to simulate the future. Completion times
show a form of dependency on the total trace duration. For instance, overes-
timating the duration of early events will lead to an excessively long overall
trace duration estimate. This may guide the learner through states with a bet-
ter generalization ability. On the contrary, a similar relation does not exist
for activities in the considered setting, where only the structural perspective
of the process (i.e the workflow) is taken into account. Thus enriching the
log with other perspectives and in particular with data regarding case-specific
and event-specific properties may likely highlight dependencies among activ-
ities and thus lead to improved results. We plan to verify such hypothesis in
future work.

We also show in Table A.2 the performance achieved in suffix prediction

A.2. Consulting Activities 79

TABLE A.2: Comparison of performances for the suffix predic-
tion tasks. (a) Completion time. (b) Next activities.

Window mean TDE (days)
size Ours Tax Camargo

2 12.66 ≈ 14 ≈ 11
10 6.17 ≈ 9 ≈ 9
20 4.63 ≈ 6 ≈ 9

DL-similarity
Ours Tax Camargo
0.174 0.3533 0.525

(a) (b)

tasks. The results confirm a better behavior of the proposed RL architecture
on the completion time prediction than on the activity prediction task. For the
former, the relative improvement is about 21%, which is in line with the one
step ahead performance. For the latter, we observe a much worse performance
degradation of about the 66% with respect to [21], and about 50% with respect
to [20]. This is in part due to an expected error propagation effect, since errors
committed at the early suffix prediction stages progressively compromise all
the subsequent ones. As another issue reducing our systems performance, we
observed that the event agent struggle to predict the end of the trace, leading
to excessively long traces. To verify this, we calculated the DL-similarity trun-
cating the predicted traces to the length of the true traces, discovering that per-
formances improves up to a DL-similarity of 0.2974, which is comparable with
the accuracy obtained by [20]. For what concerns computational complexity,
clearly the time required to train an RL agent is much higher than the LSTM
alone. We experimented an increase factor of about 20x of the required training
time. This is a well known characteristics of RL training although alternative
techniques with better computational performance have been proposed [82].
We plan to investigate them in future work.

A.2 Consulting Activities

The Ph.D. has been co-funded by Namirial s.p.a. a digital transaction man-
ager enterprise and a digital trusted services provider, specialized in guaran-
teeing digital identities and all connected services, like digital signatures and
electronic billing. In the context of collaboration with the enterprise, various

80 Appendix A. Further PhD activities

FIGURE A.3: Sign drawing required, process model

consulting activities have been developed. The two most notable are the tech-
nical consulting for the detection of counterfeit ID documents and an analysis
of their digital signature system performance. It is not possible to precisely
describe the former for legal reasons, but the work mostly regarded providing
a formalization of the problem as well as technological and technical advice to
the R&D head of the enterprise, who then had the proposed solution imple-
mented by his team (also this for legal reasons).

The latter involved a thorough analysis of digital signature logs using data
mining and process mining techniques to highlight possible bottlenecks or
issues in the flow of work. To do so the CRISP methodology was adopted
(CRoss-Industry Standard Process for Data Mining)[83]. The most remarkable
result delivered was an analysis showing how the signature process requiring
actually drawing the sign discouraged the users, which as a consequence let
many days pass before actually signing the document. Figure A.3 shows the
process model when the drawing is required, while figure A.4 shows the pro-
cess model when just a click suffices to sign the document: it can be seen that
in the latter, the "Draw2SignDialogClosed" (the signature drawing) event lead
to the repetition of the "CalledPage" event which represents the opening of the
file and can only be repeated after having firstly closed the document to sign.

A.2. Consulting Activities 81

FIGURE A.4: No sign drawing required, process model

83

Bibliography

[1] W. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, and et al., “Pro-
cess mining manifesto,” in Business Process Management Workshops, F.
Daniel, K. Barkaoui, and S. Dustdar, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 169–194, ISBN: 978-3-642-28108-2.

[2] F. M. Maggi, C. D. Francescomarino, M. Dumas, and C. Ghidini, “Pre-
dictive monitoring of business processes,” in International conference on
advanced information systems engineering, Springer, 2014, pp. 457–472.

[3] A. Appice, N. Di Mauro, and D. Malerba, “Leveraging shallow machine
learning to predict business process behavior,” in 2019 IEEE International
Conference on Services Computing (SCC), IEEE, 2019, pp. 184–188.

[4] W. M. van der Aalst, “A practitioner’s guide to process mining: Limita-
tions of the directly-follows graph,” Procedia Computer Science, vol. 164,
pp. 321–328, 2019, CENTERIS 2019 - International Conference on EN-
TERprise Information Systems / ProjMAN 2019 - International Confer-
ence on Project MANagement / HCist 2019 - International Conference
on Health and Social Care Information Systems and Technologies, CEN-
TERIS/ProjMAN/HCist 2019, ISSN: 1877-0509. DOI: https://doi.org/
10.1016/j.procs.2019.12.189. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050919322367.

[5] D. Grigori, F. Casati, U. Dayal, and M.-C. Shan, “Improving business
process quality through exception understanding, prediction, and pre-
vention,” 2001, pp. 159–168.

[6] M. Castellanos, N. Salazar, F. Casati, U. Dayal, and M.-C. Shan, “Predic-
tive business operations management,” International Journal of Computa-
tional Science and Engineering, vol. 2, no. 5-6, pp. 292–301, 2006.

https://doi.org/https://doi.org/10.1016/j.procs.2019.12.189
https://doi.org/https://doi.org/10.1016/j.procs.2019.12.189
https://www.sciencedirect.com/science/article/pii/S1877050919322367
https://www.sciencedirect.com/science/article/pii/S1877050919322367

84 Bibliography

[7] W. Van Der Aalst, M. Pesic, and M. Song, “Beyond process mining: From
the past to present and future,” Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 6051 LNCS, pp. 38–52, 2010.

[8] C. Di Francescomarino, C. Ghidini, F. M. Maggi, and F. Milani, “Predic-
tive process monitoring methods: Which one suits me best?” In Business
Process Management, M. Weske, M. Montali, I. Weber, and J. vom Brocke,
Eds., Cham: Springer International Publishing, 2018, pp. 462–479.

[9] I. Teinemaa, M. Dumas, M. Rosa, and F. Maggi, “Outcome-oriented pre-
dictive process monitoring: Review and benchmark,” ACM Transactions
on Knowledge Discovery from Data, vol. 13, no. 2, 2019.

[10] A. Marquez-Chamorro, M. Resinas, and A. Ruiz-Cortes, “Predictive mon-
itoring of business processes: A survey,” IEEE Transactions on Services
Computing, vol. 11, no. 6, pp. 962–977, 2018.

[11] W. Van Der Aalst, M. Schonenberg, and M. Song, “Time prediction based
on process mining,” Information Systems, vol. 36, no. 2, pp. 450–475, 2011.

[12] A. Senderovich, M. Weidlich, A. Gal, and A. Mandelbaum, “Queue min-
ing for delay prediction in multi-class service processes,” Information Sys-
tems, vol. 53, pp. 278–295, 2015, ISSN: 0306-4379.

[13] J. Becker, D. Breuker, P. Delfmann, and M. Matzner, “Designing and im-
plementing a framework for event-based predictive modelling of busi-
ness processes,” vol. P-234, 2014, pp. 71–84.

[14] G. Lakshmanan, D. Shamsi, Y. Doganata, M. Unuvar, and R. Khalaf, “A
markov prediction model for data-driven semi-structured business pro-
cesses,” Knowledge and Information Systems, vol. 42, no. 1, pp. 97–126,
2015.

[15] M. Polato, A. Sperduti, A. Burattin, and M. De Leoni, “Time and activity
sequence prediction of business process instances,” Computing, vol. 100,
no. 9, pp. 1005–1031, 2018.

Bibliography 85

[16] M. Unuvar, G. T. Lakshmanan, and Y. N. Doganata, “Leveraging path in-
formation to generate predictions for parallel business processes,” Knowl-
edge and Information Systems, vol. 47, no. 2, pp. 433–461, 2016.

[17] M. Ceci, P. F. Lanotte, F. Fumarola, D. P. Cavallo, and D. Malerba, “Com-
pletion time and next activity prediction of processes using sequential
pattern mining,” in International Conference on Discovery Science, Springer,
2014, pp. 49–61.

[18] E. Rama-Maneiro, J. Vidal, and M. Lama, “Deep learning for predictive
business process monitoring: Review and benchmark,” IEEE Transactions
on Services Computing, 2021.

[19] J. Evermann, J.-R. Rehse, and P. Fettke, “Predicting process behaviour
using deep learning,” Decision Support Systems, vol. 100, pp. 129 –140,
2017, Smart Business Process Management, ISSN: 0167-9236.

[20] N. Tax, I. Verenich, M. La Rosa, and M. Dumas, “Predictive business pro-
cess monitoring with lstm neural networks,” in Advanced Information Sys-
tems Engineering. CAiSE 2017. Lecture Notes in Computer Science, vol 10253,
2017, pp. 477–492.

[21] M. Camargo, M. Dumas, and O. González-Rojas, “Learning accurate LSTM
models of business processes,” in Proceedings of the 17th International Con-
ference on Business Process Management (BPM’19), Lecture Notes in Com-
puter Science, 11675, 2019, pp. 286–302.

[22] F. Taymouri, M. L. Rosa, S. Erfani, Z. D. Bozorgi, and I. Verenich, “Pre-
dictive business process monitoring via generative adversarial nets: The
case of next event prediction,” in Business Process Management, D. Fahland,
C. Ghidini, J. Becker, and M. Dumas, Eds., Cham: Springer International
Publishing, 2020, pp. 237–256, ISBN: 978-3-030-58666-9.

[23] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba, “Predic-
tive process mining meets computer vision,” in "Business Process Man-
agement Forum (BPM’20), Lecture Notes in Business Information Processing,
vol. 392, 2020, pp. 176–192.

86 Bibliography

[24] I. Venugopal, J. Tollich, M. Fairbank, and A. Scherp, “A comparison of
deep learning methods for analysing and predicting business processes,”
in Proceedings of International Joint Conference on Neural Networks, IJCNN,
2021.

[25] A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “A preliminary
study on the application of reinforcement learning for predictive pro-
cess monitoring,” in Proceedings of 2nd International Conference on Process
Mining (ICPM20), Lecture Notes in Business Information Processing, 2020.

[26] P. Philipp, R. Jacob, S. Robert, and J. Beyerer, “Predictive analysis of busi-
ness processes using neural networks with attention mechanism,” 2020,
pp. 225–230.

[27] C. Di Francescomarino, C. Ghidini, F. M. Maggi, G. Petrucci, and A.
Yeshchenko, “An eye into the future: Leveraging a-priori knowledge
in predictive business process monitoring,” in International conference on
business process management, Springer, 2017, pp. 252–268.

[28] B. F. van Dongen and W. M. P. van der Aalst, “Multi-phase process min-
ing: Building instance graphs,” in Conceptual Modeling – ER 2004, P. Atzeni,
W. Chu, H. Lu, S. Zhou, and T.-W. Ling, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 362–376, ISBN: 978-3-540-30464-7.

[29] W. van der Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. Weijters, “Workflow mining: A survey of issues and approaches,”
Data & Knowledge Engineering, vol. 47, no. 2, pp. 237–267, 2003, ISSN:
0169-023X.

[30] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, 2018.

[31] L. Y. Radu Mateescu Gwen Salaün, “Quantifying the parallelism in BPMN
processes using model checking.,” in The 17th International ACM Sigsoft
Symposium on Component-Based Software Engineering (CBSE 2014), 2014.

[32] C. Mao, “Control flow complexity metrics for Petri Net-based web ser-
vice composition,” Journal of Software, vol. 5, pp. 1292–1299, Nov. 2010.

Bibliography 87

[33] K. B. Lassen and W. M. van der Aalst, “Complexity metrics for work-
flow nets,” Information and Software Technology, vol. 51, no. 3, pp. 610–
626, 2009, ISSN: 0950-5849.

[34] T. H. Davenport, Process innovation: reengineering work through information
technology. Harvard Business Press, 1993.

[35] Y. Sun and J. Su., “Computing degree of parallelism for BPMN pro-
cesses.,” in Proceedings of ICSOC’11, Springer, Ed., 2011, 1–15.

[36] J. Esparza, “Reachability in live and safe free-choice Petri Nets is NP-
complete,” Theoretical Computer Science, 1998.

[37] E. Mayr., “An algorithm for the general Petri Net reachability problem.,”
SIAM Journal on Computing, 1984.

[38] F. Durán, C. Rocha, and G. Salaün, “Computing the parallelism degree of
timed bpmn processes,” in Software Technologies: Applications and Founda-
tions, Cham: Springer International Publishing, 2018, pp. 320–335, ISBN:
978-3-030-04771-9.

[39] W. van der Aalst and et al., “Workflow mining: Discovering process
models from event logs,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[40] S. Barbon Junior and et al., “Evaluating trace encoding methods in pro-
cess mining,” in From Data to Models and Back: 9th International Sympo-
sium, DataMod 2020, Virtual Event, October 20, 2020, Revised Selected Pa-
pers, Berlin, Heidelberg: Springer-Verlag, 2020, 174–189, ISBN: 978-3-030-
70649-4.

[41] R. Dijkman and et al., “Similarity of business process models: Metrics
and evaluation,” Information Systems, vol. 36, no. 2, pp. 498–516, 2011,
Special Issue: Semantic Integration of Data, Multimedia, and Services,
ISSN: 0306-4379.

[42] R. P. J. C. Bose and et al., “Context aware trace clustering: Towards im-
proving process mining results,” in Proceedings of the 2009 SIAM Interna-
tional Conference on Data Mining (SDM), pp. 401–412.

88 Bibliography

[43] A. Leontjeva and et al., “Complex symbolic sequence encodings for pre-
dictive monitoring of business processes,” in Business Process Manage-
ment, Cham: Springer International Publishing, 2015, pp. 297–313, ISBN:
978-3-319-23063-4.

[44] A. Chiorrini and et al., “Exploiting instance graphs and graph neural
networks for next activity prediction,” in Process Mining Workshops, J.
Munoz-Gama and et al., Eds., Cham: Springer International Publishing,
2022, pp. 115–126, ISBN: 978-3-030-98581-3.

[45] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba, “A multi-
view deep learning approach for predictive business process monitor-
ing,” IEEE Transactions on Services Computing, 2021.

[46] P. De Koninck and et al., “Act2vec, trace2vec, log2vec, and model2vec:
Representation learning for business processes,” in Business Process Man-
agement, Cham: Springer International Publishing, 2018, pp. 305–321, ISBN:
978-3-319-98648-7.

[47] P. Hake and et al., “Supporting business process modeling using rnns
for label classification,” in 22nd International Conference on Applications of
Natural Language to Information Systems, Proceedings, F. Frasincar and et
al., Eds., ser. Lecture Notes in Computer Science, vol. 10260, Springer,
2017, pp. 283–286.

[48] I. Verenich, Helpdesk, 2016. DOI: 10.17632/39bp3vv62t.1.

[49] B. van Dongen, BPI Challenge 2012, Apr. 2012. DOI: 10 . 4121 / uuid :
3926db30-f712-4394-aebc-75976070e91f. [Online]. Available: https:
//data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204.

[50] B. van Dongen, Bpi challenge 2020, 2020. DOI: 10.4121/uuid:52fb97d4-
4588-43c9-9d04-3604d4613b51.

[51] C. Diamantini, L. Genga, D. Potena, and W. van der Aalst, “Building
instance graphs for highly variable processes,” Expert Systems with Ap-
plications, vol. 59, pp. 101–118, 2016, ISSN: 0957-4174.

https://doi.org/10.17632/39bp3vv62t.1
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

Bibliography 89

[52] A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Exploiting in-
stance graphs and graph neural networks for next activity prediction,”
in Process Mining Workshops, Lecture Notes in Business Information Process-
ing, vol. 433, 2021.

[53] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Confor-
mance checking using cost-based fitness analysis,” in 2011 ieee 15th inter-
national enterprise distributed object computing conference, IEEE, 2011, pp. 55–
64.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, 1929–1958, Jan. 2014, ISSN:
1532-4435.

[55] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2021.

[56] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from incomplete event logs,” in Appli-
cation and Theory of Petri Nets and Concurrency, G. Ciardo and E. Kindler,
Eds., Cham: Springer International Publishing, 2014, pp. 91–110.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the 3rd International Conference on Learning Representations
(ICLR 2015), 2015.

[58] M. Fey and J. E. Lenssen, “Fast graph representation learning with Py-
Torch Geometric,” in ICLR Workshop on Representation Learning on Graphs
and Manifolds, 2019.

[59] M. Abadi, A. Agarwal, I. Sutskever, and e. a. Oriol Vinyals, TensorFlow:
Large-scale machine learning on heterogeneous systems, Software available
from tensorflow.org, 2015. [Online]. Available: https://www.tensorflow.
org/.

https://www.tensorflow.org/
https://www.tensorflow.org/

90 Bibliography

[60] P. B. Brazdil and C. Soares, “A comparison of ranking methods for classi-
fication algorithm selection,” in Machine Learning: ECML 2000, R. López
de Mántaras and E. Plaza, Eds., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2000, pp. 63–75, ISBN: 978-3-540-45164-8.

[61] A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Metrics of par-
allel complexity of operational business processes,” in Proceedings of the
24th International Conference on Enterprise Information Systems - Volume 1:
ICEIS,, INSTICC, SciTePress, 2022, pp. 561–566, ISBN: 978-989-758-569-2.
DOI: 10.5220/0011084200003179.

[62] W. van der Aalst and K. van Hee, “Business process redesign: A petri-
net-based approach,” Computers in Industry, vol. 29, no. 1, pp. 15–26,
1996, ISSN: 0166-3615.

[63] W. van der Aalst, “Business process modeling notation,” in Encyclopedia
of Database Systems, L. Liu and M. T. Özsu, Eds., New York, NY: Springer
New York, 2018, pp. 382–383, ISBN: 978-1-4614-8265-9.

[64] W. Aalst, K. Hee, A. Ter, et al., “Soundness of workflow nets: Classifica-
tion, decidability, and analysis,” Formal Asp. Comput., vol. 23, pp. 333–
363, May 2011. DOI: 10.1007/s00165-010-0161-4.

[65] A. Chiorrini, C. Diamantini, L. Genga, M. Pioli, and D. Potena, “Embed-
ding process structure in activities for process mapping and comparison
(under publication),” in New Trends in Database and Information Systems -
ADBIS 2022 Short Papers, ser. Communications in Computer and Infor-
mation Science, 2022.

[66] A. Chiorrini, C. Diamantini, L. Genga, M. Pioli, and D. Potena, “Towards
next-location prediction for process executions,” in 2022 4th International
Conference on Process Mining (ICPM), 2022, pp. 40–47. DOI: 10 . 1109 /
ICPM57379.2022.9980785.

[67] W. Van Der Aalst, Process mining: data science in action. Springer, 2016,
vol. 2.

[68] B. van Dongen, “BPI Challenge 2017,” Feb. 2017. [Online]. Available:
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/

12696884.

https://doi.org/10.5220/0011084200003179
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1109/ICPM57379.2022.9980785
https://doi.org/10.1109/ICPM57379.2022.9980785
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884

Bibliography 91

[69] A. Polyvyanyy and et al., “Simplified computation and generalization
of the refined process structure tree,” in International Workshop on Web
Services and Formal Methods, Springer, 2010, pp. 25–41.

[70] S. J. J. Leemans and et al., “Discovering block-structured process mod-
els from event logs - a constructive approach,” in Application and Theory
of Petri Nets and Concurrency, J.-M. Colom and et al., Eds., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 311–329, ISBN: 978-3-642-
38697-8.

[71] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Bar-
ros, “Workflow patterns,” Distributed and parallel databases, vol. 14, no. 1,
pp. 5–51, 2003.

[72] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing sys-
tems, vol. 24, 2011.

[73] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst, “Discovering block-
structured process models from event logs containing infrequent behaviour,”
in International conference on business process management, Springer, 2013,
pp. 66–78.

[74] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control thro-
ugh deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–
533, 2015, ISSN: 1476-4687.

[75] D. Silver, A. Huang, and et al., “Mastering the game of go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016, ISSN: 1476-4687.

[76] D. Silver, T. Hubert, J. Schrittwieser, et al., “A general reinforcement learn-
ing algorithm that masters chess, shogi, and Go through self-play,” Sci-
ence, vol. 362, no. 6419, pp. 1140–1144, 2018.

[77] O. Vinyals, I. Babuschkin, and et al., “Grandmaster level in starcraft "ii"
using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,
pp. 350–354, 2019, ISSN: 1476-4687.

92 Bibliography

[78] Z. Huang, W. van der Aalst, X. Lu, and H. Duan, “Reinforcement learn-
ing based resource allocation in business process management,” Data &
Knowledge Engineering, vol. 70, no. 1, pp. 127 –145, 2011, ISSN: 0169-023X.

[79] S. Branchi, C. Di Francescomarino, C. Ghidini, D. Massimo, F. Ricci, and
M. Ronzani, “Learning to act: A reinforcement learning approach to rec-
ommend the best next activities,” in Business Process Management Forum,
C. Di Ciccio, R. Dijkman, A. del Río Ortega, and S. Rinderle-Ma, Eds.,
Cham: Springer International Publishing, 2022, pp. 137–154, ISBN: 978-3-
031-16171-1.

[80] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Sec-
ond. The MIT Press, 2018.

[81] M. Plappert, Keras-rl, https://github.com/keras-rl/keras-rl, 2016.

[82] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,”
in Reinforcement Learning. Adaptation, Learning, and Optimization, vol. 12,
Springer, Berlin, Heidelberg, 2012.

[83] P. Chapman, J. Clinton, R. Kerber, et al., “Crisp-dm 1.0 step-by-step data
mining guide,” in Jan. 1999.

https://github.com/keras-rl/keras-rl

	Introduction
	Overview
	Contribution of this work

	Related Work
	Predictive Process Monitoring
	Measuring & Encoding
	Measuring Parallelism in Processes
	Encoding Process Structure in Activities

	Dataset

	Preliminaries
	Instance Graphs for Predictive Process Monitoring
	Methodology
	Building Instance Graphs
	Data Encoding
	Prefix-IG generation
	Multi-Perspective Prefix-IG Enrichment

	Deep Graph Convolutional Neural Network

	Experiments
	Experimental Setup
	Parameter settings
	Evaluation metrics

	Results and Discussion

	Measuring Parallelism in Process Models
	Use Cases Description
	Metrics for Process Parallelism Evaluation
	Metrics Based on Model perspective
	Average Degree of Transition
	Degree of Parallelism
	Comparison between DoP and ADT

	Metrics Based on Instance Graphs
	Parallel Complexity (PC)
	Scaled Parallel Complexity (SPC)

	A new representation for Events in Processes
	A Process Model-based Encoding
	Methods
	Path Length
	Optionality
	Parallelism
	Parallelism Path Length
	Self Loopable
	Long Loopable

	Case Study
	Settings
	Results

	Next-location prediction for process executions
	Defining process locations
	Methodology
	Problem statement
	Data Encoding

	Experiments
	Experimental setup

	Results and discussion
	Example of predicted output
	Analysis of prediction performance

	Conclusion
	Further PhD activities
	Reinforcement Learning for Predictive Process Monitoring
	Background
	Methodology
	Evaluation

	Consulting Activities

	Bibliography

