
Page 1

Development of a user-friendly interface for
the creation of user elements

Kinshuk
German National Research Center for Information Technology

GMD-FIT, Schloss Birlinghoven
D-53754 Sankt Augustin, Germany

Phone : (49) 2241 14 2144\
Fax: (49) 2241 14 2065

EMail : Kinshuk@gmd.de

International Journal of Electrical Engineering Education
 33(4), October 96, pp344-352 (ISSN 0020-7209)

Abstract

The solution of the basic equations relating stiffness, displacement and force in

finite element analysis is not trivial, partially due to the large numbers of

equations involved. Various techniques have been developed for this purpose

and commercial finite element packages like Ansys resolve the equations and

store the results quite efficiently and have large element libraries. If a particular

element formulation is not found in the library of Ansys, the users can develop

their own elements with the help of Fortran routines provided with Ansys. It

should be emphasised that these routines are not at all user friendly and require

considerable work every time a new type of element is needed.

This paper describes the development of a user friendly program by interfacing

the mathematical package Mathematica with Ansys to make the user element

capability more or less generalised, and more efficient.

Keywords : Ansys, Finite element analysis, Interface, Mathematica, Shape

functions, Stiffness matrix, Symbolic computation, User elements

Introduction

While doing a finite element analysis, different type of "finite elements" are

needed for different problems according to the size, shape and properties of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Athabasca University Library Institutional Repository

https://core.ac.uk/display/58775342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2

problem structure. User elements are the elements created by the users for their

own special needs. These elements are generally dedicated to the particular

problem for which they have been created.

Commercial packages available in the market usually contain a very rich library

of various types of elements to facilitate most of the general finite element

applications. Ansys is an example of those packages. It has an extensive element

library but also gives the facility to create new user elements, in case the users do

not find suitable elements in the library for their specific applications or if they

wish to try new element formulations, for example, when there is a special

degree of freedom attached to the nodes of the element, or new type of

behaviour needs to be attached to the element such as plasticity, creep, swelling,

etc.

User elements in Ansys

While creating new user element, information is given to Ansys about the special

properties desired in that element. It is done by using PREP7, the Ansys general

database pre-processor, whose primary objective is to organise analysis input

data and write the formatted analysis datafile, FILE27.

To the user element programmer, the consequences of using PREP7 to create the

analysis file are as follows :

a) In order to create plots of the user element, PREP7 must have access to the

information regarding the element shape (e.g. beam, shell, solid..., linear,

triangular, quad, etc.)

b) User element data input to PREP7 must be checkable.

Page 3

Each element type has a unique spreadsheet defined for it within PREP7 which

expects different information as the element type dictates, such as number of

nodes, degree of freedom set at each node etc. To provide information for the

spreadsheet required by the pre-processor for the user element, some Fortran

routines are available with Ansys and the user has to put specific values for some

variables in those routines. When those routines are compiled with Ansys, it

creates the desired element and uses it for the specified problem.

Mathematica - Ansys interface

An interface is provided between finite element package Ansys and the

mathematical package Mathematica to facilitate the creation of user elements with

less effort and in a user friendly environment, in which more help is given to the

user when making inputs.

Whenever a new element type is to be defined, major alterations are required in

the Fortran user routines. It is a very tedious process since all numerical values

have to be changed one by one in each routine.

The task can be made simpler by changing all numerical values into variables

and reading those variables from some text files. The text files contain all the

numerical values of the variables in the necessary order.

These text files may be created by Mathematica, which takes input of all those

numerical values from the user. A very useful feature of Mathematica has been

used namely Notebooks. Notebooks are like electronic books. One can do some

calculation work while reading it. It is very useful front end to take input from

users giving them various alternatives in the form of help.

Page 4

A major problem in Fortran is the size and complexity of various matrices used in

those subroutines. Also, since recursive programming is not allowed in Fortran,

we have to use various DO loops for even very simple matrix generation

program. It increases the size of routines enormously. The problem has been

solved by calculating all those matrices in Mathematica which is very simple.

After calculation, all the results are stored in the text files so that Fortran routines

can directly read them and can use without calculation. This saves lots of hard

and soft memory along with CPU time.

Programming the interface in Mathematica

The Mathematica routines of the interface are basically for two purposes :

(a) Getting input from user.

(b) Creating text files for use in Fortran routines.

There are six separate routines in the Mathematica program which get various

inputs in order to calculate various parameters :

(a) Main[] :- This routine is the root of program from where each routine is called

when needed, and expects the routine DMATRIX[] which is called from

Stiff[].

(b) Userel[] :- This routine is based on the Fortran routine USEREL, and saves

various inputs in "userel.txt" as follows :

*) 2-D/3-D geometry of the element and structure

*) Degrees of freedom sets for each node of element

Page 5

*) Symmetric/Unsymmetric matrix

*) Set of rotation of degrees of freedom

*) Number of nodes in the element

*) Number of temparatures/heat generation rates during analysis

*) Number of pressures applied to the edge or surface of the element

*) Number of real constants such as thickness and moment of inertia, to be

specified in analysis

*) Number of variables to be saved for future use, at the time of result

interpretation

*) Number of rows in element matrices

*) Linear/Non-linear element

*) Stress/Thermal analysis

(c) Userpt[] :- This routine is based on the Fortran routine USERPT, and saves the

input of the shape of the element to be plotted in "userpt.txt".

(d) Usermh[] :- This routine takes input for the Fortran routine USERMH and also

interrogates the user about the material properties, which the user wants to

specify. The inputs, saved in "usermh.txt" are as follows :

*) Shape of the element to be used for meshing at the time of analysis.

*) Existence of midside nodes in the element.

*) Occurrence of warning messages when meshes are made entirely of

triangles or tetrahedrons.

*) Various material properties, specified by the user at the time of analysis.

(e) Stiff[] :- This routine has been developed for symbolic calculation of shape

functions and stiffness matrices for triangular element of nth order. The order

will depend on the number of nodes desired in the element by the user.

Page 6

The routine takes input for following values :

*) Number of nodes which are inputted at the time of routine call.

*) State of case (i.e. Plane Stress or Plane Strain) is directly input by user.

The routine outputs computed values as text files. The following are the text

files containing the output from the routine :

*) The values of local co-ordinates in the form of xy.txt

*) Shape functions in the form of shape.txt

*) Multiplication of the constituent matrix D and the shape functions matrix B

in the form of db.txt

*) Stiffness matrix in the form of stiff.txt :

A routine has been written to calcuate stiffness matrix, which outputs the

matrix in symbolic form. The logic used in the routine is available from the

author on request. There are some limitations of the routine. Since this is

designed solely for triangular elements, the number of nodes must suit the

triangular elements. Otherwise program will give error message and will

quit. It does not take into account quadrilateral elements because of the

differences in the structure of shape functions of these elements.

Special care should be taken while using cubic or higher order elements, as

the program takes into account 'in-the-element' nodes. This implies that the

number of valid nodes for a cubic element will be 10 and not 9, the 10th

node being present at the centroid of the triangle.

(f) DMATRIX[] :- This routine calculates the constitutive matrix symbolically for

the desired status, i.e. Plane Stress or Plane Strain. Separate modules are

provided for both cases. Young's modulus, Poisson's ratio and key for the

Page 7

status are the inputs to the routine and are via subroutine call. The output of

constitutive matrix is via 'Return' command.

Transformation of text files into Fortran format

Since the output text files, created by Mathematica, are in symbolic expression

form, it is difficult to use them in Fortran, as Fortran needs files in a certain

format. Therefore a Fortran routine has been devised to convert the text files into

desired Fortran format. This reads the file, puts a variable name in the beginning

of each expression, writes the whole expression using continuation marks and

does this process till the end of the file.

Fortran routines

The next step in the development of the Mathematica - Ansys interface is the use

of Fortran routines provided by Ansys, to create the user element, with all desired

properties for user's specific applications.

These routines need some numerical values for various items. These routines are

modified to make them generalised. Now these routines receive input from the

various text files. Each time, the user can change the element by just replacing the

old text files with new ones.

There are many routines provided with Ansys for various specialised purposes.

The subroutines, which were used in this interface, are :-

(i) USEREL :- This subroutine is used to define parameters for the Ansys user

element. The inputs for this subroutine are via two modes :-

(a) Subroutine call -

Page 8

 ITYP = Type of element. This parameter is used in ET command of Ansys

which specifies the type of element to be used in the analysis.

 IPARM = Array of integers for input.

 KYSUB = Array of 9 KEYOPT values.

(b) Taking input from the file "userel.txt" which contains the numerical values

of various parameters, for which variables are used in the routine to make

the routine flexible.

The routine outputs various parameters as follows :-

 IPARM = Array of integers for output.

 KEY3D = Key for 2-D or 3-D geometry of the element.

 KDOF = Key for DOF selected for each node of the element.

 KUNSYM = Key for unsymmetric matrices which may be the case while

creating incompatible elements.

 KTRANS = Key for type of transformation needed for the degrees of

freedom while applying boundary conditions.

(ii) USERPT :- This subroutine is for Ansys plot shape for display purposes. The

inputs for this subroutine are via two modes of data transfer :-

(a) Subroutine call -

 INODE = Array of node numbers.

 KYSUB = Array of first three KEYOPT values.

(b) Reading "userpt.txt" file which contains the numerical value of the

variables used in this routine.

Page 9

The output of the routine, the value of variable KSHAPE, which is the key

representing the type of shape of the element, is via the subroutine call.

(iii) USERMH :- This subroutine is to decide shape of the element in the mesh

module of the analysis. Inputs for this routine are via subroutine calls and file

reading. Input via the subroutine call is a variable KEY1, the only keyopt

available to the user element programmer for interfacing with the mesh

module. Variable values are being read from "usermh.txt" file.

Outputs are given via the subroutine call :-

 LABSH = A character label showing the allowable shapes for the element,

which can be used to determine the shape of element in the mesh module.

 MID = A logical variable which is .TRUE. if the element has midside nodes.

This may be the case, for example, if there are six or more nodes present in

a triangular element.

 WARN = A logical variable, used for LABSH = 'QDTRI ' or 'BKTET ' only,

which is true if meshes made entirely of triangles or tetrahedra are to be

discouraged by warning messages.

(iv) ST100 :- This routine is the stiffness pass for the user element; it calculates the

stiffness matrix and passes it to main program for further processing. Data is

transferred into ST100 in the following manner :-

(a) Subroutine call -

 IELNUM = Element number as being processed.

 ITYP = Type of element used by Ansys command ET, as explained earlier.

 KELIN = Vector of keys if matrices are to be computed.

 NR = Final matrix size (number of non-zero rows).

 KTIK = Dimensioned matrix size (max. = 60)

Page 10

(b) COMMON/STCOM where file STCOM contains some variables

declarations which are used in this routine.

(c) CALL GETED2 to take data from file FILE03.DAT which contains various

properties of the element.

(d) CALL PROPE1 to evaluate the material properties specified by the user.

(e) Reading the text file "stiff.txt" which contains the terms of the stiffness

matrix already been calculated by Mathematica symbolically.

Data is transferred out of ST100 using the following procedure :-

(a) Subroutine call -

 KELOUT = Vector of keys if matrices have been computed.

 ZS = Stiffness matrix.

 ZASS = Mass matrix.

 DAMP = Damping matrix.

 GSTIF = Stress stiffness matrix.

 ZSC = Force vector.

(b) CALL PUTED2 to put data into file FILE02.DAT which contains the data

regarding element matrices to be used in solution phase.

(c) Printed error messages in case of any mishaps.

(v) SR100 :- This routine is the stress pass for Ansys user element; it calculates the

stresses and displacements for each element and stores this in the postdata

Page 11

file for use in post-processing phase. Data is transferred into SR100 with the

following procedure :-

(a) Subroutine call - Various parameters such as stiffness matrix, keys for

matrix calculation indication, type of element etc. are passed into the

routine via subroutine calls.

(b) COMMON/STCOM

(c) CALL GETED2

(d) CALL STRESS1 to calculate stresses and pass the result to the routine

SR100.

(e) CALL KSHAPE3 to extrapolate stresses at node points and is used only

when the stresses are calculated using Gauss sampling points.

(f) Reading text files.

Data is transferred out of SR100 with the following procedure :-

(a) Subroutine call

(b) CALL PUTED2

(c) Printed output

(d) Postdata file

(vi) STRESS1 :- This subroutine is for calculating stresses; it is to be called by the

SR100 subroutine. The inputs and outputs of the routine are via subroutine

Page 12

calls. The [D] and [B] matrices multiplication matrix and displacement

matrix are input to this routine and stress matrix is the resultant output.

(vii) KSHAPE3 :- This routine is used only when stresses are calculated by Gauss

extrapolation method; it uses stresses on three Gauss points and extrapolates

stresses on required nodes with the help of these Gauss points stresses.

Inputs to the routine are via two modes :-

(a) Subroutine call -

 KXX and KYY = Local co-ordinates of the node at which the stresses are

to be calculated. These are calculated by Mathematica and are stored in

"xy.txt".

 GSX3, GSY3 and GTAU3 = Stress matrices at Gauss sampling points.

(b) Reading text file "shape.txt" which contains shape functions.

Outputs from the routine are the stresses at the desired node in the form of

matrix and are via subroutine call.

Creation of user element

The text files, created after conversion of Mathematica created text files to Fortran

acceptable format, are then compiled with modified Fortran routines to get an

object file for Ansys. This object file is then linked into the Ansys code by using

the INSTALL.USER file, which is supplied by Ansys supplier for this purpose.

After compilation and linking, the file "ansys.e" is obtained which contains all

information about the desired user element.

Page 13

Discussions and conclusions

The objective of this research has been to develop an interface between

Mathematica and Ansys to provide a friendly environment to the user to create

new user elements in the Ansys. This has been achieved successfully by

providing various alternatives, at the time of taking inputs from the user. This is

done by using the Mathematica front end, Notebooks.

This interface has been verified by using the interface routines to create three-

node and six-node elements. The behaviour of these elements has also been

analysed by using them to compute stresses and displacements of some arbitrary

specified problems.

As a conclusion, it can be said that interfacing between Mathematica and Ansys

has proved very useful to provide a very friendly environment to the user for

creating new user elements. It takes only a few minutes to create any new user

element using the developed interface, while it was a tedious work of several

days in the past whereas formerly the user had to change many numerical values

in several complex Fortran routines provided by the Ansys, in the Mathematica

approach, the user is not even aware about these Fortran routines.

Further areas of research work

The existing interface can be extended in various ways to get more efficient user

elements with various benefits. Some of these could be as follows :-

*) The limitations on the size of various arrays restricts the program to calculate

various parameters for elements with higher number of nodes. Another major

Page 14

limitation is to use constant size of arrays instead of adjustable arrays which

are required at many places in the routines.

*) Until now, only stiffness matrix calculation is done with the help of

Mathematica. Further extensions could be done by formulating mass matrix,

load vectors, geometric stiffness terms and thermal effects.

*) It is assumed in the existing program that each node must have the same

number of degrees of freedom. In practice, this may not be the case.

Formulations could be developed to include the cases where each node of an

element has unique set of degrees of freedom. Similarly, one more restriction

in the current routines is that each degree of freedom is represented by the

same shape function. Routines could be modified to take into account this

restriction.

Acknowledgement

The author wishes to thank Prof. J. T. Boyle for his constructive comments and to

acknowledge the use of Ansys and Mathematica software packages under

academic licences.

References

 M.J.Fagan. Finite Element Analysis - Theory and Practice. Longman Sc. & Tech.

1992.

 O.C.Zienkiewicz and R.L.Taylor. The Finite Element Method. 4th ed. vol.1.

McGraw Hill.

 Neville Ian Ash. Maths At The Touch Of A Button. Professional Engineering,

6(6). June93. pp17-18.

Page 15

 M.M.Cecchi and C.Lami. Automatic Generation Of Stiffness Matrices For Finite

Element Analysis. Int.J.for Num.Math.in Engg. vol.11. 1977. pp396-400.

 A.R.Korncoff and S.J.Fenves. Symbolic Generation of Finite Element Stiffness

Matrices. Compu. and Stru., 10. 1979. pp119-124.

 ANSYS - Engineering Analysis System - User's Manual. vol. I&II (Swanson

Analysis Systems, Inc.).

 User's Guide for Microsoft Windows - Mathematica. July 1992 (Wolfram

Research).

 Roman Maeder. Programming in Mathematica. Addison-Wesley.

 Peter P.Silvester. Computer Algebra in Finite Element Software Construction.

Int.J.for Num.Meth.in Engg. vol.3 pp169-177 (1992).

 Robert D.Cook, David S.Malkus and Michael E.Plesha. Concepts and

Applications of Finite Element Analysis. 3rd ed. John Wiley.

