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Abstract: In swarm robotics, a group of robots coordinate with each other to solve a problem. 
Swarm systems can be heterogeneous or homogeneous. Heterogeneous swarms consist of 
multiple types of robots as opposed to Homogeneous swarms, which are made up of identical 
robots. There are cases where a Heterogeneous swarm system may consist of multiple 
Homogeneous swarm systems.  Swarm robots can be used for a variety of applications. 
Swarm robots are majorly used in applications involving the exploration of unknown 
environments. Swarm systems are dynamic and intelligent. Swarm Intelligence is inspired by 
naturally occurring swarm systems such as Ant Colony, Bees Hive, or Bats. The Bat Algorithm 
is a population-based meta-heuristic algorithm for solving continuous optimization 
problems. In this paper, we study the advantages of fusing the Meta-Heuristic Bat Algorithm 
with Heuristic Optimization. We have implemented the Meta- Heuristic Bat Algorithm and 
tested it on a heterogeneous swarm. The same swarm has also been tested by segregating it 
into different homogeneous swarms by subjecting the heterogeneous swarm to a heuristic 
optimization. 

Keywords: Swarm Intelligence, Bat Algorithm, Heuristic Algorithm, Meta-Heuristic 
Algorithm, Heterogeneous Swarm System, Homogeneous Swarm System  
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1. Introduction 

Swarm Robots are self-organizing robot systems. Swarm Robot Systems can be 
characterized as autonomous, dynamic, and intelligent systems. Swarm robots are 
decentralized, i.e., their sensing and communication capabilities are local. They are 
collaborative and complete tasks given by cooperating and coordinating with 
other robots in the same swarm system. 

Swarm robots’ behavior can be classified into two significant taxonomies, i.e., 
Methods and Collective Behaviors. 

Fig. 1 Spatial Behaviors and Methods as explained in Brambilla et al. (2013) 

As seen in the above figure, the collective behaviors of a swarm robot 
system can be broken down into Spatial Organization, Navigation, and Decision 
Making. Collective Behaviors are used to automate swarm systems to perform 
complex tasks. For example, spatially organizing behaviors can be used to 
organize the robots into a particular shape. Navigation and Decision-Making 
behaviors can be used to develop collision-free motion planners for swarm 
systems. These characteristics are discussed in detail in Brambilla et al. (2013). 
These behaviors are applied in all classes of swarm robots, i.e., aerial, terrestrial, 

aquatic, and outer space (Schranz et al., 2020). discusses specific swarm research 
projects and industry products demonstrating Swarm Collective Behaviors. 

1.1 Evolution of Swarm Intelligence 

For centuries, numerous animal species have benefited from swarm intelligent 
behav- ior, a natural phenomenon that has enhanced their chances of survival. The 
capacity of animal swarms to scatter and explore a vast region, as well as swiftly 
gather together when a single agent detects food or danger, is well-documented. 
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This phenomenon is 

known as swarming (Williams, 2018). ”Swarm intelligence is defined as a 
swarm’s use of decentral- ization and self-organizing behaviors in their decision-
making to adapt to change and solve problems”. 

Most of the swarm intelligence methods are nature inspired. Swarm intelligent 
algorithms like the Ant Colony Algorithm, Bees Hive Algorithm, or Particle Swarm 
Optimization Algorithm were developed by studying naturally occurring swarms 

(Williams, 2018). Swarm intelligent behaviors can be carried out by two basic 
search behaviors used in all swarm-based searching algorithms, namely 
exploration, and exploitation. Exploration refers to searching an unexplored area 
of the feasible region, while exploitation refers to the intensification of the search 
in the narrowed down promising regions. The success of these algorithms highly 

depends on how these two search behaviors are balanced (Tilahun, 2019). 

1.2 Bat Algorithm for Swarm Robots 

The Bat Algorithm is a population-based meta-heuristic algorithm for 
solving con- tinuous optimization problems. It has proved to be better than other 

nature-inspired algorithms (Zebari, Almufti, & Abdulrahman, 2020). It was 

originally proposed by Prof. Xin- She Yang in 2010 (Yang, 2010). The bat 
algorithm is based on the echolocation behavior of microbats. The varying 
emission pulse rates and loudness observed in microbats form the basis of their 
echolocation behavior. The Meta-Heuristic Bat Algorithm is simple, flexible, and 
can solve a wide range of problems efficiently. It provides rapid convergence at 
the initial stages by switching from exploration to exploitation. The Bat algorithm 
is used to generate multiple trajectory points for a single bot from which the 
optimal one was selected. 

Swarm systems require control algorithms working with path planners to 
move each robot on its calculated path. In order to design an efficient system, it is 
important to understand the role of Swarm Control in Swarm Intelligent Systems. 

1.3 Swarm Control 

Swarm control combines communication and sensing, using information from 
both to calculate the motions the robots want to make. Swarm robots’ control is 
decentralized and autonomous because they don’t share a single global controller 

or have a third- party commander (Tan & Zheng, 2013). 

Swarm control can be categorized into two major fields, heterogeneous swarm 
con- trol and homogeneous swarm control. Conventional robot swarms are 
homogeneous, i.e., they are made up of entirely identical robots by function and 
design. 

Trying to build a flexible homogeneous swarm of robots presents two 
problems. The primary issue has to do with the engineering considerations of 
the robots. It is not realistically feasible to equip each swarm agent with all the 
necessary features and capabilities to execute every task in the environment. 

Secondly, strict homogeneity presents a scaling problem (Campbell, 2019). A 
heterogeneous model can be adopted to solve these issues. But when discrete 
homogeneous swarms within a heterogeneous swarm are required to combine, it 



Sivayazi Kappagantula, Saipranav Vojjala Aditya Arun Iyer, Gurunadh Velidi, Sampath Emani, Seshu 
Kumar Vandrangi/ Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 52-77 

55 

complicates the swarm control mechanism. In later sections of this paper, we will 
provide a solution for the same. 

Heterogeneous swarms combine different kinds of robots, each with different 
func- tionality. A simple heterogeneous swarm for military applications is defined 

with three kinds of robots: supply unit, defender unit, and attacker unit (McCook 
& Esposito, 2007). 

 
Fig. 2 Attacker, Defender and Supply Units as shown in McCook and Esposito (2007) 

From the above figure, we observe that by dividing the heterogeneous swarm 
into multiple homogeneous swarm systems, we circumvent both the engineering 
constraints and the scaling issue, as not every agent needs to be equipped to solve 
all the issues posed by the environment, implying that only a few robots of each 
type need to be created. 

1.4 Application of Swarm Intelligence 

There are several uses for swarm robotics in terrestrial, aerial, and aquatic 
robots. As this paper focuses on Unmanned Ground Vehicles(UGV) swarms, only 
terrestrial applications, particularly military ones, are examined. In instances 
where it would be dangerous for soldiers to execute missions, military robots can 
be used. Although resorting to military force should only be done in extreme 
circumstances, it is vital to look into technological advancements that might assist 
in sparing lives on both sides while maintaining the effectiveness of the military 
force. 

1.5 Military Applications of Swarm Robots 

Military applications of swarm robots are twofold: Exploratory and Attack. The 
former has undergone extensive study, inspired the creation of numerous 
heuristic and meta- heuristic swarm intelligence algorithms, and serves as the 
primary objective for many other applications, such as unmanned interplanetary 
missions. 
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Advantages in Exploratory Application (Suárez, Iglesias, & Gálvez, 2019): 

Parallelization: This feature makes the swarm more flexible and allows the 
swarm members to perform different actions simultaneously at different 
locations. It makes the system more efficient for complex tasks, as it can be 
broken down into parts and solved independently. 

• Task enablement: Through task enablement, swarm systems can do specific 
tasks. 

that are impossible or very difficult for a single robot. 

• Distributed sensing and action: Swarm intelligence systems make use of their 
inher- ited auto-configuration and self-organization capabilities to respond 
well to rapidly. 

changing environments making them highly adaptive. This also ensures that 
failure of a single unit does not affect the completion of the given task making 
it highly robust and giving it a high fault tolerance. 

• Scalability: Allows the swarm system to be flexible and easily vary in size 
without 

reprogramming the whole swarm. 

The latter objective, attack, can be fulfilled by weaponizing the swarm 
system. This is out of the scope of this paper. 

1.6 Example for Military Application of Swarm Systems 

Consider a scenario in which a large military convoy crosses potentially 
dangerous unexplored terrain. In such circumstances, a robot swarm can be sent 
to explore and map the region. Each agent can be weaponized in case enemy 
troops are spotted and fire breaks out. In this paper, the primary objective is 
neither exploration nor attack. Instead, our objective is to program a 
heterogeneous swarm consisting of different homogeneous swarms, i.e., each 
homogeneous robot swarm is armed differently or is programmed to perform a 
different function, as discussed in the earlier section on attacker and defender 

(McCook & Esposito, 2007). Also, Heuristic Optimizations are widely utilized in 

various aviation mechanisms as well (Gultepe, 2023; Oo, 2023). 

1.7 Challenge of Autonomous Navigation by Robots 

All autonomous vehicles are equipped with sensors using which they navigate 
the environment they are deployed in. The decisions made by the vehicle depend 
on the sensor data it receives. This particular data processing is what makes 
autonomous vehicles intelligent systems. The better the data from the sensors are 
processed, the more optimized the traversal is. Optimizing collision-free path 
planning is a signifi- cant challenge that autonomous robots face. Reaching the 
target with minimum cost while avoiding collisions with stationary or moving 
objects is a vast area of ongoing research. The problem of path planning can 
be further classified into global and 

local path planning. Global path planners require information regarding the 
environ- ment to be provided before operation. In comparison, local path planners 
hardly have any information on the terrain. Local and Global planners are often 

used together to increase the efficiency of path-planning algorithms (Halder, 
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2021). 

1.8 Path Planning in Swarm Robots 

Path planning in swarm systems can be either heuristic or meta-heuristic. 
Heuristic approaches are designed for a specific problem. In contrast, meta-
heuristic algorithms are designed to be independent of the problem. ”They know 
nothing about the problem they are applied to; hence, they treat functions as black 
boxes” (Halder, 2021). Due to its problem- independent design, meta-heuristic 
algorithms can be applied to many problems and are commonly associated with 
path planning in swarm systems. 

1.9 Requirement of Heuristics in Military Swarms 

Metaheuristic algorithms, by nature, do not provide the most optimal solution 
to a given problem. While in many problems, the most optimized solution is often 
not required, in certain use cases such as the one considered in this paper, 
optimization is critical. ”Black-box optimization implies that the algorithm has 
no knowledge of the problem apart from the fact that, given any candidate 

solution, it can obtain the objective function value of that solution” (Chopard et 
al., 2018). For a military convoy switching between exploratory and attack states, 
knowledge of its surroundings is required to calculate the optimal goal positions 
for the attack formation. This implies that as enemy lines change, these goals 
should also change. The dynamic changing of these goals is possible only by 
introducing heuristics. 

1.10 Hybrid Algorithm 

A hybrid algorithm consists of two or more algorithms collectively and 
cooperatively solving a predefined problem” (Ting et al., 2015). Hybrid 
Algorithms can take on different structures depending on the situation. Hybrid 
algorithms consist of two or more algorithms in which one algorithm is used to 
locate the optimal parameters for another algorithm. In certain cases, different 
components of algorithms, like mutation and crossover, can be used to enhance 
the performance of another algorithm within the hybrid. A hybrid algorithm can 

achieve the most optimal solution to a problem (Ting et al., 2015). 

This paper discusses a hybrid algorithm for path planning in autonomous 
swarms that is heuristic with respect to the heterogeneous swarm but 
metaheuristic with respect to each homogeneous swarm. The hybrid used in this 
paper uses the output generated by the heuristic algorithm as input to the meta-
heuristic algorithm. 

According to Voß (2001), heuristic refers to the process of finding optimal 
parameters through trial and error. Metaheuristic, on the other hand, refers to a 

higher level of heuristic that often outperforms simple heuristics (Voß, 2001). 

Glover (1990) and Glover and Kochenberger (2006) define metaheuristics as a 
”master strategy” that guides and modifies other heuristics to generate solu- 
tions beyond local optimality. Metaheuristics are generally more tolerant to 
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changes in external parameters compared to heuristic algorithms. A review of 

metaheuristics was conducted by Glover (1990), which provides an excellent 
overview of the field. 

The software stack for the proposed novel algorithm leverages the 
advantages of both heuristic and meta-heuristic approaches to problem-solving by 
combining heuristic and meta-heuristic stages of path planning for optimal swarm 
control. The individual bots can be arranged into two distinct swarm clusters: 
homogeneous and heterogeneous. In homogeneous swarm clusters, all the bots of 
a common characteris- tic are grouped into a single cluster. While in a 
heterogeneous swarm cluster, all the robots behave as a single cluster. Depicted 
below is the setup used to test the conver- gence of the algorithm depicting the 
homogenous swarm clusters grouped based on color. 

 
Fig. 3 Attack Formation Points on Convex Hull 

The heterogeneous swarm depicts the heuristic nature of the algorithm where 
the final configuration/shape of the heterogeneous swarm variably changes with 
respect to parameters such as distance from the nearest node, global position, and 
goal heading, which are called “stochastic estimates” of the algorithm. The 
algorithm replaces the homogeneous swarm system by a single characteristic 
point that can represent the entire homogeneous swarm. The idea is to collapse 
the homogeneous swarm system to a single point referred to as homogeneous 
swarm centers in an attempt to simplify the system. Every swarm center is 
characterized by a specific pose from which we can derive the pose of all the nodes 
of the respective homogeneous swarm center. Thus the goal of the planning 
algorithm for the homogeneous swarm centers simplifies arranging n-points to 
form a specific shape. The positions of these swarm centers are decided by the 
perception data and visual inferences of object detection obtained from the 
onboard cameras of the individual swarm nodes. A feature classification module 
has been developed to detect these objects and estimate their position in the global 
frame. The positions of the enemy military establishment thus allow us to 
calculate effective counter-attack formation shape, which in turn decides the goals 
for the swarm centers. The algorithm proposed in this paper is designed keeping 
in mind a military convoy scenario in which a heterogeneous swarm breaks into 
multiple homogeneous swarms upon detecting threats. Since military swarms 
have two major objectives: Exploratory and Attack, we consider a scenario in 
which an autonomous military convoy encounters threats while exploring 
unknown terrain. Upon detecting threats, the swarm would break from the 
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exploratory state into an attack state. A wedge formation defines the attack state. 

Fig. 4 Basic Flow of Algorithm. Definition of States 

The wedge is a common attack state. It is a fire-team formation where 
soldiers are spaced about 10 meters apart. The team leader moves at the point of 
the wedge. The team leader can opt to disengage the wedge formation by closing 
up the distance between the soldiers when enemy contact is not likely. This 
approach facilitates more straightforward command and control over the fire 
team. The fire team leader expands the wedge formation by increasing the distance 
between soldiers in the event of prob- able enemy contact. This increases the 
protection and security of the fire team from enemy contact. ”The wedge is easy 
to control, is flexible, provides good security, and allows the team members to fire 

immediately in all directions” (Hackworth & England, 2003; United States 
Department of the Army, 1977; United States Government US Army, 2007, 

2019). 

2. Methodology 

By definition, a global path planner plots the most optimal path between the 
desired destination and the current position, while the term local planner 
references obsta- cle avoidance algorithms. A good path-planning algorithm 
consists of both a global planner and a local planner. In this paper, we focus on 
optimizing path planning as a whole, not its individual components. Therefore, 
although the global and local plan- ners are not explicitly mentioned in the text, 
it’s understood that the path planner consists of a global and local planner to which 
the following heuristic and metaheuristic optimizations are made to make the 
algorithm functional for the use case chosen. 

Fig. 5 Algorithmic Design Architecture Flowchart 
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2.1 Heuristic Optimisation for Heterogeneous Swarm 

This module consists of a perception node and a convex hull generator node hereby 
referenced as goal generator. The poses of the tanks detected from the perception 
node are used to calculate the ideal pose for each homogeneous swarm center. These 
points are calculated using a convex hull algorithm. The goal generator is 
responsible for generating the ideal pose required for the team leader of each 
homogeneous swarm in the wedge. The pose for the remaining swarm robots in the 
homogeneous swarm is calculated relative to the pose of their respective 
homogeneous swarms’ team leader. 

2.2 Perception 

The perception node decides the optimal position for the leader of each 
homogeneous swarm cluster based on feedback from depth cameras mounted to 
the swarm robots to achieve heuristic behavior. The swarm local clusters are 
calculated when the perception node classifies the image from the input video 
stream as a tank. 

The feature classification model uses an RCNN-based Markov Chain model 
(Girshick, 2015) aided by discrimination trees (Zhao, Jiang, & Stathaki, 2017) 
for quick classification on live image feed. It uses  

Fig. 6 RCNN Model Shape 

input features from the images fed, applying the pre-stored weights and 
predicting the probability of the existence of a feature along with its pose in the 
camera frame. Theoretically, the features that the model identifies purely 

depend on the training data (Krizhevsky, Sutskever, & Hinton, 2017). For our 
case, image data of tanks have been used to showcase the poten- tial military 
applications of the algorithm. Thus, the implementation of the classifier enables 
the algorithm to follow a heuristic approach to swarm behavior while still 
ensuring flexibility with respect to the use case for the algorithm. The 
incorporation of perception-based estimation of global goals for the homogeneous 
swarm central fea- tures eliminates the issues concerning graph-based Particle-
Swarm Optimisation(PSO) Algorithms, such as the local-minima problem and its 
inability to tackle solving multi- objective optimization problems. The weights are 
transmitted to every individual node of the swarm and are used to process the 
image onboard without sharing it with the rest of the swarm. Data containing the 
classifier’s output is relayed to every node of the swarm. The calculations for the 
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planning are computed on the node chosen as the central feature. 

The aim is to develop a mathematical model to arrange swarm clusters into a 
formation governed by the poses of the enemy formation obtained by detecting 
army establishments via computer vision and deep learning. For the application 
considered in the paper, we have used army tanks as the enemy establishment and 
implemented the detection model. This can be scaled to any establishment by 
controlling the image data fed into the training model described below. 

Before turning control over to the heuristic and meta-heuristic controller of the 
heterogeneous and homogeneous swarms, respectively, the methodology for the 
object detection subroutine of the software stack has four key objectives to 

accomplish (Jain, Yerragolla, & Guha, 2019): 

• Object Recognition being the primary goal of this subroutine, is to identify 
objects in the image data stream. 

• Image Classification to predict the type of class of an object in the input 

image. In the paper, we have only one class, i.e., army tanks. However, it 
can include multiple classes of military establishments and vehicles. 

Fig. 7 Object Detection Methodology from [24] 

• Object Localization is a major subtask indicating the location of the classes in 
question and creating a bounding box for the classes recognized. 

• Object Detection is the final subtask of the perception module to return all 

the detected classes and their respective pose in a single data structure 
as input to the heuristic planner for the heterogeneous swarm. 

For the implementation, we have chosen to use the Military Tanks Dataset con- 
taining images of various battle formations obtained from scraping images from 
the internet (Jain et al., 2019) to train the model and generate the weights pre-
deployment. These weights are then locally stored on every swarm node, accessed 
iteratively post- deployment, and applied to the input image obtained from the 
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onboard depth camera. The weights are generated using a Recurrent Neural  

Network(RNN) (Ren et al., 2015) architec- ture for object detection trained using 
input images of size (640px,480px,3) obtained from the dataset without any 

scaling as it allows the use of ROI(Region-of-Interest) Pooling (Sermanet et al., 
2013) and Spatial Resolution techniques (Elmer, 2006) to improve feature 
extraction and classification. 

Fig. 8 RCNN Model Layers 

The model first converts the input image of size (640 px,480 px,3) into a tensor 
of 8 feature maps using the Convolution 2D Scaling (Conv2D). This step is repeated 
three more times to produce 16, 32, and 64 feature maps, respectively. Each tensor 
index has dimensions (6px,6px,64) flattened into a single-dimensional vector of 
shape (,2304 px). The activation function chosen for each layer is Leaky Relu 

(Girshick et al., 2014) to implement Stochas- tic Gradient Descent (Ho & Wookey, 
2019) based on Binary Cross-Entropy (Oberman & Prazeres, 2019) for loss 
estimation. An effective learning rate was chosen for fast convergence using the 

method described in (Chee & Toulis, 2018). The tensors are then convoluted 
using a Dense layer three times into tensors of shape (,120 px), (,84 px),(,10 px), 

including a softmax layer that aids feature identi- fication (Alabassy, Safar, & El-
Kharashi, 2020; Hu et al., 2018). Finally, the features extracted are filtered to 
include only the classes we require with a Dense convolutional layer of 
dimensions (,1) as the output of the Recurrent Neural Network. The output of 
the Deep Learning module is a bounding box of all the instances of the output 
class detected, along with their poses. 

The model was compiled using TensorFlow and Keras modules and optimized 
with Keras’s in-built Adam Optimiser achieving an overall accuracy of 96.235% 
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on the test. 

Fig. 9 Flattening of RCNN 

Fig. 10 Tank Detection dataset and 94.76% accuracy on an image stream at 50Hz from 
an Intel Realsense depth camera. 

Fig. 11 Accuracy comparison between CNN and RCNN 
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Algorithm 1 Detecting Army tanks via Camera Feed 

Result: Publish ROS topics containing Poses of army tanks detected 
images   list of ROS Image messages CurrentPose list of Poses corresponding to 
nodes in the heterogeneous swarm bats list of nodes in the heterogeneous swarm 
while Iter lesser than max iterations do 
for bat in bats do 
img Subscribe to bat/camera/image raw   Append img to images. 
end 
if size of images greater than 0 then 
CurrentPose Object   Detection   using   CNN   on   images Publish 
CurrentPose as a ROS topic 
else 
continue 
end end 

2.3 Generation of Convex Hull 

The data received from the perception node is unpacked and processed by the 
plan- ner. The existence of this node is to provide the heuristic nature of the 
algorithm. It optimizes the traversal using the heuristics obtained from the 
perception node. Additionally, it condenses the homogeneous swarms into a single 
point designated as their central swarm center. It provides the goal pose for these 
centers calculated using geometrical extrapolation equations with the poses from 
the perception module as input. 

The dependency of the shape and alignment of homogeneous swarm centers on 
the input poses of the enemy line allows the algorithm to optimally compute the 
arrangement of the individual homogeneous swarm centers to cover the maximum 
area of overlap, thus making the heterogeneous swarm control heuristic. 

 
Algorithm 2 Calculating goals for the Homogeneous Swarm using Convex Hull 
Result: Goals for the homogeneous swarm clusters published on ROS  topics 
GoalPoints list  of  Coordinates  (x,y)    CurrentPose List of ROS 
Odometry messages while Iter lesser than max iterations do 
pose     Subscribe to /tank pose topics  CurrentPose[i]      pose  normalpoints 
List of points of intersection of normals on the convex hull ConvexHull  Con- 
vex Hull Equation passing through tank positions    for points  in CurrentPose 
do 
normalEqn[i] Equations of normals to the convex hull at tank positions 
intercepts[i] Points of intersection of normal equations and convex hull 
for point in intercepts do 
if point not in CurrentPose then 
Append point to GoalPoints 
else end 
end 
if size of GoalPoints greater than 0  then 
Publish GoalPoints[i] as a ROS topic 
else 
continue 
end end 
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Extensive work has been done in shape formation in swarm systems, as demon- 

strated in (Rubenstein, Cornejo, & Nagpal, 2014; Wang & Rubenstein, 2020). In 

the approach presented in (Rubenstein et al., 2014), robots are unaware of their 
global position and collectively construct a coordinate system from gradient values 
and dis- tance information. This coordinate system is used to localize their 
position and move into the required formation. 

Another approach to programming shape assemblies to swarm systems exists 
in which the algorithm forms the goal shape using two modules: the goal 

selector and the motion planner (Wang & Rubenstein, 2020). The goal selector 
chooses a goal from a set of target points given as input using local information. 
Once a valid goal is picked, the algorithm uses the motion planner node to move 
toward the goal. 

From the above-mentioned papers, we can infer that in swarm systems, shape 
assembly requires a motion planner and a goal selector which selects points 
using a local coordinate system. In this paper, we use a meta-heuristic motion 
planning algorithm optimized with a heuristic goal selector. 

2.4 Meta-Heuristic Planner for Homogeneous Swarm 

Meta-Heuristic algorithms such as Bat Algorithm and Particle Swarm  
Optimization are often associated with optimizing path planning in swarm robots. 
These optimiza- tions are beneficial in swarms when navigating to a goal 
position in an unknown environment. In this paper, we discuss an 
implementation of the Bat Algorithm for metaheuristic planning in homogenous 
swarms mainly due to its ability to solve multi- objective optimization problems 
(Xin-She, 2011; Yang & He, 2013), among other applications, which is a crucial 
characteristic required by military swarms in order to arrange themselves into 
various shapes before carrying out an attack. 

Algorithm 3 Bat Algorithm as given by Yang (2010) 

Result: Optimization of Robot Traversal Objective function f (x), x = (x1, . 
. . , xd)T 
Initialize the bat population xi(i = 1, 2, . . . , n) and vi 
Define pulse frequency fi at xi 
Initialize pulse rates ri and the loudness Ai 
while t < Max number of iterations do 
Generate new solutions by adjusting frequency and updating velocities and loca- 
tions/solutions [equations (2) to (4)] 
if (rand > ri) then 
Select a solution among the best solutions Generate a local solution around 
the selected best solution 
end 
Generate a new solution by flying randomly if ( rand < Ai&f (xi) < f (x∗)) 
then Accept the new solutions Increase ri and reduce Ai 
end 
Rank the bats and find the current best x∗ end 
Postprocess results and visualization 
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This particular implementation of the Metaheuristic Bat Algorithm uses the 
homo- geneous swarm centers generated by the heuristic planning algorithm as 
input. The goal pose of the swarm center, while acting as the destination 
coordinates for the cen- tral node in a homogeneous swarm, also determines the 
goal pose for other bots in its homogeneous swarm meta-heuristically. The 
wedged shape of each homogeneous swarm is determined by the separation that 
each agent must maintain from their respective central node. The Bat Algorithm 
is used with Algorithm 4 for accurate path planning of each swarm agent and quick 
convergence of each homogeneous swarm. 

 
Algorithm 4 Planner for each individual swarm node 

 
Result: Publish ROS topics containing velocity commands for each swarm 
node 
V elocity Output velocity for a node  GoalPosition  global goal for Homogeneous 
Swarm centre    Reigons    list of regions segmented from the LaserScan message 
while Iter lesser than max iterations do 
odom Subscribe to Odometry message of each
 swarm node 
position odom.position   orientation  odom.orientation goal 
yaw Euler angle  of  orientation along z
 axis lasermsg Subscribe to LaserScan 
 message of  each  swarm  node 
 reigons  min( 
reigons[left]),min(reigons[centre]),min(reigons[right])  Call service 
decision if distance between GoalPosition and position is lesser than 
distanceError then 
if reigons[i] lesser than 0.7 then 
V elocity Set appropriate velocity to avoid obstacle Publish V elocity to 
ROS topic /cmd vel 
else 
if Difference between yaw and orientation greater than OriError then 
V elocity Set  appropriate  velocity  to  correct  orientation  Publish 
V elocity to ROS topic /cmd vel 
else 
V elocity.angular 0 
end 
V elocity Set appropriate linear velocity as a function of distance error 
Publish V elocity to ROS topic /cmd vel 
end else 
V elocity Zero velocity  Publish V elocity to ROS topic /cmd vel 
end end 

3. Results 

The algorithm has been implemented using the Robot Operating System 
(ROS) to show proof of concept. The results have been simulated on the Gazebo 
physics engine. For ease of design, cylindrical-shaped differential drive robots 
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have been used to rep- resent each swarm agent in the simulation. Due to 
computational restrictions, the algorithm has been tested for a heterogeneous 
swarm consisting of 15 bots belonging to 3 homogeneous swarms represented by 
different colors. 

Heuristic optimization algorithms are often evaluated based on their 
convergence. However, comparing the efficiency of an algorithm directly to others 
based on this characteristic alone is not enough. To assess the performance of an 
algorithm, a bet- ter approach is to study the distribution of the number of steps 

needed to achieve convergence to the optimal state (Sun et al., 2012). 

The merit of each algorithm has been evaluated based on its ability to converge 
the 3 homogeneous swarms into the wedge formation. The algorithms have been 
evaluated by comparing the time it takes for each algorithm to converge each 
homogeneous swarm system into a wedge and the mean convergence percentage 
across iterations. In Figure [11], we depict the ideal output,i.e., the complete 
convergence of 3 homogeneous swarms. Figure [12] shows examples of failed test 
cases obtained during testing where the algorithm either failed to converge or 
converged incorrectly. 

 
Fig. 12 Case of Complete Convergence for all Homogeneous Swarms 

 
Fig. 13 Cases of Incomplete & Incorrect Convergence encountered during testing. 
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The real-time in tables 1 and 2 represents the total time taken by the hetero- 
geneous swarm to converge completely and is calculated using the real-time factor 
(RTF) along with the simulation time. Table 1 and 2 consists of RTF, simulation 
time, and real-time convergence from 30 test simulations. The number of 
iterations represents the number of times the objective function is called during 
swarm conver- gence. It also contains information about the success of 
convergence, and the overall percentage of cases converged that is updated every 
iteration. 

Table 1: Statistics and Time Analysis for Pure Meta-Heuristic Bat Algorithm 

Test 

Case 

Real 

Time 

Factor 

Simulation 

Time 

Real-

Time 
Iterations Convergence 

Sim Time 

(seconds) 

Real-

Time 

(seconds) 

Convergence 
Convergence 

(Percentage) 

1 0.26 7: 00.00 4: 14.00 82127 complete 420 254 1 100 

2 0.68 14: 39.180 23:28.464 171324 incomplete 879.18 1408.464 0 50 

3 0.73 6: 44.342 1: 34.034 55389 complete 404.342 94.034 1 66.66666667 

4 0.73 6:39.512 1: 33.187 54837 complete 399.512 93.187 1 75 

5 0.67 6: 52.526 1: 52.392 67674 complete 412.526 112.392 1 80 

6 0.61 7: 12.020 2: 38.612 86852 incomplete 432.02 158.612 0 66.66666667 

7 0.72 7:06.773 2:03.658 81565 complete 426.773 123.658 1 71.42857143 

8 0.65 6:53.057 1: 47.937 67869 complete 413.057 107.937 1 75 

9 0.67 7:05.873 2: 21.406 80701 complete 425.873 141.406 1 77.77777778 

10 0.71 6:59.320 2:08.98 74152 complete 419.32 128.98 1 80 

11 0.64 7: 26.803 2: 56.44 101625 complete 446.803 176.44 1 81.81818182 

12 0.7 7: 17.990 2: 30.550 92822 complete 437.99 150.55 1 83.33333333 

13 0.74 6: 39.570 1: 29.833 54402 incomplete 399.57 89.833 0 76.92307692 

14 0.7 6:59.240 2:03.470 74072 incomplete 419.24 123.47 0 71.42857143 

15 0.73 6: 40.505 1: 34.696 55337 incomplete 400.505 94.696 0 66.66666667 

16 0.71 6: 41.359 1: 36.783 56191 complete 401.359 96.783 1 68.75 

17 0.64 6: 41.23 1: 36.986 55855 complete 401.23 96.986 1 70.58823529 

18 0.64 6:39.974 1: 34.787 54806 complete 399.974 94.787 1 72.22222222 

19 0.64 7:31.692 1: 51.276 66524 complete 451.692 111.276 1 73.68421053 

20 0.64 6: 43.730 1: 40.835 58562 complete 403.73 100.835 1 75 

21 0.69 06: 51.46 01: 47.03 51778 complete 411.46 107.03 1 76.19047619 

22 0.67 6: 38.776 1: 38.795 53608 complete 398.776 98.795 1 77.27272727 

23 0.61 7:04.297 2:09.648 79129 complete 424.297 129.648 1 78.26086957 

24 0.7 6: 48.084 1: 48.280 62916 incomplete 408.084 108.28 0 75 

25 0.68 6:44.750 1: 41.198 59582 complete 404.75 101.198 1 76 

26 0.72 6: 49.616 1: 50.450 64448 incomplete 409.616 110.45 0 73.07692308 

27 0.66 6: 41.002 1: 43.397 55834 incomplete 401.002 103.397 0 70.37037037 

28 0.69 6: 42.445 1, 42.779 54277 complete 402.445 102.779 1 71.42857143 

29 0.69 6: 36.996 1: 31.891 51828 complete 396.996 91.891 1 72.4137931 

30 0.67 6: 51.777 1: 56.837 66009 incomplete 411.777 116.837 0 70 
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Table 2: Statistics and Time Analysis for Meta-Heuristic Bat Algorithm with Heuristic 
Optimization 

Test 

Case 

Real 

Time 

Factor 

Simulation 

Time 

Real-

Time 
Iterations Convergence 

Sim Time 

(seconds) 

Real-Time 

(seconds) 
Convergence 

Convergence 

(Percentage) 

1 0.64 6: 37.842 1.30 .172 52674 complete 397.842 90.172 1 100 

2 0.68 6: 45.546 1: 45.991 58777 complete 405.546 105.991 1 100 

3 0.63 6: 43.494 1: 45.825 58326 complete 403.494 105.825 1 100 

4 0.72 6:35.779 1: 30.205 50205 complete 395.779 90.205 1 100 

5 0.65 6: 35.490 1: 35.052 50322 complete 395.49 95.052 1 100 

6 0.74 6:36.593 1: 32.894 51425 complete 396.593 92.894 1 100 

7 0.6 6: 34.484 1: 29.776 49316 complete 394.484 89.776 1 100 

8 0.56 6: 36.639 1: 38.189 51471 complete 396.639 98.189 1 100 

9 0.6 6: 36.642 1: 36.528 51474 complete 396.642 96.528 1 100 

10 0.66 6: 42.008 1: 43.776 56840 complete 402.008 103.776 1 100 

11 0.64 6: 50.264 2: 00.00 68356 complete 410.264 120 1 100 

12 0.66 6: 36.415 1: 31.861 51247 complete 396.415 91.861 1 100 

13 0.69 6: 45.883 1: 44.785 60715 complete 405.883 104.785 1 100 

14 0.66 6:44.592 1:45.594 59424 complete 404.592 105.594 1 100 

15 0.68 6: 36.423 1: 33.533 51255 complete 396.423 93.533 1 100 

16 0.61 6:38.067 01: 46.27 52899 complete 398.067 106.27 1 100 

17 0.64 6: 41.830 1: 46.462 56662 complete 401.83 106.462 1 100 

18 0.56 6: 23.766 1: 14.042 38598 incomplete 383.766 74.042 0 94.44444444 

19 0.66 6:47.298 1: 50.934 62120 complete 407.298 110.934 1 94.73684211 

20 0.62 6: 38.552 1: 37.318 53384 complete 398.552 97.318 1 95 

21 0.62 6: 42.787 1: 40.857 57601 complete 402.787 100.857 1 95.23809524 

22 0.72 6:44.394 1: 43.510 59266 complete 404.394 103.51 1 95.45454545 

23 0.67 6: 41.691 1: 41.024 56523 complete 401.691 101.024 1 95.65217391 

24 0.68 6: 43.419 1: 45.360 58251 complete 403.419 105.36 1 95.83333333 

25 0.66 6:47.100 1: 57.824 65302 complete 407.1 117.824 1 96 

26 0.65 6: 44.785 1: 54.068 59617 complete 404.785 114.068 1 96.15384615 

27 0.67 6: 39.161 1: 38.701 53993 complete 399.161 98.701 1 96.2962963 

28 0.65 6:53.149 2:03.771 67981 complete 413.149 123.771 1 96.42857143 

29 0.58 6:24.743 1: 15.221 40241 incomplete 384.743 75.221 0 93.10344828 

30 0.65 7: 06.259 2: 26.801 81091 complete 426.259 146.801 1 93.33333333 

Assessing the efficiency of an algorithm often involves evaluating its 
convergence rate. While some research has been done to analyze the convergence 
rate of population- based random optimization algorithms, it remains an open 
problem for arbitrary objective functions due to the mathematical complexity 

involved (Sun et al., 2012). The conver- gence rate of an algorithm is defined as 
the state when all swarm nodes successfully transition from the exploratory to the 
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attack state or vice versa, as mentioned in the literature. 

The performance of both algorithms for the aforementioned parameters is 
graphi- cally depicted below: 

Fig. 14 Comparison of Simulation Time over Iterations 

Fig. 15 Comparison of Real-Time over Iterations 

Fig. 16 Comparison of Convergence over Iterations 

4. Discussion 

We can conclude that the Meta-Heuristic Bat Algorithm with Heuristic 
Optimization is efficient in practical applications via Figure 14’s demonstration of 
a mean R2 score within the limits of the Shifted Sphere evaluation criteria 

function as seen in the CEC2005 benchmark suite (Suganthan et al., 2005). A 
semi-theoretical analysis of the time complexity and convergence rate of the Meta-
Heuristic Bat Algorithm with Heuristic Optimization shows that it has superior 
convergence qualities and lower computational complexity in comparison to the 
Pure Meta-Heuristic Bat Algorithm. The algorithm’s global convergence is 
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sufficiently proved in Figure 15 to support this claim. 

Table 3: Summary of Observations 

 
Mean Simulation 
Time (Seconds) 

Mean Real-Time 
(Seconds) 

Mean Convergence 
Percentage (%) 

Pure Meta-Heuristic Bat 
Algorithm 

428.7966333 160.9543667 70 

Meta-Heuristic Bat 
Algorithm with Heuristic 

Optimization 
401.1698333 102.2114667 93.33333333 

2.5 Shortcomings 

Discussed below are some of the generally observed open perspectives (Gad, 
2022) and future research directions with respect to shortcomings that can be drawn 
from the work presented in the paper 

Premature convergence According to the literature (Xu, Wu, & Jiang, 2015; 

Yuan & Yin, 2014), when using the traditional Meta-Heuristic Swarm Optimization 
algorithm, the convergence toward a locally optimal solution occurs when the search 
is initiated through random initial conditions. This convergence can lead to deceptive 
optimization results, where both the individual particle optimum and the 
group/global optimum converge towards the local optimal solution, thereby failing to 
ensure the discovery of the global optimal solution. Consequently, the fast 
convergence capability of the algorithm is rendered ineffective. In the future, 

research could incorporate random sampling of control parameters (Sun, Song, & 
Chen, 2019), stability analysis (Bonyadi & Michalewicz, 2015), and redistributing 

mechanisms (Qi, Ju, & Xu, 2018). 

High-dimensional search space Heuristic Swarm Optimization has gained 
sig- nificant attention for its effectiveness in classifying high-dimensional data 

despite the curse of the dimensionality problem (Ali Yahya, 2018). Although 
recent studies have demonstrated the effectiveness of Heuristic Swarm 
Optimization-based feature selection, the chal- lenge remains in applying it to 

datasets with tens of thousands of features (Tran, Zhang, & Xue, 2016) due to the 
large search space. However, the Heuristic Swarm Optimization algorithm can be 
adapted to solve high-dimensional feature selection problems by selecting only a 
small set of relevant features (Gu, Cheng, & Jin, 2018), leading to similar or even 
better classification accuracy. In this area, novel approaches such as Monte Carlo 

(Beskos et al., 2017) methods have been proposed to minimize the number of 
chosen features and maximize classification accuracy in Heuristic Swarm 
Optimization applications. 

Memory requirement All swarm systems possess memory as an essential 
fea- ture. In the context of Heuristic Swarm Optimization, it is valuable to 
investigate the potential beneficial role of historical memory from an 
evolutionary perspective. 

This is because Heuristic Swarm Optimization benefits from explicit or implicit 
his- torical memory by storing promising solutions and reusing them in later 
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stages (Li et al., 2015), thus enhancing the search process (Hino et al., 2016). 
Moreover, using historical memory to generate a new inertia weight through a 
parameter adaptation mechanism presents an oppor- tunity to further improve 

Heuristic Swarm Optimization (Li, 2018). Hence, it is imperative to address the 
challenge of improving Heuristic Swarm Optimization using historical memory 

(Luo et al., 2016), and exploring ways to adaptively set the memory size can also 
be an interesting topic for future research. 

Parameter selection Effective determination of control parameters is crucial 
for achieving the best performance in Heuristic Swarm Optimization-based 
algorithms. However, it can be challenging to guide the process of parameter 
selection. To overcome this challenge, future research in this area could involve 

selecting the best parameters through simulations (Cui et al., 2017), conducting 

parametric analysis with limited computational resources (Serani et al., 2016), 

and employing heuristics (Lorenzo et al., 2017) to perform hyperparameter 
selection. 

2.6 Future Scope 

In this paper, we demonstrate the algorithm for a specific military application 
sce- nario. However, the algorithm can theoretically be extended to a wide array 
of varying applications by simply changing the data set from which the object 
detection model is trained and the heuristics are calculated. Similarly, The 
metaheuristic algorithm can be extended to arrange the homogeneous swarms 
into different formations according to the application’s requirements. 

Apart from the military application mentioned in the paper, the proposed opti- 
mization would be particularly useful in autonomous spacecraft navigation. As 
more and more spacecraft are sent into space, the need for autonomous navigation 
becomes increasingly important. The Heuristic Optimisation proposed could be 
used to help spacecraft autonomously navigate through the complex and 
unpredictable space environment. 

Additionally, Swarm robots equipped with this algorithm could explore 
abandoned mines and search for valuable minerals. In the exploratory state, 
robots can map out the mine while in the attack state, they can defend against 
potential threats or obstacles that could harm the mission. 
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