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Abstract Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in 26 

picosecond-petawatt laser systems. Bulged nodular defects, embedded in coating stacks 27 

during multilayer deposition, influence the lithographic process and performance of the final 28 
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MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into 29 

different manufacturing stages of MLDG was proposed for the first time: on multilayer 30 

dielectric films (MLDFs) and final grating products to improve laser-induced damage 31 

performance. The results suggest that the remaining nodular ejection pits introduced by the 32 

two protocols exhibit a high nanosecond-laser damage resistance, which remains stable 33 

when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage 34 

threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-35 

LIDT of the nodular ejection pit conditioned on the MLDFs was ~40 % higher than that of 36 

the nodular defects, and the loss of the grating structure surrounding the nodular defects was 37 

avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance 38 

of MLDGs. 39 

Key words: Multilayer dielectric gratings; nanosecond laser conditioning; nodular defects; 40 

laser-induced damage threshold; picosecond-petawatt laser systems 41 
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I. Introduction 47 

High-energy petawatt laser systems (HPLSs) [1-4] have unparalleled application in inertial 48 

confinement fusion [5], laboratory extreme physics research [6], and laser-accelerated particle beams 49 

[7,8]. Chirped pulse amplification (CPA) [9,10] technology has been utilized to achieve ultra-high-50 

intensity pulse outputs in HPLSs. The laser-induced damage threshold (LIDT) of a multilayer 51 

dielectric grating (MLDG), which is a key optical component of the CPA system, directly 52 

determines the final output capacity of the entire system. Since MLDGs were proposed, the quest 53 
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for more robust MLDGs has promoted the investigation of their laser damage resistance 54 

enhancement and laser-induced damage mechanisms. 55 

The first investigations on LIDT enhancement of MLDGs were reported in 1996 [11]. 56 

Although some benefits were obtained by optimizing the ion-beam etching manufacturing process 57 

[12], the electric-field intensity (EFI) enhancement introduced by the surface-relief grating structure 58 

was unavoidable, and the LIDT exhibited a strong dependence on the EFI. Because the initial 59 

damage of MLDGs induced by a ultrashort pulse is directly related to the EFI distribution [13,14], 60 

theoretical optimization of the near field in MLDGs has become the focus of several studies [13-16]. 61 

The EFI enhancement can be decreased by increasing the incident angle [12] and using a thin pillar 62 

profile [15]. Xie et al. [16] manufactured a rectangular MLDG profile to further reduce the EFI in the 63 

grating pillar. In addition, surface contaminants, including photoresists, etch residues, and surface 64 

debris, are well-known reasons for reducing the laser damage resistance [17-19]. Developing 65 

advanced cleaning methods, such as dilute-buffered hydrofluoric acid solution cleaning [20] and 66 

low-temperature chemical cleaning [21], can improve the laser damage resistance of MLDGs. 67 

Recently, these contaminants have been shown to extend to a 50- to 80-nm layer below the surface 68 

[22]. 69 

Efforts have been devoted to minimizing the peak EFI and reducing the subsurface 70 

contamination produced during MLDG fabrication [22,23]. However, potential defects, especially 71 

nodular defects in multilayer coating stacks [24], primarily limit the laser damage resistance of 72 

MLDGs exposed to nanosecond- and picosecond-laser irradiation [25-29]. Moreover, the presence 73 

of nodules results in the absence of a grating structure around the bulge area [30]. These factors 74 

necessitate the removal of nodular defects. Based on the successful application of laser 75 

conditioning in high reflectors and polarizers [31-38], we first propose removal of nodular defects in 76 
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MLDGs through nanosecond laser conditioning (NLC). Since the nodular defects are deposited 77 

during the preparation of multilayer dielectric films (MLDFs), the appropriate process stage for 78 

performing NLC needs to be identified. If NLC is performed before the surface-relief grating 79 

structure is fabricated (on the MLDF), then the pits and scalding regions induced by the MLDF 80 

conditioning may affect the subsequent lithography process. However, if the NLC is performed on 81 

the final grating products, can the effect of  nodule removal on the surface-relief grating structure 82 

be tolerated? 83 

In this study, two options for integrating NLC into the MLDG fabrication process were 84 

introduced to remove nodular defects. The NLC was applied to the MLDFs (Protocol 1) and final 85 

MLDGs (Protocol 2), as shown in Fig. 1 (b) and (c). We first investigated the effects of the nodular 86 

ejection pits formed in these two protocols and simulated their electric-field distributions using the 87 

finite element method (FEM). Subsequently, the morphological characteristics of the plasma-88 

scalding regions that appeared in the two protocols were compared. Finally, nanosecond- and 89 

picosecond-laser raster scan damage tests were performed on the unconditioned and conditioned 90 

MLDGs to evaluate the overall effects of these two conditioning protocols. A maximum 91 

improvement of approximately 40 % was observed in the picosecond-LIDT of the MLDGs after 92 

the removal of the nodular defects. 93 

II. Sample and experimental protocols 94 

MLDFs were deposited with alternating HfO2/SiO2 layers on a 50 mm × 50 mm × 1.5 mm fused 95 

silica substrate by electron beam evaporation. The basic stack formula [39] of the multilayer film is 96 

based on (H2L)k, where H and L represent quarter-wave optical thickness layers of HfO2 and SiO2 97 

respectively. Subsequently, the MLDFs were subjected to photoresist spin-coating, exposure, 98 

photoresist development, etching, and cleaning to obtain the final MLDGs. The MLDGs were 99 

designed with a groove density of 1740 lines/mm, which could provide a -1st-order diffraction 100 
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efficiency of more than 97 % at an incidence of 67° in a transverse electric (TE) polarized laser 101 

with a wavelength of 1064 nm [30].  102 

 The NLC process was introduced to the MLDF (Protocol 1) and final MLDG (Protocol 2), as 103 

shown in Fig. 1 (b) and (c), respectively. Subsequently, nanosecond- and picosecond-laser damage 104 

experiments were performed on the unconditioned and conditioned MLDGs to evaluate and 105 

compare their laser damage resistances. The raster scanning method [30] was applied in the NLC 106 

and laser damage experiments, and the distance between the neighboring test sites was equal to 107 

the diameter of the beam at 90 % of the peak fluence, as shown in Fig. 1 (d). The laser scanning 108 

speed was set to ~8.3 mm/s with a laser repetition rate of 30 Hz. 109 

The NLC and nanosecond-laser experiments were performed using a 1064 nm Nd:YAG laser 110 

at an incidence of 67° in the TE polarization mode as described in [30]. The nanosecond-laser pulse 111 

width was ~8.0 ns, and the waist radius of the Gaussian beam at a normal incidence was ~0.6 mm. 112 

During the NLC process, the fluence of the incident laser was gradually increased from 12.8 to 113 

28.4 J/cm2, which was higher than that of the nanosecond-LIDTs of the samples. This was expected 114 

to remove nodular defects effectively and cause a negligible and benign damage.  115 

The picosecond-laser damage apparatus is described in [40,41]. The incident laser was operated 116 

at a central wavelength of 1053 nm with an incident angle of 67° in the TE polarization mode. The 117 

picosecond-laser pulse width was ~8.6 ps, and the waist radius of the focused beam was ~ 48.9 118 

µm. During the picosecond-laser damage experiment, the regions where the nodular defects and 119 

nodular ejection pits were generated by Protocols 1 and 2 were raster-scanned for comparison.  120 

LIDT is defined as the maximum fluence at which no damage occurs. The laser fluence used 121 

in this study was provided as the beam normal. The damage density measured as a function of the 122 
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laser fluence was defined as the number of damage sites per scanning area (1 cm2 for the raster 123 

scan in the final nanosecond-laser damage tests).  124 

 125 

Fig. 1. Schematic representation of the nanosecond- and picosecond-laser damage tests performed 126 

on three types of MLDG samples: (a) Uncondit ioned MLDG, (b) MLDF conditioning, and (c) 127 

MLDG conditioning. (d) Schematic of the raster scan damage tests. 128 

Optical microscopy (OM, Olympus BX53M) and focused ion beam scanning electron 129 

microscopy (FIB-SEM, Zeiss Auriga) were used to characterize the morphological evolution after 130 

conditioning, photoresist spin-coating, and cleaning in Protocol 1 as well as to evaluate the effects 131 

of the byproducts of the two protocols on the morphology of the grating surface. Finally, the laser 132 

damage resistance of the MLDGs conditioned by these two protocols were compared under a 133 

gradually increasing incident laser fluence. 134 

III. Morphological comparison and analysis 135 

NLC with nodular defects introduced two typical byproducts (nodular ejection pits and plasma-136 

scalding regions) in the final MLDGs. We first tracked the morphological characteristics of the 137 
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nodular ejection pits generated in Protocol 1 at different preparation stages. The effects of the two 138 

byproducts generated by these two protocols on the surface morphology of the MLDG were 139 

analyzed and compared. 140 

3.1. Nodular ejection pits 141 

Fig. 2 shows the surface morphologies of the nodular ejection regions after the MLDF conditioning, 142 

spin-coating, and MLDG cleaning in Protocol 1. The nodular ejection pits marked as 1 and 3 in 143 

Fig. 2 (a) and (b), respectively, are accompanied by discolored plasma scalds, whereas the position 144 

marked as 2 in Fig. 2 (a) represents a nodular ejection pit without a scald. Fig. 2 (c)–(f) show that 145 

the nodular ejection pits and plasma scalds remain the same after the photoresist spin-coating and 146 

MLDG cleaning processes, respectively. Thus, the morphological modifications introduced by 147 

Protocol 1 exhibit replication characteristics at the subsequent process stages, and OM analyses 148 

reveal that these replication characteristics do not seem to affect the subsequent preparation 149 

process of the MLDG. 150 

 151 

Fig.  2 . OM images of the nodular ejection pits  and plasma scalds originating from Protocol  1 . (a)  and  (b)  152 

Before photoresist  spin-coating after  MLDF conditioning. (c)  and (d) After photoresist  spin-coating. (e) 153 

and ( f)  After  MLDG cleaning.  154 
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Further morphological characterization was performed using SEM. Fig. 3 (a) shows the 155 

typical surface morphology of a nodular defect in the MLDF, which has an evident bulge structure. 156 

Fig. 3 (b)–(d) display the morphological characteristics corresponding to the nodular ejection pits 157 

after the MLDF conditioning, photoresist spin-coating, and MLDG cleaning, respectively. The 158 

results indicate that the pit is filled with photoresist after the spin-coating, and the multilayer 159 

structure in the pit cannot be observed, as shown in Fig. 3 (c). After cleaning, the internal structure 160 

of the pit was reproduced, and the grating relief structure was etched in the area around the pit, as 161 

shown in Fig. 3 (d). 162 

 163 

Fig.  3 .  SEM images of  the nodular  defect  and ejec t ion  pi ts  a t  the  different  MLDG fabr ica tion stages .  (a)  Typica l  164 

bu lged nodu lar  defec t in  the MLDF, and (b)–(d)  morphologies of  the nodular  ejec tion pits  a fter the  MLDF 165 

condit ioning,  photoresis t  spin-coating,  and grat ing c leaning, respective ly.  166 

The bulging nodular defect results in the absence of grating structures in the surrounding 167 

annular area, as shown in Fig. 3 (a), because of the presence of nodular defects, which affect the 168 

distribution of the surrounding exposure field during the exposure stage of the MLDG fabrication. 169 

After removing the nodule, as in Protocol 1, the nodular ejection pit in the MLDG exhibits a small 170 

affected area with a tightly surrounding grating structure, as shown in Fig. 4 (b). However, Protocol 171 

2 cannot prevent the disappearance of grating structures around the nodular ejection pit, as shown 172 

in  Fig. 4 (c). The square of EFI enhancement (|E |) distributions of the nodular defects and nodular 173 

ejection pits were simulated using the FEM. A two-dimensional simulation model with periodic 174 

boundaries on the left- and right-hand sides was used to reduce the computation. The simulation 175 
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domain was 100 µm wide and 7.5 µm high for nodular defects and nodular pits initiating from the 176 

1 µm seeds. The geometry of the nodular defect can be expressed as: 𝐷 = 𝑠𝑞𝑟𝑡(4𝑑𝑡) [42], where 177 

𝐷 is the nodule diameter, 𝑑 is the diameter of the nodular seed, and 𝑡 is the seed depth. Table 1 178 

lists the model parameters used in the calculations. 179 

Table 1. Model parameters used in the calculations. 180 

Parameter 𝑑  𝑡  nL nH Wavelength  Incidence  Polarization 
Value 1 µm 4.5 µm 1.453 1.962 1064 nm 67° TE 

Note: nL and nH represent the refractive indices of SiO2 and HfO2, respectively. 181 

The parabolic structure generated by the nodular ejection is reset as an air domain, and only 182 

the annular areas around the pits generated by Protocols 1 and 2 are different. Fig. 3 (d) shows the 183 

|E | distributions of the bulged nodular defect, and Fig. 4 (e) and (f) depict the two typical nodular 184 

ejection pits caused by Protocols 1 and 2, respectively. The maximum |E | of the nodular defect 185 

(= 5.5) is observed in the dome film at the top of the defect, as shown in Fig. 3 (d). In addition, a 186 

strong |E | (= 3.7) is detected at the right boundary between the nodule and the holonomic layer. 187 

For the nodular ejection pits, the maximum |E | in the pits generated by Protocols 1 and 2 decrease 188 

to 2.0 and 3.8, respectively, as shown in Fig. 3 (e) and (f). This result indicates that the laser 189 

damage resistance of the nodular ejection pits seems to be higher than that of the nodular defects, 190 

especially that of the pits generated in Protocol 1. 191 
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 192 

Fig. 4. (a) Typical cross-sectional  morphology of a nodular defect  in the unconditioned MLDG. 193 

(b) and (c) SEM images of the typical nodular ejection pits caused by Protocols 1 and 2, 194 

respectively.  (d)–(f) Simulated |𝐸 |distributions corresponding to the morphological  structures in 195 

(a)–(c), respectively.  196 

3.2. Plasma-scalding regions  197 

The effects of the plasma scalds, induced by the two protocols, on the final grating structure were 198 

evaluated. Fig. 5 (a) presents the typical morphology of a plasma-scalding region, with two 199 

elliptical structures and a bright nodular ejection pit, induced by Protocol 1. Six positions outside 200 

the center of the pit were selected for comparison. Fig. 55 (b)–(g) present the local magnified 201 

images of the positions marked by rectangles in Fig. 55 (a). For comparison, the pristine surface is 202 

also displayed in Fig. 55 (g), which shows a clear boundary between the pillars and grooves. In the 203 

elliptical plasma-scalding region, some molten holes are visible on the surface of the pillars, 204 

particularly at the edges of the two ellipses marked as c and e. In addition, the grating grooves, 205 

shown in Fig. 55 (c) and (e), exhibit some “wavy” features possibly due to the relatively severe 206 

scald; by contrast, this feature is not noticeable in the grating grooves at the positions marked as b 207 
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and d. At the outside point f, which is near the outer edge of the plasma-scalding region, the pillars 208 

and grooves are not affected, and the surface morphology is consistent with that of the primitive 209 

surface shown in Fig. 55 (g). 210 

 211 

Fig. 5 .  (a)  SEM image of  the  plasma-sca lding region induced by the  NLC in  Protocol 1;  the  inset  image shows a  loca l  212 

magnif ied view of  the nodular  ejection  pit.  (b)−(g)  Local magnif ied SEM ima ges  of  the posi t ions  marked by 213 

rectangles  (in  color)  in  Fig.  55 (a) .  214 

The typical morphological characteristics of the bright plasma-scalding region with a nodular 215 

ejection pit induced by Protocol 2 are shown in Fig. 6 (a). Fig. 6 (b)–(g) show the local magnified 216 

SEM images of the six positions marked by rectangles (in color) in Fig. 6 (a). However, in contrast 217 

to the morphology induced by Protocol 1, in the case of Protocol 2, more molten holes are 218 

concentrated on the  pillar surface, especially at the positions near the ejection pit marked by b and 219 

c. Furthermore, although many ejection residues also adhere to the surface of the grating pillars, 220 

the grating grooves are not modified, and their surfaces are smooth. At position f outside the 221 

scalding region, the morphological characteristics of the pillars are almost the same as those of the 222 

pristine surface of the MLDGs, as shown in Fig. 6 (f) and (g), similar to by Protocol 1.  223 
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 224 

Fig.  6 .  (a)  SEM image of  the  plasma-sca ld ing region induced by the  NLC in  Protocol 2 ;  the  inset image indica tes  the  225 

local magnif ied view of  the  central nodular  ejec tion  pit.  (b)−(g)  Local magnif ied  SEM images of  the posi tions  marked 226 

by rectangles  ( in color) in  Fig.  56 (a) .  227 

IV. Laser damage results and discussion 228 

4.1. Comparison of nanosecond-laser damage performances 229 

4.1.1. LIDT and damage density 230 

The nanosecond-LIDTs and damage densities of the unconditioned and conditioned MLDGs are 231 

shown in Error! Reference source not found.7 (a) and (b), respectively. The LIDT of the MLDGs 232 

conditioned by Protocol 1 and that of the unconditioned MLDGs are almost the same (15.4 J/cm2), 233 

whereas that of the MLDGs conditioned by Protocol 2 is higher (18.0 J/cm2). The damage density 234 

is calculated as the number of damaged sites in an area of 1 cm2. Overall, the damage densities of 235 

the three types of samples increase with the laser fluence for different slopes. The damage densities 236 

of the MLDGs conditioned using Protocols 1 and 2 decrease, especially that of the latter. Fig. 7 (b) 237 

shows that when the irradiated laser fluence reaches 25.8 J/cm2, the damage density of the 238 

unconditioned MLDGs is 73 /cm2, whereas those of the MLDGs conditioned by Protocols 1 and 239 

2 are 50 and 3 /cm2, respectively. 240 
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 241 

Fig. 7. (a) LIDT results of the nanosecond-laser raster scan, the two thresholds represent the 242 

results of two different test samples. (b) Damage density versus laser fluence (only the damage 243 

points that appear in the nanosecond-laser damage test  process are counted as damage). 244 

4.1.2. Damage resistance of nodular ejection pits 245 

The nanosecond-laser damage resistance of the nodular ejection pits induced by the two NLC 246 

protocols was further evaluated. Fig. 8 (a) shows the pristine morphological modifications of the 247 

three nodular ejection pits caused by the NLC in Protocol 1. The morphological evolution of the 248 

pits was characterized under gradually increasing incident laser fluence, and the corresponding 249 

results are shown in Fig. 8 (b)–(f). Even if new severely damaged modifications appear in the 250 

scanning area with no observable defects, the nodular ejection pit areas (marked by red lines) 251 

remain highly resistant to higher-fluence irradiation. This observation suggests that the nodular 252 

ejection pits induced by the NLC in Protocol 1 are stable and do not cause any catastrophic damage, 253 

even at a fluence of 38.8 J/cm2, as shown in Fig. 8 (f). 254 
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 255 

Fig. 8. (a) OM image showing the pristine morphological modifications of the three nodular 256 

ejection pits induced by the NLC in Protocol 1. (b)–(f) OM images showing the morphologies of 257 

the ejection pit areas irradiated by gradually increasing nanosecond-laser fluences; here, the red 258 

lines represent the nodular ejection pits on the MLDG. 259 

The morphological changes in a nodular ejection pit caused by the NLC in Protocol 2 were 260 

also tracked under gradually increasing incident laser fluences, and the results are displayed in Fig. 261 

9 (a)–(f). Similar to the pits in Protocol 1, the nodular ejection pit in Protocol 2 is highly stable 262 

under the irradiation of a laser fluence of 38.8 J/cm2. When the laser fluence reaches 41.4 J/cm2, 263 

noticeable modifications appear in the plasma-scalding area, as shown in Fig. 9 (f). Both the pits 264 

caused by the two NLC protocols can withstand a laser fluence of 38.8 J/cm2, which is higher than 265 

twice the LIDTs of the unconditioned MLDGs (15.4 and 12.8 J/cm2) shown in Fig. 7 (a). 266 
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 267 

Fig. 9. (a) OM image showing the pristine morphological  modifications of a nodular ejection pit 268 

induced by the NLC in Protocol 2. (b)–(f) Ejection pit region irradiated by gradually increasing 269 

nanosecond-laser fluences. 270 

4.2. Comparison of picosecond-laser damage performances 271 

4.2.1. LIDT and damage morphology 272 

The picosecond-laser damage results of the nodular defects and nodular ejection pits caused by the 273 

NLC in Protocols 1 and 2 are displayed in Fig. 10. The LIDT of the nodular defects is 2.0 J/cm2, 274 

which is the lowest among those of the three sites. The LIDTs for the areas of the nodular ejection 275 

pits produced by Protocols 1 and 2 are 2.8 and 2.2 J/cm2, respectively, which are ~40 % and ~10 % 276 

higher than those of the nodular defects. 277 

 278 
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Fig. 10. Picosecond-LIDTs of the unconditioned nodule and nodular ejection pits conditioned by Protocols 1 and 2. 279 

The nodular defects are partially or completely ejected under a low laser fluence of 2.0 J/cm2, 280 

while the surrounding grating pillars remain intact, as shown in Fig. 11 (a) and (d). This result 281 

indicates that these unstable nodular defects limit the LIDT of the MLDG. Fig. 11 (b) and (e) show 282 

that the nodular ejection pit in Protocol 1 remains intact under a laser fluence of 2.4 J/cm2 as well 283 

as remains stable under a laser fluence of 3.2 J/cm2, while a catastrophic damage occurs in the 284 

surrounding pillars. The pillars near the ejection pit caused by Protocol 2 are more susceptible to 285 

damage than those caused by Protocol 1 and first fractured under a fluence of 2.2 J/cm2, as shown 286 

in Fig. 11 (c). Fig. 11 (f) reveals that a laser fluence of 3.0 J/cm2 damages almost all the pillars, 287 

and this damage may be attributed to the melting modification of the pillars in the plasma-scalding 288 

region, as shown in Fig. 6 (b) and (c).  289 

 290 

Fig. 11. Typical morphological characteristics of the different test areas induced during the picosecond-laser damage 291 

test. (a) and (d) Unconditioned nodular defects. (b) and (e) Nodular ejection pits caused by Protocol 1. (c) and (f) 292 

Nodular ejection pits caused by Protocol 2 (where F denotes the incident laser fluence).  293 

4.2.2. Damage resistance of nodular ejection pits 294 
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The picosecond-laser damage resistance of the two types of nodular ejection pits was evaluated by 295 

gradually increasing the laser fluence. Fig. 12 (b)–(f) show the morphological evolution of the 296 

nodular ejection pit in the case of Protocol 1. When the laser fluence is 2.8 J/cm2, the damage first 297 

occurs in the grating pillar area near the ejection pit, as shown in Fig. 12 (e). As the laser fluence 298 

increases to 3.0 J/cm2, the initial damaged area surrounding the ejection pit expands further; 299 

however, the ejection pit remains stable, as shown in Fig. 12 (f). 300 

 301 

Fig. 12. (a) OM image showing the pristine morphological modification of a nodular ejection pit in Protocol 1. (b)–302 

(f) OM images showing the morphologies of the ejection pit area irradiated by gradually increasing the 303 

picosecond-laser fluences. 304 

Fig. 13 (a) shows an OM image of a pristine nodular ejection pit with an annular plasma-305 

scalding area caused by Protocol 2. The morphological evolution of the pit irradiated by 306 

gradually increasing the picosecond-laser fluence is shown in Fig. 13 (b)–(f). Evidently, 307 

the damage first occurs in the plasma-scalding region on the left side of the ejection pit at a low 308 

laser fluence of 2.2 J/cm2, as shown in Fig. 13 (c). As the incident laser fluence is increased, the 309 

damaged area gradually expands. When the laser fluence reaches 3.0 J/cm2, almost the entire 310 
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plasma-scalding region is catastrophically damaged, which may be caused by a more serious 311 

modification of the region during the NLC process. 312 

 313 

Fig. 13.  (a) OM image showing the pristine morphological modificat ion of a nodular ejection pit 314 

in Protocol 2. (b)–(f) OM images showing the morphologies of the ejection pit area irradiated by 315 

gradually increasing picosecond-laser fluences. 316 

V. Conclusion 317 

In this study, NLC, an effective method for removing nodular defects, was integrated into the 318 

different MLDG fabrication stages, i.e., after the MLDF coating (Protocol 1) and cleaning 319 

(Protocol 2). Subsequently, nanosecond- and picosecond-laser raster scan damage tests were 320 

performed on the unconditioned and conditioned MLDGs for comparison.  321 

Following the MLDF conditioning, the modifications caused by the nodular ejection pit and 322 

plasma scald exhibited morphological replication after the photoresist spin-coating and cleaning 323 

of the MLDG. Unlike bulging nodular defects, the ejection pits did not eliminate the surrounding 324 

grating structure. In addition, the remaining nodular ejection pits introduced by the two protocols 325 
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exhibited a high nanosecond-laser stability and remained stable even when the irradiated laser 326 

fluence was more than twice the nanosecond-LIDTs of the unconditioned MLDGs. The 327 

picosecond-LIDT of the nodular ejection pits produced by the MLDF conditioning was ~40 % 328 

higher than that of the nodular defects, whereas the LIDT of the nodular ejection pit produced by 329 

the MLDG conditioning increased by only ~10 % owing to the melting modification of the plasma-330 

scalding region around the pit during the NLC process. Both the protocols can remove nodular 331 

defects to improve the laser damage performance of MLDGs. 332 

Laser conditioning performed using nanosecond pulses are universal and can be easily 333 

integrated, because a vacuum environment to prevent the nonlinear self-focusing in air, which 334 

occurs under the picosecond regime, is not required. Consequently, the NLC can be applied to 335 

large-aperture gratings to improve their laser damage resistance. 336 
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