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Abstract 

Classrooms equipped with wirelessly networked tablets and handhelds can engage students in 

powerful collaborative learning activities that are otherwise impractical or impossible.  However, 

the system must fulfill certain technological and pedagogical requirements such as tolerance for 

latecomers, supporting disconnected mode gracefully, robustness across dropped connections, 

promotion of both positive interdependence and individual accountability, and accommodation 

of differential rates of task completion.  Two approaches to making a Tuple Space-based 

computer architecture for connectivity into an inviting environment for the generation and 

creation of novel coordinated activities were attempted. One approach made the technological 

“bones” of the system very clear but assumed user vision of the complex goals and settings of 

real education.  The more satisfactory approach made clear how Tuple Spaces matches the 

complex goals and settings of real education, but backgrounded technical complexity.  This 

approach provides users with a system, Group Scribbles, which may inspire a wide range of uses. 
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1. Introduction 

Classrooms equipped with wirelessly networked tablets and handhelds can engage students 

in powerful collaborative learning activities that are otherwise impractical or impossible.  .  A 

networked classroom can support real-time formative assessment for teachers (Abrahamson, 

1999) as well as activities such as interactive role playing, joint concept mapping and group 

critiquing. To date, research and development in mobile learning has focused mostly on single-

purpose tools in support of particular activities. A more desirable solution would be a general-

purpose system that can play a range of roles, so that teachers and students need only learn and 

invest in one primary kind of classroom connectivity.  

The purpose of our research was to identify characteristics of computational platforms that 

not only enable the implementation of coordinated networked learning activities but inspire the 

design of activities with high pedagogical value. This goal led us to a program of research where 

we identified basic enabling requirements for platforms, created competing platforms that 

satisfied these requirements, and then evaluated the pedagogical value of the activities that 

emerged from these platforms.  

 

1.1 Requirements 

On the basis of a review of the CSCL literature, we identified the following technical 

requirements for a platform for implementing collaborative learning activities: 

• It must have latecomer tolerance, so that devices that join a session after it has started 

can fully and gracefully catch up without having lost data.  

• It must be robust across dropped connections, which will occur frequently (although the 

main concern is not guaranteed transmission with a return receipt, but rather smooth 

participation in the flow of an activity).  
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• It must also support disconnected mode gracefully, allowing students to work offline and 

later submit their work in bulk (while catching up as well).  

• The coordination layer must have a simple discovery paradigm for figuring out what 

kinds of sessions are running and which ones a user might join.  

 

We created two platforms that satisfied these basic requirements: an “API” platform based on 

the tuple spaces architecture, and a “GUI” platform, which provided a general-purpose GUI 

(Graphical User Interface) for activity design. 

 

1.2 Evaluation Criteria 

CSCL literature also led us to a list of high-value pedagogical qualities for comparing 

collaborative learning activities resulting from our platforms:  

• Positive interdependence and individual accountability. Every student should be 

individually accountable for some portion of the task, and the overall goal requires all 

students’ contributions (Johnson & Johnson, 1989). 

• Role specialization. Students should be encouraged to focus deeply on one dimension of 

teamwork at a time (Kagan, 1992). 

• Even-odd tolerance. In realistic classroom settings, applications also must address the  

possibility that  “extra” students will be assigned to a group. 

• Support for differential rates of completion. Some students work faster than others and 

can be disruptive if they have nothing to do but wait.  

 

A common theme in all the above qualities is the notion of distributed control in 

collaborative learning activities. Interdependence and accountability suggest that students ought 
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to be making decisions that affect the progression of the activity. Role specialization emphasizes 

a distribution of responsibilities. Even-odd tolerance is often characterized by the ability of 

participants themselves to adjust to nonideal student counts, without centralized intervention, 

say, by the instructor. Finally, support for differential rates is often predicated on the ability of 

individuals to set the pace of their involvement in an activity.  

In particular, we sought to measure the degree to which each platform inspired the above 

qualities. This analysis is distinct from the question of whether a platform simply enabled a 

programmer to create an activity with such qualities. 

 

2. Test Cases 

To evaluate the pedagogical value of artifacts derived from our two platforms, we needed test 

cases in the form of classes of activities to implement. Prior work (DiGiano, Yarnall, Patton, 

Roschelle, Tatar, et al., 2003) has promoted the value of identifying “whole activity” patterns in 

collaborative learning activities and using these patterns as objects to think with during design. 

We started by identifying 41 candidate whole activity patterns to serve as test cases. We then 

ranked the candidates based on criteria such as importance to science and mathematics education 

(the content focus of our efforts) and popularity among instructors and the CSCL research 

community. The top four activity patterns, described below, became the focus of our testing. 

1. Question Posing. Students propose questions for consideration relative to some topic, and 

all students are involved in reviewing, ranking, and clustering candidate questions. The 

result is a ranked set of important questions, with related items gathered in clusters.  

2. Multiple Representations. A collection of artifacts representing learning phenomena is 

divided up among students. Each student (or small group of students) is charged with 

creating one of the preset representation types for the selected artifact. 
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3. Simultaneous Annotation. Students mark up the same content at the same time and then 

compare and contrast results. 

4. Image Mapping. The instructor poses an inquiry. Students respond by placing tokens on 

an image. The instructor and students can then view and discuss the aggregation of 

tokens. 

 

3. The Tuples API Platform 

A common strategy for supporting the implementation of educational software is to add a 

pedagogically oriented layer to the generic application programming interface (API). This layer 

can add utilities for managing a collection of activities, persistence of student data, and graphical 

interface components specifically designed to support student inquiry. The layer can also be 

useful for ensuring a consistent user experience across a family of related products. We call this 

approach an “API” platform because educational activities are built on top of this layer by 

programmers who have learned to leverage the added layer to rapidly construct high-quality 

artifacts.  

To evaluate how best to support the implementation of collaborative learning activities, one 

of our two platforms took this familiar API approach. As shown in Figure 1, the lowest layer of 

this platform is the Java programming language. On top of this is a “tuple space” library from 

IBM for coordinating distributed processes and the Eclipse Project’s SWT GUI library 

(http://eclipse.org). On top of that we wrote abstract classes to simplify the most common tuple 

space operations and an activity management API, which provides, among other things, a simple 

interface for participants to select from a list of available activities. Activities implemented on 

this platform involve a server machine communicating with a network of Java-capable laptop or 

desktop student devices. 



Coordinating Networked Learning 7 

 

Abstract Tuple Classes Activity Management API  

Tuple Space Library (IBM TSpaces) GUI Library (Eclipse SWT) 

Java 

Figure 1. Layers of the API platform for implementing collaborative learning activities. 
 

To appreciate the implementation issues that confront a programmer using this API platform 

to make a collaborative learning activity, it is important to understand the tuple spaces 

architecture. Tuple spaces were the conceptual base for the programming language Linda, a 

language for coordinating parallel processes. The tuple spaces architecture is an example of the 

“Blackboard Model” of computing, in which there is one central, public data store: the 

Blackboard. Processes in the system observe this data store independently, watching for data that 

they can act on, performing actions, and updating the Blackboard accordingly. Coordination in 

such a system is not determined by a central mediator dictating when the various processes 

should act; rather, the processes themselves make the determination, and the coordination is 

emergent. This highly asynchronous model satisfied our technical requirements for robustness 

across dropped connections and graceful support of disconnected mode. Latecomer tolerance 

may also be realized insofar as the Blackboard serves as a cache of activity. 

The tuple spaces architecture extends the Blackboard metaphor with a specific data structure, 

the tuple; a shared memory structure, spaces; and an associated set of operations. Tuples are 

ordered sets of fields. Fields are data elements that have a value and, depending on 

implementation, may also have types and/or names. Spaces are simply “bags”—sets that can 

contain duplicate elements—that contain tuples. Three core operations can be performed on a 

space: write, read, and take. Write puts a tuple into a space, read reads the value of a tuple in a 



Coordinating Networked Learning 8 

space, and take removes a tuple from a space. Rather than using a query language to find tuples 

for read and write operations, the tuple spaces architecture relies on pattern matching for 

retrieval. A “template” tuple is provided as an argument in read and write operations, and tuples 

matching that template are returned. This highly flexible data structure and simple query 

mechanism are relatively easy to learn, compared with alternatives such as database tables and 

the Structured Query Language. 

 

3.1 Experience with the API Platform 

Project team members were able to create instantiations of all four of our test case whole 

activity patterns in-house: 

• Question Posing. This involved writing a custom GUI for capturing questions, writing the 

questions to a tuple space, and ranking them. A specialization of the platform’s abstract 

tuple class was created to store questions. We used tuple space read operations to collect 

all questions on a particular topic. This occupied a programmer’s time for several weeks. 

• Multiple Representations. The existing ChemSense drawing tool from SRI 

(http://chemsense.org) was repurposed with minimal effort to read and write diagrams 

from and to a specialization of the abstract tuple class. We also needed to write a 

specialized GUI widget for writing and taking names of molecules in a tuple space. 

Identifying which molecules had what representations required invoking the read 

operation on the space. Two programmers worked together over several weeks. 

• Simultaneous Annotation. Students mark relevant lines in a document and share their 

marks. This involved creating a custom document viewer with a check box beside each 

line of text. A student’s particular subset of selected lines were stored in a specialization 

of the abstract tuple class. Aggregating student selections required read operations on the 
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appropriate tuple space. Additional GUI code for browsing and viewing the aggregated 

selections was created. A bar graph to the right of each line indicates the number of 

students who highlighted the particular line, and the font size of more popular lines is 

also increased to indicate frequency of selection. One programmer worked over several 

weeks. 

• Image Mapping. We created a custom GUI that could display an arbitrary image file and 

interpret clicks as token placements. We needed to create a specialization of the abstract 

tuple class to capture a student’s token positions. Token placement involved simply 

writing this tuple to a particular tuple space. Aggregating tokens involved a tuple space 

read operation that matched on a particular question posed by the instructor. The GUI 

required further work to display aggregated tokens with or without attribution. One 

programmer worked over several weeks. 

 

At least two high-value pedagogical qualities appear in three of these four activities (Table 

1). Most support positive interdependence and individual accountability; role specialization was 

not explored. 

 

Table 1. 

Evaluation of Activities Generated by In-House Programmers Using the API and GUI Platforms 

 

 

 

Activity pattern 

Positive 

interdependence and 

individual 

accountability 

 

 

Role 

specialization 

 

 

 

Even-odd tolerance 

 

Support for 

differential rates of 

completion 

Question Posing API & GUI: Students  API & GUI: Not API & GUI: Faster 
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accountable for 

creating their own 

questions; ranking 

depends on peer 

contributions 

affected by student 

count  

students can 

always add more 

questions while 

waiting for slower 

ones 

Multiple 

Representations 

API: Students 

accountable for 

selecting molecules 

GUI: Students 

accountable for 

selecting equations 

API & GUI: Task 

completion depends 

on aggregation of 

everyone’s 

representations 

API & GUI: 

Certain students 

can be 

responsible for 

particular 

representation 

types 

API & GUI: If 

student count is not 

evenly divisible by 

representation 

count, it’s OK if a 

few do an extra 

round  

API & GUI: Faster 

students can render 

more 

representations 

while waiting for 

slower ones  

Simultaneous 

Annotation 

API: Students 

contribute to an 

annotation tapestry 

GUI: Students 

contribute to an 

overall class rating 

for items (based on 

number of stars) 

 API & GUI: Not 

affected by student 

count 

API: Faster 

students can do a 

closer review in a 

follow-up pass 

while waiting for 

slower ones 

Image Mapping API: Students  API & GUI: Not API & GUI: Faster 
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contribute to an 

emergent pattern of 

token placements 

GUI: Students 

contribute to an 

emergent class 

consensus on Homo 

sapiens origin 

affected by student 

count 

students likely to 

influence token 

placement by 

slower students 

 

In addition to implementing activities ourselves, we invited college-level student 

programmers to create collaborative learning activities using the programmer-centric platform. 

This was done in the context of a 3-week summer workshop at SRI and in one design course 

during the school year at Virginia Tech. Through direct feedback from students and comments 

from instructors, we learned that in the first year of instruction these students had considerable 

difficulty implementing new activities. Some of these difficulties were technical; however, more 

profoundly, the students had difficulty envisioning the desired activity and the relationships 

among the activity, the pedagogy, and the design of the system. By arriving at the metaphor of 

playground games for the activities, the professor was able to convey the relevant values to the 

students, who in short order successfully built seven working prototypes. As important as that 

development work was, it became clear that this approach to programming would not lead to 

spontaneous, self-motivated, untrammeled development (Lin et al., 2006).  

 

3.2 Reflections on the API Platform 

We found that applications, such as ChemSense, that were already implemented on other 

architectures with limited collaborative functionality could be quickly reimplemented by in-
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house programmers and “collaboratized” in the tuple spaces framework. For these programmers, 

our platform provided a powerful and comparatively simple path to adding collaborative 

functionality to existing, well-understood, applications. 

Results suggest that students needed more than simply an improved API. In particular, 

success was achieved only after significant in-class discussion, debate, and coaching around the 

nature, possibility, and desirability of highly distributed control.  

 

4. The Group Scribbles GUI Platform 

In contrast to the first platform, which was intended for programmers as implementers of 

collaborative activities, our second platform, “Group Scribbles GUI,” is intended to be used by 

instructors or non-technical curriculum developers. As illustrated in Figure 2, the GUI platform 

shares the same foundation of Java and tuples as the API platform. However, the GUI platform 

adds the Group Scribbles layer, a general-purpose graphical interface for the implementation and 

execution of collaborative learning activities. It also makes the the lower-level SWT GUI library 

is inaccessible to activity implementers. Group Scribbles-based activities involve a server 

machine communicating with a network of student devices, ideally Tablet PCs with a stylus 

interface (although we also support Pocket PC handhelds and mouse-based laptops or desktops). 

Group Scribbles offers implementers, instructors and students what we believe is a powerful 

metaphor for thinking about and realizing collaborative learning activities. This metaphor is 

based on common physical artifacts from the classroom or office: adhesive notes, bulletin 

boards, whiteboards, stickers, pens, and markers. The fundamental unit of expression in Group 

Scribbles is the Scribble Sheet, a small square of virtual paper just large enough to express a 

single thought or concept, whether via a quick sketch or a few words jotted down. Scribble 
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Sheets can be posted to Public Boards, where many sheets can be arranged to express ensemble 

ideas, such as groupings, chronologies, or hierarchies. 

 

Group Scribbles GUI 

Abstract Tuple Classes Activity Management API  

Tuple Space Library (IBM TSpaces) GUI Library (Eclipse SWT) 

Java 

Figure 2. Layers of the GUI platform for implementing collaborative learning activities. 
 

To understand how one implements a collaborative learning activity in Group Scribbles, it is 

important to understand what it is like to participate. As shown in Figure 3, each participant has a 

Private Board on which to create and arrange Scribble Sheets. A given classroom instance of 

Group Scribbles will have one or more named Public Boards accessible to all users. A typical 

client view is subdivided to show the user’s Private Board in one region and a Public Board in 

another. 
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Figure 3. The Group Scribbles GUI with a Private Board below and a Public Board above. 

 

On the Private Board, a user finds a Scribble Pad, an endless source of fresh Scribble Sheets. 

Users can pull sheets off the pad and write (or type) on them to generate new content. Figure 3 

depicts a fully zoomed-in view of the Private Board. Users can zoom out several levels to help 

arrange and maintain their Scribbles. Also available on the Private Board are Scribble Labels—

essentially smaller Scribble Sheets useful for annotation. When users are ready to publish a 

Scribble Sheet, they simply drag it onto the Public Board. The new sheet then appears on the 

Public Board of all participants; the frequency of screen updates depends on user configuration. 
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Figure 4. Ranking Task activity with an introductory physics class. 

 

On a Public Board, any user is free to reposition any Scribble Sheet so that, while individual 

thoughts are expressed within individual sheets, collective ideas are expressed over entire boards. 

In this way, Scribbles can be sorted, grouped, or otherwise arranged to express interdependent 

meaning. Scribble Sheets can also be taken from the Public Board (and later returned) and 

brought onto a user’s Private Board (e.g., for activities calling for exchange or to take a token 

representing a turn in a sequence).  
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The object of the activity depicted in Figure 4 (Chaudhury et. al., 2002; O’Kuma et. al., 

2000) was for students to determine the strength of the electrostatic force at the point P due to 

seven different arrangements of charges. Students had to solve each scenario, recognize 

equivalence of certain pairs of scenarios and arrange the sheets from left to right based on the 

strength of the net force.  

Because we built the GUI platform on top of the API platform, it shares all the same 

technical qualifications of the latter: robustness across dropped connections and graceful support 

of disconnected mode. Exactly how we implemented Group Scribbles on the API platform is 

beyond scope of this paper, but it is worth noting that there is a close correspondence between 

Group Scribbles GUI objects and tuples. For example, when a Scribble Sheet is dropped onto the 

Public Board, a tuple describing the sheet is written to the tuple spaces server. Other clients with 

the same Public Board in view will receive notification of the newly written Scribble Sheet tuple. 

When they read this tuple, the new sheet will be rendered in their view of the Public Board.  

The process of implementing a new Group Scribbles activity is not much different from the 

end-user experience of participating in an activity. It involves placing sheets with seed content 

on a Public Board and perhaps creating a background image that can contextualize the activity. 

The board configuration is automatically saved indefinitely under an activity name on the tuple 

server, so that at any time (a day, a week, or a year later) the instructor can ask students to open 

the “pre-baked” Group Scribbles GUI through the system’s activity manager. The idea that the 

instructor asks students to perform such a task on their Group Scribbles client is characteristic of 

activities built on the GUI platform: students are often responsible for pulling content in a 

distributed fashion because there are no built-in push mechanisms in Group Scribbles (beyond 
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Public Board sharing). We will show below how this reliance on “social mediation” actually has 

pedagogical value. 

 

4.1 Experience with the GUI Platform 

As detailed below, we were able to create instantiations of all four of our test case whole 

activity patterns in-house: 

• Question Posing. The instructor relies on social mediation to get students to scribble a 

question on a sheet and submit it to the Public Board for review. Students rank questions 

by jointly arranging sheets on the Public Board, say, from left to right. By default, Group 

Scribbles with its physical metaphor prevents more than one student from moving a sheet 

simultaneously. No “pre-baked” content is necessary but an optional background image 

for the Public Board can suggest bins for organizing questions into groups.  

• Multiple Representations. We found that a matrix background image (Figure 5) is all that 

is needed to organize a simple activity in which students render multiple representations 

of a set of functions, such as an equation, a graph, and a tabular depiction of each. To 

start the activity, the instructor populates the matrix with a set of tokens. Any student can 

take a token and replace it with a rendering corresponding to that cell—e.g., a graph of a 

periodic function. 

• Simultaneous Annotation. We currently have limited experience with this whole activity 

pattern. Given the size restrictions of sheets, the classic example of text markup is not 

easily implemented. However, we have successfully conducted activities in which 

students use Sheet Labels to attach star ratings to content on the Public Board. 

• Image Mapping. Again, we found that a background image is all that is needed to 

implement a simple mapping activity. For example, the instructor loads an image of the 
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globe onto the background of the Public Board and then uses social mediation to get 

students to place a Sheet Label on the region associated with the emergence of Homo 

sapiens around 200,000 B.C. 

 

 
 

Figure 5. Matrix background image. 

 

To gain more objective feedback on the GUI platform, we tested Group Scribbles in an 

informal higher education setting—with undergraduate research assistants enrolled in a NASA 

summer program. Activities were designed for short, 10- to 15-minute interactions, primarily to 

test the various hardware platforms being investigated for wider classroom use. Question Posing 

and Image Mapping activities were implemented with a view to whole-class aggregation and 

discussion. Although no formal assessment of learning based on these sessions was conducted, 

the students were able to learn to use the basic features of Group Scribbles within a few minutes 

and successfully participate in instructor-led activities. An emergent feature of the use of the 

system was back-channel “chats” via Scribble Sheets: even though sheets were being placed on 
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the Public Board for everyone to see, the content was clearly targeted at specific individuals. In 

most cases, these individuals had existing social relationships, similar to classic note-passing in 

secondary classrooms. Formal classroom testing with students enrolled in credit-bearing courses 

is currently being conducted at a partner university. Preliminary feedback reinforces the view 

that GS is an easy to learn system and Figure 4. is a direct outcome of a successful learning 

activity conducted by one of the authors in an introductory physics class for non-science majors.  

 

4.2 Reflections on the GUI Platform 

At least two of the desired pedagogical qualities appeared in two of the four activities. As 

with the API platform, the most prevalent quality was “positive interdependence and individual 

accountability”; the least prevalent was role specialization. 

However, none of the experiences in implementing collaborative learning activities with the 

GUI platform required programming. With no programmatic control over the design of activity, 

one might expect that there would be limited opportunity to ensure interactions with high 

pedagogical value. Yet, our evaluation of the activities showed the presence of almost all the 

desirable qualities of the much more customized activities built on the API platform. We 

attribute this success to design features of the Group Scribbles GUI that naturally affords high-

quality collaborative activities: 

• (Re)arrangable. Scribble Sheets can be positioned and repositioned to convey meaning. 

This feature allows students to jointly negotiate the relationship between artifacts, such as 

the ranking of questions in the Question Posing activity by simple drag operations. The 

result is an environment where any student’s response can be subject to challenge, thus 

emphasizing interdependence. 
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• Unique. As simulated physical artifacts, Scribble Sheets cannot be in more than one place 

at a time. This attribute naturally supports activities where certain artifacts are 

manipulated sequentially, such as a particular equation in the function representations 

activity that gets rendered in one form and then another. Ultimately, this feature 

simplifies the coordination of artifacts when students are playing specialized roles or 

trying to avoid duplicate work.  

• Metainformatic. As described in the simultaneous annotation and image mapping 

activities, Scribble Sheets and Labels can mark up images or other Scribble Sheets. This 

feature also contributes to a sense of positive interdependence. 

• Modeless. Unlike with products of the API platform, our experience is that Group 

Scribbles (perhaps because of its lack of programmability!) encourages activities in 

which students are free to choose from a wide variety of operations rather than being 

constrained to a particular subactivity. The ability for students to be working 

simultaneously on different aspects of an activity or for one student to use surplus time to 

revisit an aspect helps support differential rates of completion and even-odd tolerance.  

 

With our GUI platform, the activity implementer sacrifices the possibility of a user 

experience that is highly tailored to the task at hand. For example, it is not currently feasible to 

add scaffolding for students to generate valid ball and stick diagrams in chemistry. On the other 

hand, we have been pleasantly surprised by the wide variety of activities we can support with 

reasonable fidelity, which we attribute to two other Group Scribbles qualities: 

• Representationally neutral. Students can use digital ink on Scribble Sheets to easily 

capture diagrams, drawings, mathematical and scientific notation, and text. Different 

sizes afford different kinds of activities. 
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• Background imagery. Our experience is that a simple background image, such as of the 

globe or a Cartesian coordinate system, can provide critical pedagogical context without 

requiring programming.  

 

Finally, it is worth noting that instructors and students may actually benefit from the fact that 

Group Scribbles-based activities have a common—albeit somewhat generic—look and feel. 

Anecdotally, we hear complaints from instructors who must juggle (and subject their students to 

juggling) many different classroom tools. The flexibility of the Group Scribbles GUI for 

collaborative learning activities challenges the need for such disparate applications and hints at a 

future when instructors and students may need to invest in only a small number of core tools that 

they can grow with over time. 

 

5. Conclusions 

Apple’s introduction of HyperCard in the 1980s ushered in a wave of inventive and useful 

educational applications, all created by teachers, students, and other nonprogrammers. Until now, 

technology-enhanced classroom collaboration and coordination activities have been, like 

educational applications in pre-HyperCard days, the sole domain of dedicated programming 

teams, greatly limiting the scope of experimentation and creative effort. Extending the analogy, it 

may be useful to consider what could be learned from the HyperCard experience that might be 

applicable to the programmer cognition issue around distributed control: were similar issues 

neatly sidestepped by HyperCard through appealing directly to end users as programmers? We 

argue that HyperCard not only provided programming tools to teachers but sidestepped a 

programmer cognition issue relevant at the time: the conceptual shift to user-event-driven 

programming. 
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Though the graphical user interface, and, indeed, hypertext were introduced by SRI 

researchers in 1968 (Engelbart, 1968), until the time of the introduction of HyperCard, the 

dominant conception of programming was highly shaped by the terminal interface (DOS 

command line, telnet, etc.) and an interaction style dominated by computer control in both 

outputs and inputs (“input statements” are a dead giveaway of this mind-set). In that style, the 

computer program determines what information is demanded (word used advisedly) of the user 

and when input is allowed. Programs were normally structured as a branching tree of requests for 

specific inputs and displays of resulting outputs. The very notion seemed ridiculous that one 

could create novel and useful applications with only  

• buttons to push; 

• text fields to type into or click on; 

• screens (“cards”) containing buttons, graphics, and text fields; and 

• the capacity to set up automatic “links” from one card to another (Neuburg, 1994). 

But the aspect uniting these elements, and perhaps the most significant payload, was a 

programming paradigm that situated control primarily in the hands of the user.  

Though it is clearly too early to predict with confidence, there is reason to believe that Group 

Scribbles, with its small set of generic features and emphasis on graphical (and hence machine 

uninterpretable) content, all united by a distributed control paradigm, could pave the way for a 

broader understanding of the benefits and challenges of programming in this model.  
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	Classrooms equipped with wirelessly networked tablets and handhelds can engage students in powerful collaborative learning activities that are otherwise impractical or impossible.  However, the system must fulfill certain technological and pedagogical requirements such as tolerance for latecomers, supporting disconnected mode gracefully, robustness across dropped connections, promotion of both positive interdependence and individual accountability, and accommodation of differential rates of task completion.  Two approaches to making a Tuple Space-based computer architecture for connectivity into an inviting environment for the generation and creation of novel coordinated activities were attempted. One approach made the technological “bones” of the system very clear but assumed user vision of the complex goals and settings of real education.  The more satisfactory approach made clear how Tuple Spaces matches the complex goals and settings of real education, but backgrounded technical complexity.  This approach provides users with a system, Group Scribbles, which may inspire a wide range of uses. 1. Introduction
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	But the aspect uniting these elements, and perhaps the most significant payload, was a programming paradigm that situated control primarily in the hands of the user. 
	Though it is clearly too early to predict with confidence, there is reason to believe that Group Scribbles, with its small set of generic features and emphasis on graphical (and hence machine uninterpretable) content, all united by a distributed control paradigm, could pave the way for a broader understanding of the benefits and challenges of programming in this model. 
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