

Letter report 601716011/2008 B.J.W.G. Mensink

Environmental risk limits for pirimiphos-methyl

RIVM Letter report 601716011/2008

Environmental risk limits for pirimiphos-methyl

B.J.W.G. Mensink

Contact: Els Smit Expertise Centre for Substances ce.smit@rivm.nl

This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Directorate for Soil, Water and Rural Area (BWL), within the framework of the project 'Standard setting for other relevant substances within the WFD'.

© RIVM 2008

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

Rapport in het kort

Environmental risk limits for pirimiphos-methyl

Dit rapport geeft milieurisicogrenzen voor het insecticide pirimifos-methyl in water. Milieurisicogrenzen zijn de technisch-wetenschappelijke advieswaarden voor de uiteindelijke milieukwaliteitsnormen in Nederland. De milieurisicogrenzen zijn afgeleid volgens de methodiek die is voorgeschreven in de Europese Kaderrichtlijn Water. Hierbij is gebruikgemaakt van de beoordeling in het kader van de Europese toelating van gewasbeschermingsmiddelen (Richtlijn 91/414/EEG), aangevuld met gegevens uit de openbare literatuur.

Contents

1	Introduction	7
1.1	Background and scope of the report	7
1.2	Status of the results	7
2	Methods	8
2.1	Data collection	8
2.2	Data evaluation and selection	8
2.3 2.3.1	Derivation of ERLs Drinking water	9 9
3	Derivation of environmental risk limits for pirimiphos-methyl	11
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.3.1 3.3.2	Substance identification, physico-chemical properties, fate and human toxicology Identity Physico-chemical properties Behaviour in the environment Bioconcentration and biomagnification Human toxicological threshold limits and carcinogenicity Trigger values Toxicity data and derivation of ERLs for water MPC _{eco, water} and MPC _{eco, marine} MPC _{sp, water} and MPC _{sp, marine}	11 11 12 12 13 13 13 13 14 14 15
3.3.3	MPC _{hh} food, water	15
3.3.4 3.3.5 3.3.6 3.3.7	MPC _{dw, water} Selection of the MPC _{water} and MPC _{marine} MAC _{eco} SRC _{eco}	15 15 16 16
3.4	Toxicity data and derivation of ERLs for sediment	16
4	Conclusions	17
Referenc	es	18
Appendi	x 1. Detailed aquatic toxicity data	19
Appendi	x 2. Detailed sediment toxicity data	23
Appendi	x 3. Detailed bird and mammal toxicity data	24
Appendi	x 4. Description of mesocosm studies	25
Appendi	x 5. References used in the appendices	27

1 Introduction

1.1 Background and scope of the report

In this report, environmental risk limits (ERLs) for surface water are derived for the insecticide pirimiphos-methyl. The derivation is performed within the framework of the project 'Standard setting for other relevant substances within the WFD', which is closely related to the project 'International and national environmental quality standards for substances in the Netherlands' (INS). Pirimiphos-methyl is part of a series of 25 pesticides that appeared to have a high environmental impact in the evaluation of the policy document on sustainable crop protection ('Tussenevaluatie van de nota Duurzame Gewasbescherming'; MNP, 2006) or were selected by the Water Boards ('Unie van Waterschappen'; project 'Schone Bronnen'; http://www.schonebronnen.nl/).

The following ERLs are considered:

- Maximum Permissible Concentration (MPC) the concentration protecting aquatic ecosystems and humans from effects due to long-term exposure
- Maximum Acceptable Concentration (MAC_{eco}) the concentration protecting aquatic ecosystems from effects due to short-term exposure or concentration peaks.
- Serious Risk Concentration (SRC_{eco}) the concentration at which possibly serious ecotoxicological effects are to be expected.

More specific, the following ERLs can be derived depending on the availability of data and characteristics of the compound:

MPC _{eco, water} MPC _{sp, water} MPC _{hh} food, water MPC _{dw, water}	MPC for freshwater based on ecotoxicological data (direct exposure) MPC for freshwater based on secondary poisoning MPC for fresh and surface water based on human consumption of fishery products MPC for surface waters intended for the abstraction of drinking water
MAC _{eco, water}	MAC for freshwater based on ecotoxicological data (direct exposure)
SRC _{eco, water}	SRC for freshwater based on ecotoxicological data (direct exposure)
MPC _{eco, marine} MPC _{sp, marine}	MPC for marine water based on ecotoxicological data (direct exposure) MPC for marine water based on secondary poisoning
MAC _{eco, marine}	MAC for marine water based on ecotoxicological data (direct exposure)

1.2 Status of the results

The results presented in this report have been discussed by the members of the scientific advisory group for the INS-project (WK-INS). It should be noted that the Environmental Risk Limits (ERLs) in this report are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs should thus be considered as proposed values that do not have any official status.

2 Methods

The methodology for the derivation of ERLs is described in detail by Van Vlaardingen and Verbruggen (2007), further referred to as the 'INS-Guidance'. This guidance is in accordance with the guidance of the Fraunhofer Institute (FHI; Lepper, 2005).

The process of ERL-derivation contains the following steps: data collection, data evaluation and selection, and derivation of the ERLs on the basis of the selected data.

2.1 Data collection

In accordance with the WFD, data of existing evaluations were used as a starting point. For pirimiphosmethyl, the evaluation report prepared within the framework of EU Directive 91/414/EC (Draft Assessment Report) was consulted (EC, 2006; further referred to as DAR). An on-line literature search was performed on TOXLINE (literature from 1985 to 2001) and Current contents (literature from 1997 to 2007). In addition to this, all potentially relevant references in the RIVM e-tox base and EPA's ECOTOX database were checked.

2.2 Data evaluation and selection

For substance identification, physico-chemical properties and environmental behaviour, information from the List of Endpoints of the DAR was used. When needed, additional information was included according to the methods as described in Section 2.1 of the INS-Guidance. Information on human toxicological threshold limits and classification was also primarily taken from the DAR.

Ecotoxicity studies (including bird and mammal studies) were screened for relevant endpoints (i.e. those endpoints that have consequences at the population level of the test species). All ecotoxicity and bioaccumulation tests were then thoroughly evaluated with respect to the validity (scientific reliability) of the study. A detailed description of the evaluation procedure is given in the INS-Guidance (see Section 2.2.2 and 2.3.2). In short, the following reliability indices were assigned:

 Ri 1: Reliable without restriction
 'Studies or data ... generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to GLP) or in which the test parameters documented are based on a specific (national) testing guideline ... or in which all parameters described are closely related/comparable to a guideline method.'

- Ri 2: Reliable with restrictions

'Studies or data ... (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.'

- Ri 3: Not reliable

'Studies or data ... in which there are interferences between the measuring system and the test substance or in which organisms/test systems were used which are not relevant in relation to the exposure (e.g., unphysiologic pathways of application) or which were carried out or generated

according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert judgment.'

- Ri 4: Not assignable

'Studies or data ... which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature (books, reviews, etc.).'

All available studies were summarised in data-tables, that are included as Annexes to this report. These tables contain information on species characteristics, test conditions and endpoints. Explanatory notes are included with respect to the assignment of the reliability indices.

With respect to the DAR, it was chosen not to re-evaluate the underlying studies. In principle, the endpoints that were accepted in the DAR were also accepted for ERL-derivation with Ri 2, except in cases where the reported information was too poor to decide on the reliability or when there was reasonable doubt on the validity of the tests. This applies especially to DARs prepared in the early 1990s, which do not always meet the current standards of evaluation and reporting.

In some cases, the characteristics of a compound (i.e. fast hydrolysis, strong sorption, low water solubility) put special demands on the way toxicity tests are performed. This implies that in some cases endpoints were not considered reliable, although the test was performed and documented according to accepted guidelines. If specific choices were made for assigning reliability indices, these are outlined in Section 3.3 of this report.

Endpoints with Ri 1 or 2 are accepted as valid, but this does not automatically mean that the endpoint is selected for the derivation of ERLs. The validity scores are assigned on the basis of scientific reliability, but valid endpoints may not be relevant for the purpose of ERL-derivation (e.g. due to inappropriate exposure times or test conditions that are not relevant for the Dutch situation). Endpoints from tests with formulated products were not selected if the results (expressed on the basis of the active substance) differed by more than a factor of 3 from the results obtained with the active substance itself.

After data collection and validation, toxicity data were combined into an aggregated data table with one effect value per species according to Section 2.2.6 of the INS-Guidance. When for a species several effect data were available, the geometric mean of multiple values for the same endpoint was calculated where possible. Subsequently, when several endpoints were available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

2.3 Derivation of ERLs

For a detailed description of the procedure for derivation of the ERLs, reference is made to the INS-Guidance. With respect to the selection of the final MPC_{water} and the derivation of the $MAC_{eco, marine}$, some additional comments should be made:

2.3.1 Drinking water

The INS-Guidance includes the MPC for surface waters intended for the abstraction of drinking water (MPC_{dw, water}) as one of the MPCs from which the lowest value should be selected as the general MPC_{water} (see INS-Guidance, Section 3.1.6 and 3.1.7). According to the proposal for the daughter directive Priority Substances, however, the derivation of the AA-EQS (= MPC) should be based on direct exposure, secondary poisoning, and human exposure due to the consumption of fish. Drinking water was not included in the proposal and is thus not guiding for the general MPC value. The exact way of implementation of the MPC_{dw, water} in the Netherlands is at present under discussion within the

framework of the "AMvB Kwaliteitseisen en Monitoring Water". No policy decision has been taken yet, and the $MPC_{dw, water}$ is therefore presented as a separate value in this report. The MPC_{water} , is thus derived considering the individual MPCs based on direct exposure ($MPC_{eco, water}$), secondary poisoning ($MPC_{sp, water}$) or human consumption of fishery products ($MPC_{hh food, water}$); derivation of the latter two is dependent on the characteristics of the compound.

Related to this, is the inclusion of water treatment for the derivation of the MPC_{dw, water}. According to the INS-Guidance (see Section 3.1.7), a substance specific removal efficiency related to simple water treatment should be derived in case the MPC_{dw, water} is lower than the other MPCs. For pesticides, there is no agreement as yet on how the removal fraction should be calculated, and water treatment is therefore not taken into account. In case no A1 value is set in Directive 75/440/EEC, the MPC_{dw, water} is set to the general Drinking Water Standard of 0.1 μ g/L for organic pesticides as specified in Directive 98/83/EC.

3 Derivation of environmental risk limits for pirimiphos-methyl

- 3.1 Substance identification, physico-chemical properties, fate and human toxicology
- 3.1.1 Identity

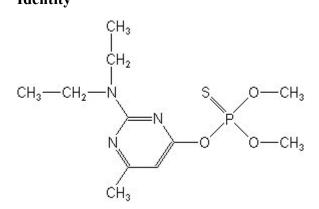


Figure 1. Structural formula of pirimiphos-methyl.

Parameter	Name or number	Source
Common/trivial/other name	pirimiphos-methyl	EC, 2006
Chemical name	O-2-diethylamino-6-methylpyrimidin-4-yl	EC, 2006
	O,O-dimethyl phosphorothioate	
CAS number	29232-93-7	EC, 2006
EC number	249-528-5	EC, 2006
SMILES code	S=P(OC)(OC)Oc1nc(nc(c1)C)N(CC)CC	
Use class	insecticide	EC, 2006
Mode of action	cholinesterase inhibitor with fumigant,	EC, 2006
	contact and stomach action	
Authorised in NL	yes	
Annex 1 listing	yes	

3.1.2 Physico-chemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	305.4		EC, 2006
Water solubility	[g/L]	0.010	рН 5	EC, 2006
		0.011	рН 7	EC, 2006
		0.097	pH 9	EC, 2006
p <i>K</i> a	[-]	4.3	at 20 °C	EC, 2006
$\log K_{\rm OW}$	[-]	4.2	20 °C; pH 5 and 7; unionised.	EC, 2006
		3.9	20 °C; pH 4	EC, 2006
		3.4	ClogP	BioByte, 2006
$\log K_{\rm OC}$	[-]	2.14	EpiWin	US EPA, 2007
		2.5	Koc 343 L/kg; soil column	Van de
			experiments; value used for	Plassche and
			leaching calculations by RIVM	Linders, 1990
		3.0	K _{oc} 1100 L/kg; value used in PSD evaluation	FOOTPRINT
		3.0	QSAR for pesticides with Log	EC, 2003
			K _{ow} 4.2	
Vapour pressure	[Pa]	2.0×10^{-3}	at 20 °C	EC, 2006
Melting point	[°C]	21		EC, 2006
Boiling point	[°C]	not applica	ble	EC, 2006
Henry's law constant	[Pa.m ³ /mol]	6.1×10 ⁻²	at 20 °C	EC, 2006

Table 2. Physico-chemical properties of pirimiphos-methyl.

3.1.3 Behaviour in the environment

Table 3. Selected environmental properties of pirimiphos-methyl.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life (DT50)	[d]	2	pH 4, 25 °C	EC, 2006
		7	рН 5, 25 °С	
		117	рН 7, 25 °С	
		75	рН 9, 25 °С	
Photolysis half-life (DT50)	[h]	0.46	pH 5, 25 °C	EC, 2006
		0.47	рН 7, 25°С	
Readily biodegradable		not available	-	EC, 2006
Other DT50/DT90 values		not available		EC, 2006
Relevant metabolites	two de	gradation comp	ounds (hydrolysis): O-2-diethyl	EC, 2006
	amino	-6-methylpyrimi	din-4-yl O-methyl	
	phospł	norothioate (<10	% at pH 4-7; 13% at pH 9) and 2-	
	diethy	lamino-6-methy	lpyrimidin-4-ol (>90% at pH 4-5;	
	7.7-12	% at pH 7-9)	- · · ·	

3.1.4 Bioconcentration and biomagnification

There are no experimental data available for pirimiphos-methyl. Therefore the a BCF (fish) of 741 L/kg has been based on log K_{OW} of 4.2 (see Table 4).

Table 4. Overview of bio	baccumulation data	for pirimi	phos-methyl.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	741	calculated with log Kow 4.2	Veith et al., 1979
BMF	[kg/kg]	1	Default value for log $K_{ow} < 4.5$	

3.1.5 Human toxicological threshold limits and carcinogenicity

Pirimiphos-methyl is assigned R22 (EC, 2006; ESIS <u>http://ecb.jrc.it/esis/</u>; date of search 4 April 2008). The ADI is 0.004 mg/kg_{bw}[/]d (EC, 2006), based on 2-year rat and dog studies (overall safety factor 100, supported by human data).

3.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\text{Log } K_{\text{p, susp-water}}$	2.0	[-]	$K_{\rm OC} imes f_{\rm OC, susp}^{a}$	<i>K</i> _{OC} : 3.1.2
BCF	741	[L/kg]	$\log BCF_{fish} = 0.85 \times \log K_{OW}$ - 0.70	3.1.4
BMF	1	[kg/kg]		3.1.4
$\log K_{\rm OW}$	4.2	[-]		3.1.2
R-phrases	R22, R50/53			3.1.5
A1 value	1.0	[µg/L]	Total pesticides	
DW Standard	0.1	$[\mu g/L]$	General value for organic pesticides	

Table 5. pirimiphos-methyl: collected properties for comparison to MPC triggers.

 ${}^{a}f_{OC,susp} = 0.1 \text{ kg}_{OC}/\text{kg}_{solid}$ (EC, 2003).

- o pirimiphos-methyl has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.
- pirimiphos-methyl has a log $K_{p, susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- o pirimiphos-methyl has a log $K_{ow} \ge 3$; assessment of secondary poisoning is triggered.
- pirimiphos-methyl has a log $K_{ow} \ge 3$ and is assigned R22. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{hh food, water}) should be derived.
- for pirimiphos-methyl, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.3 Toxicity data and derivation of ERLs for water

3.3.1 MPC_{eco, water} and MPC_{eco, marine}

An overview of the selected freshwater toxicity data for pirimiphos-methyl is given in Table 6. There are no reliable marine toxicity data. Detailed toxicity data for pirimiphos-methyl are tabulated in Appendix 1.

In view of the rapid photolysis (DT_{50} 0.47 h at pH 7), tests without analytical verification of test concentrations were not considered reliable and assigned Ri 3.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
crustacea		crustacea	
Daphnia magna	0.05	Daphnia magna	0.16 ^b
		Gammarus pulex	1.5
		fish	
		Cyprinus carpio	760
		Oncorhynchus mykiss	354 ^c

Table 6. Pirimiphos-methyl: selected freshwater toxicity data for ERL derivation

^a For detailed information see Appendix 1. Bold values are used for ERL derivation.

^b Geometric mean of 0.21, 0.05, 0.25, 0.15 and 0.27 µg/L, parameter immobilisation.

^c Geometric mean of 410, 270, and 400 μ g/L.

3.3.1.1 Treatment of fresh- and saltwater toxicity data

ERLs for freshwater and marine waters should be derived separately. For pesticides, data can only be combined if it is possible to determine with high probability that marine organisms are not more sensitive than freshwater organisms (Lepper, 2005). For pirimiphos-methyl, no marine toxicity data are available and ERLs for the marine compartment cannot be derived.

3.3.1.2 Mesocosm and field studies

Mesocosms or field studies useful for ERL derivation are not available. An outdoor experiment with some data on chironomid populations in a pond/sediment system is summarised in Appendix 2. This study indicated no recovery of natural chironomid species until at least 57 days after a single application of 50 μ g/L.

3.3.1.3 Derivation of MPC_{eco, water} and MPC_{eco, marine}

As reliable data on algae are missing, the base set is not complete. However, in view of pirimiphosmethyl being an insecticide with a specific mode of action (cholinesterase inhibition), it is considered justified to assume that algae will not be the most sensitive species group. Therefore, the data are treated as if the base set is complete.

One NOEC is available for *Daphnia magna*. An assessment factor of 100 applies to the situation where one NOEC is available. Although it can be argued that algae will not be sensitive, lowering the assessment factor to 50 is not considered justified because insects are not present in the dataset. It can thus not be concluded with certainty that the value of *D. magna* represents the most sensitive species group. Applying an assessment factor of 100 to the NOEC of 0.05 μ g/L results in an MPC_{eco, water} of 0.0005 μ g/L = 0.5 ng/L.

An MPC_{marine} cannot be derived because no marine data are available.

3.3.2 MPC_{sp, water} and MPC_{sp, marine}

In view of the BCF $\geq 100 \text{ L/kg}$, derivation of the MPC_{sp, water} and MPC_{sp, marine} is triggered. The available toxicity data for mammals and birds are presented in Appendix 3. In Table 7, the MPC_{oral} is derived applying the appropriate assessment factors to the data.

Species	Exposure time	NOAEC	AForal	MPCoral
		[mg/kg _{diet}]		[mg/kg _{diet}]
bobwhite quail	5 d	304	3000	0.10
rat	9 d	300	3000	0.10
rat	91 d	8	90	0.09
rat	2-gen	40	30	1.33
mouse	78 w	50	30	1.67
rabbit	8 d	800	3000	0.267
rabbit	8 d	1600	3000	0.533

Table 7. Pirimiphos-methyl: derivation of the MPCoral, min.

The lowest MPC_{oral} for rats is 0.09 mg/kg_{diet}, based on 91-days toxicity study. There are, however, also long-term data available, which according to the INS-Guidance prevail over the shorter study. The MPC_{oral} for rats based on the long-term test is 1.33 mg/kg_{diet}. The NOEACs for rabbit originate from a developmental study and refer to maternal toxicity, teratogenicity and foetotoxicity. Considering all available data, the MPC_{oral,min} is set to 0.10 mg/kg_{diet}.

The MPC_{sp, water} = MPC_{oral, min} / (BCF × BMF) = 0.10 / (741 × 1) = 1.4×10^{-4} mg/L = 0.14μ g/L.

Because toxicity data for marine predators are generally not available, the MPC_{oral, min} as derived above is used as a representative for the marine environment also. To account for the longer food chains in the marine environment, an additional biomagnification step is introduced (BMF₂). This factor is the same as given in Table 4. The MPC_{sp, marine} = MPC_{oral, min} / (BCF × BMF₁ × BMF₂) = .10 / (741 × 1 × 1) = 1.4×10^{-4} mg/L = 0.14 µg/L.

3.3.3 MPC_{hh} food, water

Derivation of MPC_{hh food, water} for pirimiphos-methyl is triggered (Table 5). The MPC_{hh food} is calculated from the ADI (0.004 mg/kg_{bw}/d), a body weight of 70 kg and a daily fish consumption of 115 g, as MPC _{hh food} = $0.004 \times 0.1 \times 70/0.115 = 0.24 \text{ mg/kg}.$

Subsequently the MPC_{hh food, water} is calculated as 0.24 / (BCF_{fish} x BMF₁) = 0.24 / (741 x 1) = 0.32 x 10-3 mg/L = 0.32 μ g/L.

3.3.4 MPC_{dw, water}

The Drinking Water Standard is 0.1 μ g/L, the MPC_{dw, water} is 0.1 μ g/L.

3.3.5 Selection of the MPC_{water} and MPC_{marine}

The lowest of the derived MPC values for freshwater is the one for ecotoxicity. Thus, the MPC_{water} is set to the MPC_{eco, water} of 0.0005 μ g/L = 0.5 ng/L.

3.3.6 MAC_{eco}

3.3.6.1 MAC_{eco, water}

The MAC_{eco} is based on the acute toxicity data. The compound has a potential to bioaccumulate (log $K_{ow} \ge 3$); the mode of action is specific, and it is likely that the most sensitive species group is included in the dataset. Therefore, an assessment factor of 100 is applied to the lowest short-term EC₅₀ of 0.16 µg/L, yielding a MAC_{eco, water} of 0.0016 µg/L.

3.3.6.2 MAC_{eco, marine}

As there are no marine toxicity data an $MAC_{eco, marine}$ cannot be derived.

3.3.7 SRC_{eco}

The geometric mean of all acute $L(E)C_{50}s$ is 16 µg/L. There is one NOEC available (0.05 µg/L) which is lower than 1/10 of the geometric mean $L(E)C_{50}$ (1.6 µg/L). Therefore, the SRC_{eco} is based on the NOEC with an assessment factor of 1. The SRC_{eco} is 0.05 µg/L.

3.4 Toxicity data and derivation of ERLs for sediment

Since log $K_{p, susp-water} < 3$, derivation of ERLs for sediment is not triggered.

4 Conclusions

In this report, the risk limits Maximum Permissible Concentration (MPC), Maximum Acceptable Concentration for ecosystems (MAC_{eco}), and Serious Risk Concentration for ecosystems (SRC_{eco}) are derived for pirimiphos-methyl in water. No risk limits were derived for the marine compartment because data were not available. Derivation of ERLs for sediment is not triggered.

The ERLs that were obtained are summarised in the table below. The MPC value that was set for this compound until now, is also presented in this table for comparison reasons. It should be noted that this is an indicative MPC ('ad-hoc MTR'), derived using a different methodology and based on limited data.

ERL	Unit	MPC	MACeco	SRC _{eco}
Water, old ^a	μg/L	0.002	-	-
Water, new ^b	μg/L	0.0005	0.0016	0.05
Drinking water ^b	μg/L	0.1 ^c	-	-
Marine	μg/L	n.d. ^d	n.d. ^d	-

Table 8. Derived MPC, MACeco, and SRC values for pirimiphos-methyl.

^a indicative MPC ('ad-hoc MTR'), source: Helpdesk Water http://www.helpdeskwater.nl/emissiebeheer/normen voor het/zoeksysteem normen/

^b The MPC_{dw, water} is reported as a separate value from the other MPC_{water} values (MPC_{eco, water}, MPC_{sp, water} or MPC_{hh food, water}). From these other MPC_{water} values (thus excluding the MPC_{dw, water}) the lowest one is selected as the 'overall' MPC_{water}.

^c provisional value pending the decision on implementation of the MPC_{dw, water} (see Section 2.3.1)

^d n.d. = not derived due to lack of data

References

- BioByte. 2006. BioLoom [computer program]. version 1.5. Claremont, CA, USA: BioByte Corporation.
- EC. 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection. Report no. EUR 20418 EN/2.
- EC. 2006. Draft Assessment Report pirimiphos-methyl. Rapporteur Member State Sweden. Public version February 2005; updated December 2006.
- Footprint pesticide properties database. Hatfield, United Kingdom: Agriculture & Environment Research Unit, University of Hertfordshire <u>http://sitem.herts.ac.uk/aeru/footprint/en/index.htm</u>. Date of search 4 April 2008.
- Lepper P 2005. Manual on the Methodological Framework to Derive Environmental Quality StanEC, 2006ds for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). 15 September 2005 (unveröffentlicht) ed. Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.
- Maycock DS, Prenner MM, Kheir R, Morris S, Callaghan A, Whitehouse P, Morritt D and Crane M. 2003. Incorporation of *in situ* and biomarker assays in higher-tier assessment of the aquatic toxicity of insecticides. Wat. Res. 37:4180-4190.
- MNP. 2006. Tussenevaluatie van de nota Duurzame gewasbescherming. Bilthoven, The Netherlands: Milieu- en Natuurplanbureau. MNP-publicatienummer: 500126001.
- Tomlin, 2002. The e-Pesticide Manual (12th edition). The British Crop Protection Council, Farnham, UK.
- US EPA 2007. EPI SuiteTM [computer program] Version 3.2. Washington DC, USA: United States Environmental Protection Agency, Office of Pollution Prevention Toxics and Syracuse Research Company (SRC).
- Van de Plassche E, Linders J. 1990. Pirimifos-methyl. Bilthoven, The Netherlands: National Institue of Public Health and Environmental Protection, Adviescentrum Toxicologie. Advisory report 88/678801/049
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS). Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601501031. 117 pp.

data
toxicity d
aquatic
Detailed
-
Appendix

/ater)	
2	
esl	
Ĕ	
\leq	
Z	ľ
e toxicity of pirimiphos-methy	
õ	
- Fol	
·El	
- <u>=</u>	
٠Ħ	
цТ.	
0	
5	ľ
:5	
. <u></u> <u></u>	
5	
e	
Ē	
₹	
-	
1	
ple	
Tat	
Г	

Species	Species	₽. ∀		Purity		ЬН	F	Hardness	ю Ехр	Criterion		Value	Ri N	Notes Reference
	properties	5	type compound	[%]	water		်	CaCO ₃ [mg/L]	time		endpoint	[mg/L]		
Protozoa Paramecium caudatum			a.s. in acetone	t.g.	Chalkley's				0.17 h	LC100	mortality	8.0	3 12	2 Rajini et al. 1989
Paramecium caudatum			a.s. in DMSO	t.g.	solution Chalkley's solution				0.17 h	LC100	mortality	15	3 12	2 Rajini et al. 1989
Algae Pseudokirchneriella subcapitata Pseudokirchneriella subcapitata Pseudokirchneriella subcapitata Pseudokirchneriella subcapitata		ი ი ი ი ი z z z z	ЭС	50 50 50					96 h 96 h 96 h	EC50 EC50 EC50 EC50	growth rate biomass growth rate biomass	4.90 1.00 2.45	~~~~~~ ~~~~~~	EC, 2006 EC, 2006 EC, 2006 FC, 2006
Crustova Crustova Daphnia magna Daphnia magna Daphnia magna	<24h		Actellic 50EC	t. g. 50.5	i	7.5	50 20	200	24 h 48 h 48 h	EC50 EC50 EC50	immobilisation immobilisation immobilisation	0.00027 0.00021 0.00005		- <u></u>
Daphnia magna Daphnia magna Daphnia magna			Actellic 50EC Actellic 50EC Actellic 8EC	8 20 n	2 2 2	7.8-8.1 7.8-8.1 7.8-8.1	50 50 50 70		4 4 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	NOEC NOEC EC50	immobilisation immobilisation immobilisation	0.000125 0.00015		
Daphnia magna Daphnia magna		s s ≻≻	Actellic 8EC Actellic Dust	ю N	2 2	7.8-8.1 7.8-8.1	20 20		48 h 48 h	NOEC EC50	immobilisation immobilisation	0.0000625 0.00027	2 2 2 2	Van de Plassche and Linders, 1990 EC, 2006 EC, 2006
Daphnia magna Gammarus pulex Gammarus pulex	adult ି, > 5mm adult ି, > 5mm	××× SSSSS	Actellic Dust	t.g. t.g.	rw art. pond water art. pond water	7.8-8.1 7.3 7.3	20 15 15		48 h 144 h 144 h	NOEC EC10 LC50	immobilisation feeding rate mortality	0.0000625 0.00049 0.0015	ο - 00 ω44	van de Plasscne and Linders, 1990 EC, 2006 McLoughlin et al. 2000 McLoughlin et al. 2000
Insecta Chironomus riparius Chironomus riparius Chironomus riparius	4th instar larvae 4th instar larvae 4th instar larvae	ი ი ი z z z		t.g. t.a.	dechlorinated tw	~ ~	3 3 30 13 3 0		24 h 96 h 96 h	LC50 LC50 LC50	mortality mortality mortality	0.064 > 0.010	ບບບ ບິນບິນ	
Chironomus riparius Pisces	4th instar larvae			t.g.		7	22		96 h	LC50	mortality	> 0.010		
Cyprinus carpio Cyprinus carpio Cyprinus carpio		ᅇᇉᇉᅆ ᆂᆇᆇᇐ		95.3 25 25			Ľ		48 h 96 h 48 h	LC50 LC50 NOEC	mortality mortality mortality	1.40 0.76 < 0.05	1007 1007	~
imelariotaenia duboulayi Melanotaenia duboulayi	aduit 0; / 0±4.3 mm aduit 2; 70±3.2 mm juveniles < 72h 3.7±0.37 mm		Actellic	06		7.1	22 25	n.r.		LC50	mortality	> 0.33 0.015		brown et al. 2002 Brown et al. 2002
Oncorhynchus mykiss Oncorhynchus mykiss Oncorhynchus mykiss Oncorhynchus mykiss Oreochromis mossambicus	7.499; 86 mm fingerlings, 24-45 mm 64, Loach 10.16 mm	Forpav Yz X X Z X	 Actellic 25EC Actellic 50 Actellic 50 	88.9 95.3 25 88.9 50	aged tw	7.5-7.7	12 28-29 28-29	30-53	96 h 96 h 96 h 4 8 h 4 8 h	LC50 LC50 LC50 LC50 LC50 LC50	mortality mortality mortality mortality	0.41 0.20 0.27 0.4 1.10	00000000000000000000000000000000000000	EC, 2006 EC, 2006 EC, 2006 Van de Plassche and Linders, 1990 Shaffei and Costa 1990 Shaffei and Costa 1990

NOTES

- Unreliable endpoint because the actual concentration was not determined, whereas a.i. is photolytically very unstable. Unreliable endpoint because the actual concentration was not determined, whereas a.i. is photolytically very unstable. -004500
 - Based on nominal concentrations.
- Based on actual concentrations. Photoperiod of 12 h.
- Test without sediment. Tests are unreliable as it the light conditions were not reported. This is of particular importance in view of the photolytic instability of the al.
 - Based on mean measured concentrations.

- The Pusce of the second do y 24 herose in untreated freshwater. The Pusce of the second do y 24 herose in untreated freshwater. At concentrations ≥ 0.75 mg.L⁻¹ spinal bending to the right and to the left were observed (LOEC = 0.75 mg.L⁻¹). Test value unreliable because of possible degradation under light conditions due to photolytic instability of a.i. At concentrations ≥ 0.20 and ≥ 0.40 mg.L⁻¹ spinal bending to the right and to the left respectively were observed (LOEC = 0.20 mg.L⁻¹). Test value unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i. ი
 - 5 <u>7</u> 2 5 5

pH T Salinity Exp. Criterion	urity Test pH T Salinity Exp. Criterion Test vitie water endpoint time endpoint
test bit i califit typ. citicitati test value in indea i	d water by rest of time endpoint time endpoint of time endpoint of time endpoint of time endpoint of time time endpoi

mortality 0.091 3 1 96 h LC50 27 filtered nw (salt marsh pools) 7.3 25 06 Actellic Pisces Pseudomugil signifer late juvenile to adult, 27±2.1 mm N S

Brown et al. 1998

NOTES 1 Test value is unreliable because of possible degradation under light conditions due to photolytic instability of a.i..

Species	Species	∢	Test Test		Purity Test	st	Ηd	F	Hardness	Exp.	Criterion Test	Test	Value	Ri Note	Ri Notes Reference
	properties		type c	type compound	Wa	water			CaCO ₃ time	time		endpoint			
					[%]			[0]	[mg/L]				[mg/L]		
lgae															
seudokirchneriella subcapitata		z	s		91					96 h		growth rate	0.56	3 2	EC, 2006
^o seudokirchneriella subcapitata		z	S		91					96 h		biomass	0.14	3 2	EC, 2006
Pseudokirchneriella subcapitata		z	ы S		50					96 h		growth rate	0.41	3 2	EC, 2006
Pseudokirchneriella subcapitata		z	s S	EC	50					96 h	NOEC	biomass	0.22	3 2	EC, 2006
Crustacea															
Daphnia magna	first instar	۲	SS	J	89.3			19-22		21 d	NOEC	reproduction	0.00005	2	EC, 2006
Daphnia magna	first instar	≻	SS	3	89.3			19-22		21 d	EC50	immobilisation	0.00008	2	EC, 2006
Pisces															
Dncorhynchus mykiss		≻	FT		06			15 ± 2.0		28 d		mortality	0.61	2	EC, 2006, Sankey 1990
Oncorhynchus mykiss		≻	ΕT		06			15 ± 2.0		28 d		fish weight	< 0.023	2	EC, 2006, Sankey 1990
Poecilia reticulata		~	SS	t	. <u>o</u> .					14 d		mortality	1.9	2	De Bruijn and Hermens 1993
Dreochromis niloticus niloticus		n.r.	n.r. A	Actellic 25 2	25							mortality	0.00087	с С	Ufodike and Omoregie 1991
Dreochromis niloticus niloticus	fingerling, 10.6 g	z	CFA	Actellic 25 2	25		6.7	23		10 w	EC10	growth rate	0.000029	3 4	Ufodike and Omoregie 1991
Dreochromis niloticus niloticus	fingerling, 10.6 g	z	CF	Actellic 25 2	25		6.7	23		10 w	EC50	growth rate	0.000038	ы 4	Ufodike and Omoregie 1991

NOTES
Based on nominal concentrations.
Based on mean measured concentrations.
Based on mean measured concentrations.
This LC50 value was cited in Ufodike and Omoregie (1991) without additional information.
Calculated by RIVM method. The high toxicity may have been due to other components than the a.i..
Conculated by RIVM method. The high toxicity may have been due to other components than the a.i..
Unreliable endpoint because the actual concentration was not determined, whereas a.i. is photolytically very unstable.

RIVM Letter report 601716011

Appendix 2. Detailed sediment toxicity data

Table A2.1. Toxicity of pirimiphos-methyl to sediment organisms.

Species	Species	Sediment	<	Test	Purity	Hd	o.m.	Clay	т	Exp.	Criterion	Test	Result	Result	Ř	Notes	Reference
	properties	type		compound						time		endpoint	sediment	std. sediment			
	(age, sex)				[%]		[%]	[%]	[°C]				[mg/kg _{dw}]	[mg/kg _{dw}]			
Chironomus riparius	4th instar larvae	≻	` s	Actellic D 2	25			26-47	5.7-28.5	48h	LC50	mortality	0.061		ი	1,2,3	Maycock et al. 2003

NOTES

~ ∩ ∾

outdoor in-situ bioassay; study is summarised in Appendix 4 organic matter content not given; not possible to recalculate endpoint into standard sediment LC50 estimated by linear regression of a logistic concentration response curve, using mortality data from graph and mean measured concentrations in sediment

Appendix 3. Detailed bird and mammal toxicity data

properties mallard duck bobwhite quail bobwhite quail bubwhite quail inveniles chicken 14 m old hens			-	ì		1001	value	value	2		צפופו פווכפ
duck e quail e quail			route	time		endpoint					
duck e quail e quail		[%]					[mg/kg _{bw} d ¹]	[mg/kg _{diet}]			
e quail e quail		90.8	diet	5 d	LC50	mortality		633	с С		EC, 2006
e quail		90.8	diet	5 d	LC50	mortality		207	ი ო	1,5	EC, 2006
		89.3	diet	5 d	LC50	mortality		304	2		EC, 2006
	and cockerels	97	diet	28 d	NOAEL	mortality, food consumption, body weight, reproduction		≥ 40	2		EC, 2006
	S	93.5	by gavage	9 OG	NOAEL	neuropathy	≥ 10	≥ 80	7		EC, 2006
rat AP Wistar rats	ts	88.5	gavage	9 d	NOAEL	foetotoxicity, maternal toxicity	15	300	2		EC, 2006
rat AP Wistar rats	ts	88.5	gavage	9 q	NOAEL	teratogenicity	≥ 150	≥ 3000	2		EC, 2006
	ld) rats	97	diet	28 d	NOAEC	mortality, body weight gain, clinical effects		≥ 50	2		EC, 2006
	vley rats	86.7	diet	2-gen	NOAEC	female body weight		40	2	5	EC, 2006
	vley rats	86.7	diet	2-gen	NOAEC	reproduction		≥ 160			EC, 2006
	k SPF rats	93.1	diet	91 d	NOAEC	mortality, body weight, food consumption		8	2		EC, 2006
rat Sprague Dawley rats	wley rats	89.8	diet	92 d	NOAEL	neuropathy		≥ 300	2		EC, 2006
rat Wistar rats		86.8	diet	104 w	NOAEC	mortality; body weight		≥ 300	2		EC, 2006
		86.7	diet	91 d	NOAEC	mortality		≥ 270	0	3,5	EC, 2006
mouse CD-1 mice		89.8	diet	78 w	NOAEC	mortality, nephropathy, urinary bladder destruction		50	2		EC, 2006
		see note 4	diet	2 y	NOAEL	body weight (males), clinical signs (males)	2	80	с Ч		EC, 2006
	bits	86.7	by gavage	8 d	NOAEL	foetotoxicity	24	800		9	EC, 2006
rabbit NZ white rabbits	bits	86.7	by gavage	8 d	NOAEL	teratogenicity	48	1600	2		EC, 2006

NOTES
1 Study unreliable due to insufficient reporting of test details.
2 No histopathological investigations were performed.
3 This study was performed as a range-finding investigation prior to a carcinogenicity study and was reported within the report of that carcinogenicity study was performed as a range-finding investigation prior to a carcinogenicity study and was reported within the report of that carcinogenicity study weight effects may be secondary to capsule dosing in a small volume (0.1 mL) to which the animals adapted for the latter 80% of the study.
5 endpoint based on dietary concentrations in test
6 endpoint calculated with default conversion factor

Appendix 4. Description of mesocosm studies

Species; Population; Community	plants, invertebrates, Chironomus riparius in bioassay
Test Method	outdoor pond microcosm
System properties	5 x 5 m; natural sediment and river water
Formulation	ActellicD (25% as)
Exposure regime	50 μg as/L; injection with 5 L
Analysed	Y
Temperature [°C]	max. 12.5-28.5 °C at start in August; 10.7-19.3 °C end September; 5.7-13.8 °C end of study (October)
pH range	not reported
Hardness [mg CaCO ₃ /L]	not reported
Exposure time	results reported up to 59 days
Criterion	48-h LC50
Test endpoint	Chironomid survival (bioassay)
Value [µg/kg dwt sediment]	61
GLP	Ν
Guideline	
Notes	no emergence of natural populations until day 57
Ri	2
Reference	Maycock et al., 2003

<u>Test system</u>. Two outdoor ponds of butyl rubber, 5 x 5 m, 5-10 cm natural sediment (C.S. Lewis Nature Reserve, Oxford) and river water (River Thames at Medmenham).

Natural populations of plants and invertebrates; dense growth of pond weed (mostly Elodea Canadensis) was removed but recolonised rapidly. Three individual test chambers (68 mm \emptyset PVC pipes) were driven into the sediment of each microcosm to a depth of 5-10 cm. Aeration was supplied. Application took place in August. Nominal initial concentration 50 µg as/L by injection of 5 L of a solution of ActellicD (25% as).

<u>Analytical sampling</u>. Samples of water and sediment (top 2 cm) were taken on days 1, 3, 7, 14, 20, 27 and 57. Analysis by GC, after liquid-liquid extraction with DCM/hexane (water) or after 6-hours extraction with hexane/acetone (sediment) and clean-up by SPE (C18).

Biological observations.

In-situ bioassays.

Fourth instar larvae of laboratory cultured *Chironomus riparius* were introduced in the test chambers and surviving organisms were collected after 48 hours. Bioassays took place 13 and 8 days before application, and 1, 3, 7, 14, 20, 27 and 57 days after application.

Monitoring of natural Chironomid populations

Floating boxes ($20 \times 20 \times 20 \text{ cm}$; mesh sides; perspex top) were placed at random locations; traps were removed on the same days as the larvae were removed from the bioassays chambers. Individuals were counted, sexed and males were identified to the species level.

Statistical analysis.

The results were analysed using ANOVA with Tukey's test when requirements for normality and homogeneity of variances were met; otherwise non-parametric Kruskall-Wallis was used.. **RESULTS**

Chemical analysis. Concentrations in water and sediment are given in the table below:

		Day 1	Day 3	Day 7	Day 14	Day 20	Day 27	Day 57
water	Pond 1	16	42	18	-	-	-	-
[µg/L]	Pond 2	35	29	6	-	-	-	-
	average	25.5	35.5	12	-	-	-	-
sediment	Pond 1	85	139	39	20	61	20	19
[µg/kg]	Pond 2	615	962	88	13	61	24	n.d.
	average	350	550.5	63.5	16.5	61	22	19

In-situ bioassays.

Pre-application survival was confounded by the presence of indigenous chironomid larvae. On days 3, 5 and 9 after pesticide application (assays started 1, 3 and 7 days after application), 100% mortality occurred. Recovery in the treated ponds was first observed on day 16 (bioassay started on day 14), with 53.3% survival. Survival was 33.3% and 80% in the bioassays run from day 20-22, and 57-59, respectively.

Monitoring of natural Chironomid populations

Einfelda longipes (51.2%) and *Chironomus pseudothummi* (15.7%) dominated emergence from all ponds prior to treatment. Emergence continued from the control ponds throughout the study, but there was a change in dominance to *Psectrotanypus varius* (31.2%), and *Tanypus punctipennis* (14.9%), *C. pseudothummi* (24.1%) and *Psectrocladius edwarsi* (17.2%). Some other species were recorded in low numbers. Emergence from the treated ponds was not observed until at least 57 days after treatment. Dominant species was *P. edwarsi*, *C. sylvestris* and *Parachironomus parilis* were present to a much lower extent.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? No. Study was focussed on Chironomids, other invertebrates were not included.
- 2. Is the description of the experimental set-up adequate and unambiguous? Yes
- 3. Is the exposure regime adequately described? Yes. Sediment analyses, however, show that there is a large variation between the two replicate ponds until 7 days after application.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes. Pirimiphos-methyl is an insecticide, but Daphnids may be more sensitive.
- 5. Is it possible to evaluate the observed effects statistically? No, significant differences in survival are not indicated.

These criteria result in an overall assessment of the study reliability. The study is considered to be less reliable mainly due to the variability in exposure (Ri 2).

Using the survival data given by the author, and reading the value for the bioassay run from day 27 to 29 and the control performance from a graph, the control corrected mortality was calculated for each bioassay. The 48-h LC₅₀ was estimated by fitting the control corrected mortality to the mean measured concentrations in sediment, assuming a log-logistic concentration-response relationship. The resulting 48-hours LC₅₀ value is 61 μ g/kg dwt sediment. Because the organic matter content of the sediment is not given, the result cannot be used for ERL-derivation.

It should further be noted that emergence of natural populations was inhibited until 57 days after treatment, while Chironomids in the bioassays survived as from day 14. This may indicate that exposure in the bioassays was lower than in the whole microcosms. Probably, the larvae in the bioassays spent more time in the water column and were thus less exposed to sediment.

Appendix 5. References used in the appendices

- Brown MD, Thomas D and Kay BH. 1998. Acute toxicity of selected pesticides to the pacific blue-eye, Pseudomugil signifer (Pisces). J. Am. Mosq. Control Assoc. **14** (4):463-466.
- Brown MD, Carter J, Thomas D, Purdie DM and Kay BH. 2002. Pulse-exposure effects of selected insecticides to juvenile Australian crimson-spotted rainbowfish (*Melanotaenia duboulayi*). J. Econ. Entomol. **95** (2):294-298.
- Callaghan A, Fisher TC, Grosso A, Holloway GJ and Crane M. 2002. Effect of temperature and pirimiphos methyl on biochemical biomarkers in *Chironomus riparius* Meigen. Ecotoxicol. Environ. Safet. 52:128-133.
- EC. 2006 Draft Assessment Report Pirimiphos-methyl. Rapporteur Member State: UK.
- De Bruijn J and Hermens J. 1993. Inhibition of acetylcholinesterase and acute toxicity of organophosphorous compounds to fish: a preliminary structure-activity analysis. Aquat. Toxicol. 24 (3-4):257-274.
- Ibrahim H, Kheir R, Helmi S, Lewis J and Crane M. 1998. Effects of organophosphorus, carbamate, pyrethroid and organochlorine pesticides, and a heavy metal on survival and cholinesterase activity of *Chironomus riparius* Meigen. Bull. Environ. Contam. Toxicol. **60** (3):448-455.
- Maycock DS, Prenner MM, Kheir R, Morris S, Callaghan A, Whitehouse P, Morritt D and Crane M. 2003. Incorporation of in situ and biomarker assays in higher-tier assessment of the aquatic toxicity of insecticides. Wat. Res. 37: 4180-4190.
- McLoughlin N, Yin D, Maltby L, Wood RM and Yu H. 2000. Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environ. Toxicol. Chem. **19** (8):2085-2092.
- Rajini PS, Krishnakumari MK and Majumder SK. 1989. Cytotoxicity of certain organic solvents and organophosphorus insecticides to the ciliated protozoan *Paramecium caudatum*. Microbios 59 (240-241):157-63.
- Shafiei TM and Costa HH. 1990. The susceptibility and resistance of fry and fingerlings of Oreochromis mossambicus Peters to some pesticides commonly used in Sri Lanka. J. Appl. Ichthyol. 6 (2):73-80.
- Ufodike EBC and Omoregie E. 1991. Growth of Nile tilapia *Oreochromis niloticus niloticus* subjected to sublethal concentrations of Gammalin 20 and Actellic 25 EC in a continuous-flow toxicant autodelivery system. J. Aquat. Anim. Health **3** (3):221-223.
- Van de Plassche E, Linders J. 1990. Pirimifos-methyl. Bilthoven, The Netherlands: National Institue of Public Health and Environmental Protection, Adviescentrum Toxicologie. Advisory report 88/678801/049
- Vighi M, Garlanda MM and Calamari D. 1990. QSARs for toxicity of organophosphorous pesticides to Daphnia and honeybees. In: QSAR in Environmental Toxicology-IV (Hermens JLM and Opperhuizen A., eds.). Elsevier, Amsterdam, pp. 605-622.

RIVM

National Institute for Public Health and the Environment

P.O. Box 1 3720 BA Bilthoven The Netherlands www.rivm.com