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The initial timing of extension during the Cenozoic around the northeastern margin of the Ordos Block, western North China
Craton (NCC), is still poorly constrained. Apatite (U-Th)/He low-temperature thermochronology was thus applied on eight
pre-Cenozoic granitic and gneissic samples transecting the eastern Daqingshan Mountains, northeastern margin of the Ordos
Block, to investigate the denudation and cooling event related to the onset of extension therein. Four mean corrected AHe
ages in the southern part are overlapped within the standard deviations of 50.0 ± 0.4 to 45.0 ± 8.0 Ma. However, three mean
corrected AHe ages in the northern part are prominently older of 99.2 ± 11.0 to 86.6 ± 17.1 Ma, with the rest one of 56.1
± 8.6 Ma. Altogether, they show a younger-older-younger-older pattern along the transect correlated with the normal faults.
AHe thermal history modeling results further demonstrate extensive cooling during the Late Cretaceous but differential cooling
during the Late Paleocene–Eocene. The Late Cretaceous extensive cooling in the eastern Daqingshan Mountains, as well as the
contemporaneous deposition hiatus in both the eastern Daqingshan Mountains and the Hohhot Depression, together indicates
overall denudation in the northeastern margin of the Ordos Block at that time. The Late Paleocene–Eocene differential cooling
is probably induced by the tilting of the eastern Daqingshan Mountains as a result of the extension suggested by the distribution
of AHe ages. It corresponds to the syn-tectonic subsidence in the Hohhot Depression, indicating a basin-mountain coupling.
Regional comparative analysis manifests similar extension around the Ordos Block and more widely across the NCC during the
Late Paleocene–Eocene. Temporally, kinematically, and dynamically coupled with this regional extension event, the subduction
of the Izanagi-Pacific plate probably plays a major role. However, the contribution of the India-Asia collision could not be
ignored.

1. Introduction
During the Cenozoic, much of East Asia experienced
intense intraplate deformation [1, 2], influenced by the

subduction of the Izanagi-Pacific plate under the Eurasian
plate to the east [3–5] or the collision of the Indo-Eura‐
sian plate to the southwest [6–9] or their combined effect.
Notably in the western North China Craton (NCC), the
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hinterland of East Asia, a multistage of intraplate defor‐
mation developed in the periphery of the Ordos Block
(Figure 1), forming the special “Ring-shaped” rift systems
[10–16]. In order to explore the geodynamics of the rift
systems with such a pattern, numerous geo/thermochrono‐
logical studies, structure kinematic and geometric studies,
basin analysis, and fieldwork have been carried out in
the rift basins and the adjoining mountains (Figure 1),
such as the Shanxi Rift System around the eastern and
southeastern margin [17–20], the Yinchuan Basin and the
Helanshan Mountains around the western margin [21–23],
the Hetao Basin [24–26], the Langshan and Seertengshan
Mountains around the northwestern margin [27–29], the
Wulashan and western Daqingshan Mountains [30–32]
around the northern margin, and the eastern Daqingshan
Mountains around the northeastern margin [33–35]. The
results of these researches provide important geological
evidence linking the intraplate deformation therein with
the subduction and collision of the abovementioned plates.
However, the timing of incipient extension in the north‐
eastern margin of the Ordos Block is still controversial:
one school of opinion proposed that extension was initiated
since the Miocene [16], while the others held that exten‐
sion had already started during the Eocene [36]. Obviously,
this divergence restricts the overall understanding of the
geodynamics of the rift systems around the Ordos Block
and even the intraplate deformation in the broader region
during the Cenozoic.

The northeastern margin of the Ordos Block is com‐
posed of the eastern Daqingshan Mountains and the
easternmost part of the Hetao Basin (Hohhot Depression;
Figure 1). The disagreement on the onset of extension
mainly originates from the division of the Tertiary syn-
tectonic stratigraphic sequence in the Hohhot Depression
based on drilling and seismic data [24, 25, 33, 36]. As for
the eastern Daqingshan Mountains, although the apatite
fission track (AFT) thermochronology therein displayed
Cenozoic cooling signature before Miocene [35], the causal
relationship between the Cenozoic cooling event and
extension was not directly correlated. However, the revealed
Cenozoic cooling range corresponds well to the partial
retention zone (PRZ) of the apatite (U-Th)/He (AHe) dating
system. Therefore, this paper carried out AHe thermo‐
chronology on the footwall rocks traversing the eastern
Daqingshan Mountains (Figure 2) in order to constrain
the timing of the Cenozoic initial cooling event and its
relationship with extension. It will provide new thermo‐
chronological evidence to the study of the geodynamics of
the northeastern part of the rift systems around the Ordos
Block.

2. Geological Setting
The eastern Daqingshan Mountains and the Hohhot
Depression constitute the northeastern margin around
the Ordos Block (Figure 1). Topographically, the eastern
Daqingshan Mountains, with the main peak at 2338 m
above sea level (asl), descend SE rapidly to the Hohhot
Depression at ca. 1000 m asl. They are separated by the

normal fault F1 (Figure 2). It is widely accepted that the
normal fault F1 controlled the differential uplift-denudation
of the eastern Daqingshan Mountains and subsidence-sed‐
imentation of the Hohhot Depression during the Ceno‐
zoic, forming the current basin-mountain morphotectonic
pattern [30, 34, 36]. Whereas to the NW, the eastern
Daqingshan Mountains decrease gently to the Mongolian
Plateau at ca. 1500 m asl. They are separated by the normal
fault F2 (Figure 2).

The eastern Daqingshan Mountains mainly consist
of Precambrian metamorphic rocks and Upper Juras‐
sic–Lower Cretaceous, with sporadic spread of Paleozoic
and Cenozoic sedimentary rocks (Figure 2; [37–39]).
Specifically, the Cenozoic strata contain the Pliocene clastic
rocks with calcareous nodules and gypsum interlayers and
the Quaternary alluvial deposits, slope deposits, and loess
[37]. Besides, the Early Proterozoic to Early Cretaceous
granitoids are also distributed in the study area [40–42].

The eastern Daqingshan Mountains underwent complex
extensional and compressional deformations in the Late
Mesozoic [41, 43–49], including the Panyangshan thrusts
(PST), Hohhot metamorphic core complex (MCC), and
Daqingshan thrust-nappe system (DSTS). The north-tilting
PST is located in the northeastern part of the eastern
Daqingshan Mountains to the north of Wulanheya (Figure
2). It was active during the Late Jurassic to Early Creta‐
ceous [48, 50] and carried the Archaean gneisses atop
the Late Proterozoic marbles, both of which overrode the
Carboniferous gray-black conglomerates (Figure 2). The
Hohhot MCC is located in the central part of the eastern
Daqingshan Mountains and contains three near EW-strik‐
ing detachment faults (Figure 2; [48]). Zircon U-Pb ages
of the syn-tectonic mylonitic granite and the undeformed
granite in the ductile shear zones constrain the timing of the
ductile shearing of the Hohhot MCC at deep levels between
142 and 132 Ma [41]. The DSTS contains three major
southeast-tilting thrusts (Figure 2; [48]). 40Ar/39Ar ages of
the syn-tectonic mica indicate the DSTS was active at ca.
120 Ma during its late stage [46]. However, hornblende,
mica, biotite, and k-feldspar 40Ar/39Ar ages also indicate
rapid denudation and cooling of the ductile shear zone
about the same time [45, 47–49]. Anyway, this period of
rapid denudation and cooling is considered to correlate
with the activities of either the detachment faults of the
Hohhot MCC [45, 47, 49] or the DSTS [46, 48].

The Hohhot Depression to the southeast of the east‐
ern Daqingshan Mountains is the easternmost part of the
Hetao Basin (Figure 1). The Hetao Basin is a Meso-Cen‐
ozoic rift basin located between the Ordos Block and
the Langshan, Seertengshan, and Daqing Mountains with
a convex generally toward the northwest (Figure 1). It
includes five secondary units, namely Linhe Depression
(or Jilantai Basin), Wulashan Mountain Uplift, Wuqian
Depression, Baotou Uplift, and Hohhot Depression from
west to east [26]. Borehole and geophysical studies through
lithofacies and fossil analysis have been carried out in the
Hohhot Depression [24, 25, 33, 36, 51]. Seismic interpreta‐
tion results indicate that the Cenozoic sedimentary rocks
near Hohhot are syn-tectonic with the normal fault F1
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[25], and the thickness exceeds 7000 m [36]. However, the
division of the Tertiary strata in the Hohhot depression is
debatable (Figure 2(b); from bottom to top): the Wuyuan
and Wulantuke Fm [24] or the Wulate, Linhe, Wuyuan, and
Wulantuke Fm [33]. Drilling data from He-1 near Tumote‐
zuoqi (Figure 1) indicate the Wuyuan Fm. to the Miocene
[24], whereas ostracoda, stonewort, and sporopollen fossil
from Drilling Bitan-1 near Hohhot (Figure 1) indicate
the age of the Wulate Fm. to the Late Paleocene–Early
Eocene [33]. Either way, the bottom Tertiary strata mainly
of conglomerate rocks unconformably overlie the Lower
Cretaceous.

The dividing normal faults F1 and F2 (Figure 2) are both
active during the Cenozoic [52, 53]. However, strata data
show the extension of the normal fault F1 between the
eastern Daqingshan Mountains and the Hohhot depression
is much more intense [36]. It strikes north-east-east (NEE)
with dip of ca. ∠50° measured from the outcropped fault
cliffs, on which three sets of striations are recognized: nearly
NW-SE extension in the early stage, NE-SW extension in
the middle stage, and almost N-S extension in the late stage
[16], suggesting multistage of extension. The deep seismic
reflection profile shows that the normal fault F1 is formed
by the downward merging of three high-angle normal faults
dipping to the south with a spade-shape in the deep and
cutting the Cretaceous, Tertiary, and Quaternary in the

Hohhot depression [25]. Importantly, the contact of these
normal faults with the Cenozoic strata shows syn-sedimen‐
tary [25], indicating that the activity of the normal fault
F1 is multistage as well. However, mainly owing to the
divergence about the basal Tertiary strata, the timing of the
initial extension is accordingly in dispute: the Eocene [36]
or Miocene [16]. Paleo-earthquake data further indicate
that it is still active currently [52]. In addition, the normal
fault F2 between the eastern Daqingshan Mountains and
the Mongolian Plateau (Figure 2) has a long-term activ‐
ity history since the Mesoproterozoic [53]. It is probably
reactivated during the Cenozoic as an accommodation of
the normal fault F1 [53].

3. Sampling and Method
Eight samples were collected along the NW-SE orienta‐
ted Kuisu-Dalanqi profile across the eastern Daqingshan
Mountains (Figure 2). Sample D18-11 is the Early Cre‐
taceous mylonitic granite collected in the ductile shear
zone of the Hohhot MCC with obvious foliation and
lineation (Figure 3(a)). Samples D18-16 and D18-17 are
granitic gneiss dated back to Paleoproterozoic (Figures
3(d)–3(e)). The other samples, D18-12 to D18-14 (Figures
3(b)–3(c)) and D18-22 to D18-24 (Figures 3(f)–3(i)) are
granite emplaced during the Early Cretaceous and Permian,

Figure 1: DEM map of the Ordos block with simplified structures and indications of the Paleocene-Eocene denudation events demon‐
strated by thermochronological studies and contemporaneous strata nearby. Simplified structures are modified after References 16, 19.
Abbreviations: Mt, Mountains; DQS, the Daqingshan Mountains.
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respectively. Their elevations increase from 1249 to 1800 m
and then decrease to 1599 m northwestward (Table S1).
Four samples are located on the top and the southern slope
(the southern part), and the rest four samples are located on
the northern slope (the northern part; Figure 4).

AHe dating was conducted in 40Ar/39Ar and (U-
Th)/He geochronology laboratory, Institute of Geology
and Geophysics, Chinese Academy of Sciences. After
the standard rock crushing and heavy liquid separation
procedures, five relatively euhedral, intact, and transparent
apatite grains free of visible inclusions and internal fractures
were selected and measured under a microscope. Due
to the limited quality of apatite grains from these sam‐
ples, some translucent or slightly broken grains or grains
with small inclusions were still picked, whose impacts on
AHe ages are discussed in the section of results. After
measurement of the length and width, each grain was
then wrapped in a 1 mm × 1 mm platinum (Pt) capsule
and loaded on a drilled oxygen-free copper disk. Helium
measurement was performed using a fully automatic helium
extraction system called Alphachron MK II (Australian
Scientific Instrument Pty Limited). After helium extraction,

Pt wrapped grains were transferred to Savillex PFA vials and
spiked with 230Th-235U solution with known concentration.
All the spiked solutions were measured on a Thermo Fisher
X-Series II inductively coupled plasma mass spectrometry.
Age calculation was conducted by a java-based program
named Helioplot [54] and corrected for alpha ejection
following the procedure of Gautheron et al. [55]. MK-1
apatite [56, 57] was used as a reference standard to verify
the analytical procedure. A detailed analytical procedure
was described by Wu et al. [56, 58].

AHe thermal history modeling was carried out using
HeFty software (1.9.0 version; [59]). Measured single-grain
AHe ages, the content of U and Th, and grain size (Rs)
were imported. The radiation damage accumulation and
annealing model [60] was adopted. Monte Carlo method
was chosen as the searching method, and 100,000 path
was tried in each modeling. The present-day temperature
was set as 10 ± 10°C. The start time and temperature
were set as 140–120 Ma and 140–120°C, much older than
the oldest single-grain AHe age and higher than the AHe
closure temperature, respectively. Notably, the analysis of
AHe thermal history modeling results in this study was

Figure 2: (a) Geological and structural map of the eastern Daqingshan Mountains overlapped on the DEM map, Mesozoic structures are
modified after Reference 48, Cenozoic structures are modified after References 36, 37, 40Ar/39Ar data are from References 14, 47, 48, AFT
data are from References 34, 35, 47, Age unit: Ma; (b) Cenozoic stratal sequences of the Hohhot Depression based on two different division
schemes, the thickness value of Quaternary is not given in Reference 33 and that from Reference 24 is referred in the middle column.
Abbreviations: PST, the Panyangshan thrusts; DST, the Daqingshan thrust; HT, the Huangtuyaozi-Majiadian-Deshengying thrust; WT, the
Wusutu-Huanghuawopu-Suletu thrust; DDF, the Deshengying detachment fault; XJDF, the Xiaojing detachment fault; HHDF, the Hohhot
detachment fault; Hbl, hornblende; Ser, sericite; Ms, muscovite; Bt, biotite; Kfs, k-Feldspar; Sa, sanidine; E1, Paleocene; E2, Eocene; E3,
Oligocene; N1, Miocene; N2, Pliocene.

4 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/lithosphere_2023_166/5958382/lithosphere_2023_166.pdf
by guest
on 15 November 2023



mainly based on the general trend of the acceptable and
good fit paths, despite that the best-fitting and weighted
lines were also presented which served as the reference
frame.

4. Results
4.1. AHe Ages. Corrected single-grain AHe ages of
eight samples range from 152.3 ± 8.0 to 30.4 ± 1.6 Ma
(Table S2). They present large intrasample dispersions. The
intrasample dispersion usually arises from the analysis
of the broken crystals [61], the presence of mineral and
fluid inclusions [62], the variation in grain sizes [63], the
radiation damage [60, 64], and the zonation of U-Th [65].
Specifically, AHe ages of grains D18-11-A1, D18-11-A5, and
D18-23-A4 are anomalously younger than those of other
grains in each sample (Table S2). This is probably owing to
the breakage of these three grains (Figures 5(a) and 5(h))
as demonstrated in Brown et al. [61]. Grains D18-12-A4,
D18-14-A2, D18-14-A5, D18-16-A3, and D18-23-A5 are
translucent under the microscope (Figures 5(b)–5(d) and

5(h)). Their AHe ages are significantly older than the other
grains in each sample (Table S2). Undetected mineral or
fluid inclusions may exist in these three grains [62]. Apart
from the breaking of grains and mineral or fluid inclu‐
sions, intrasample dispersion of single-grain AHe ages also
could be related to grain size [63] and radiation damage
[60, 64]. To explore the possible effects of grain size and
radiation damage, AHe raw age versus Rs (grain spherical
equivalent radius) and eU (effective uranium; Table S2)
was plotted for the rest single grains (Figure 6). Samples
D18-12, D18-14, and D18-24 display a roughly positive
correlation between single-grain AHe ages and Rs (Figure
6(a)). Dispersions in these three samples may be partially
caused by the differences of grain sizes. Samples D18-11,
D18-17, and D18-22 show a roughly positive correlation
between single-grain AHe ages and eU (Figure 6(b)). These
three samples may be slightly affected by the radiation
damage effect. Furthermore, samples D18-11 and D18-17
are mylonitic granite and granitic gneiss, respectively. Their
intrasample dispersions may be also resulted from the
lattice damage formed during the deformation, similarly

Figure 3: Field photos of the sampled granitic and gneissic plutons.
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as the radiation damage [64]. In addition, single-grain
AHe ages of samples D18-16 and D18-23 show no clear
correlation between Rs and eU (Figure 6). Their dispersions
are probably a combined effect of Rs [63], eU [60, 64],
undetected inclusions [62], and U-Th inhomogeneity [65].
Nevertheless, excluding the above eight outliers, the relative
standard deviations of the eight samples for corrected AHe
ages are all ≤20% (11%–20%), satisfied with the criteria to
calculate mean AHe ages [66].

Eight samples yield mean corrected AHe ages ranging
from 99.2 ± 11.0 to 45.0 ± 8.0 Ma (Table S2). They could
be divided into two groups: (1) three in the first group with
almost the same age of Late Cretaceous (99.2 ± 11.0 to 86.6
± 17.1 Ma) and dispersed over an elevation range from 1730
to 1599 m; (2) five in the second group with almost the
same age of Late Paleocene–Early Eocene (56.1 ± 8.6 to 45.0
± 8.0 Ma) distributed over a vertical range of 1800–1249 m
(Figure 7). AHe ages in the first group are prominently
older than those in the second group (Figure 7). Moreover,
three samples in the first group are all distributed in the
northern part of the eastern Daqingshan Mountains (Figure
4). Four samples in the second group are spread in the
southern part of the eastern Daqingshan Mountains, with
the other one in the northern part (Figure 4).

4.2. AHe Thermal History Modeling Results. Constraints
were set according to the geological conditions of the
eastern Daqingshan Mountains as well as that of the
Hohhot Depression from the viewpoint of basin-moun‐
tain coupling. For samples with the Late Cretaceous AHe
ages, one constraint was roughly set as 100–65 Ma on
time and 80–40℃ (AHe PRZ; [67]) on temperature given
the absence of the Late Cretaceous strata in the eastern
Daqingshan Mountains (Figure 2). These samples were
speculated to cool rapidly through the AHe PRZ during
the Late Cretaceous. For samples with the Late Paleo‐

cene–Early Eocene AHe ages, the Tertiary sedimentation
in the Hohhot Depression was also taken into considera‐
tion, assuming the provenance of the Cenozoic sediments
in the Hohhot Depression was mainly derived from the
eastern Daqingshan Mountains. However, considering the
divergence about the Tertiary bottom strata in the Hohhot
Depression (Figure 2): the Miocene Wuyuan Fm [24] or the
Late Paleocene–Early Eocene Wulate Fm [33], constraints
were separately set in two scenarios to explore the most
likely time-temperature paths. In scenario 1, samples were
speculated to cool across the bottom limit of the AHe PRZ
during the Late Cretaceous and the upper limit of the AHe
PRZ during the Miocene. Two constraints were roughly set:
100–65 Ma on time and 80–40°C on temperature and 20–5
Ma on time and 60–0°C (60°C is used to generally represent
the middle of the AHe PRZ) on temperature. In scenario 2,
samples were speculated to cool rapidly through the AHe
PRZ during the Late Paleocene–Early Eocene, and only one
constraint was set as 60–45 Ma on time and 80–40°C on
temperature.

For samples with the Late Cretaceous AHe ages, all
the thermal history modeling obtains acceptable (ACC)
and good fit paths. The GOF (good of fitness) values
range from 0.99 to 0.18. The thermal history modeling
results mainly indicate cooling through the AHe PRZ
during the Late Cretaceous (Figure 8). For samples with
the Late Paleocene–Early Eocene AHe ages, only thermal
history modeling of D18-11, D18-14, and D18-24 gets both
acceptable and good fit paths, but all acquires abundant
acceptable paths. The GOF values range from 1.00 to
0.14. Notably, acceptable paths obtained in scenario 2
outnumber those in scenario 1 (Figure 9). The thermal
history modeling results acquired in scenario 2 demonstrate
cooling through the AHe PRZ during the Late Paleo‐
cene–Eocene (Figures 9(a2)–9(e2)). Moreover, the thermal
history modeling results acquired in scenario 1 show

Figure 4: DEM slice along the Kuisu-Dalanqi transect with the speculative model of the Late Paleocene–Eocene extension, tilting, and
differential denudation in the eastern Daqingshan Mountains. Sample position and mean corrected AHe ages are indicated. PRZ indicates
the AHe partial retension zone.
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cooling into the AHe PRZ during the Late Cretaceous and
from the AHe PRZ to above the AHe PRZ during the

Late Paleocene–Eocene but not the Miocene (Figures 9(a1)–
9(e1)). To conclude, the AHe data obtained in this study are

Figure 5: Photomicrographs of the analyzed apatite grains under reflected light with an indication of their sizes and corrected single-grain
AHe ages (Ma) in the rectangle, among which AHe ages in red indicate the outliers.
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Figure 6: Relationship between raw single-grain AHe ages and Rs as well as eU.

Figure 7: AHe age-elevation relationship in the eastern Daqingshan Mountains. Black and dark gray circles indicate samples in the
southern and northern parts of the eastern Daqingshan Mountains, respectively; solid circles indicate the mean corrected AHe ages of each
sample; hollow circles indicate the single-grain corrected AHe ages of each sample. Light gray rectangles show the overlap of the mean
corrected AHe ages within the standard deviations.
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in better agreement with scenario 2, and the Late Paleo‐
cene–Eocene cooling in the eastern Daqingshan Mountains
is demonstrated in both scenarios (Figure 9).

5. Discussion
AHe thermal history modeling results indicate two periods
of cooling after the Early Cretaceous denudation and
cooling event [45–49]: the Late Cretaceous and the Late
Paleocene–Eocene (Figure 10).

5.1. The Late Cretaceous Denudation/Cooling Event and
Its Tectonic Implications. The Late Cretaceous cooling in
the northern part of the eastern Daqingshan Mountains,
displayed by AHe thermal history modeling results, is
in accord with the ca. 100–90 Ma cooling event in
the southern part of the eastern Daqingshan Mountains
revealed by AFT thermal history modeling results (Figure
10; [34, 35]). This temporal overlap indicates widespread
cooling in the eastern Daqingshan Mountains during the
Late Cretaceous. Sedimentologically, the Upper Cretaceous
is neither exposed in the eastern Daqingshan Moun‐
tains nor in the Hohhot Depression. The eastern Daqing‐
shan Mountains and the Hohhot Depression around the
northeastern margin of the Ordos Block might experience
overall uplift and denudation at that time. Notably, the
Tertiary basal strata in the Hohhot Depression directly
overlie the Lower Cretaceous unconformably. Altogether,
the wholescale denudation probably occurred at least
during the Late Cretaceous.

Regionally, the Late Cretaceous denudation and cooling
event is also reported in the Ordos Basin [68] and other
peripheral mountains: the Langshan and Seertengshan
Mountains, northwestern margin [28, 29]; the western
Daqingshan Mountains, northern margin [30]; the north-
central part of the Shanxi Rift Systems, eastern margin
[69]; the Taibai Mountains, southeastern margin [70]; and
the Helanshan Mountains, western margin [23]. To the
east of the Ordos Block, the Yanshan Mountains [71,
72], the Taihangshan Mountains [73, 74], the Jiaodong
Peninsula [75, 76], and Yanji area [77] in the eastern part
of the NCC experienced denudation and cooling during
the Late Cretaceous as well. The abovementioned Late
Cretaceous denudation and cooling events are temporally
overlapped with the denudation and planation that leads
to the formation of the Beitai Planation Surface preserved
in the Taihangshan Mountains, the timing of which was
constrained by the youngest known stratum subjected to
planation (ca. 97 Ma) and the oldest known stratum in
the overlying weathering crust (ca. 54 Ma) [78]. Mean‐
while, the weathering crust in the bottom of the Bohai
Bay Basin (BBB) underlying the Paleocene Lower Kong‐
dian Fm. also implies Late Cretaceous denudation therein
[79, 80]. Consequently, the Late Cretaceous denudation is
probably widespread in both the western and eastern parts
of the NCC. It agrees well with the prevailing absence of
the Upper Cretaceous across the NCC. Such a regional
event is probably reflective of the overall uplift of the NCC
and concomitant planation during the Late Cretaceous. It

temporally corresponds to the late stage of the “Yanshan
Orogeny” in East Asia which is featured by weak NW-SE
compressional deformations and basin inversion (100–83
Ma; [81, 82]). The intensification of the westward subduc‐
tion of the Izanagi-Pacific Plate under East Asia during
the early Late Cretaceous and the collision between the
Okhotomorsk Block and the East Asian around ca. 100 Ma
were probably responsible [3, 83].

5.2. The Late Paleocene–Eocene Denudation/Cooling Event
and Its Tectonic Implications

5.2.1. The Late Paleocene–Eocene Denudation/Cooling
Event. Thermal history modeling results of samples with
the Late Paleocene–Early Eocene AHe ages indicate the
Late Paleocene–Eocene cooling in the eastern Daqing‐
shan Mountains (Figure 9). Although the relatively small
elevation range (ca. 500–600 m) of samples is insufficient
to exhume the break, the Late Paleocene–Early Eocene AHe
ages are overlapped within the standard deviations and do
not show any trend of a slow denudation in the age-eleva‐
tion correlation (Figure 7), suggesting the elevation range
represent a part of rapid denudation. Besides, previous AFT
results indeed displayed Cenozoic cooling signature before
Miocene in the southern part of the eastern Daqingshan
Mountains (Figure 10; [35]). All in all, rapid denudation
and cooling during the Late Paleocene–Eocene in the
eastern Daqingshan Mountains is preferred in this study.

Notably, only one sample with the Late Paleocene–Early
Eocene AHe age is distributed in the northern part of
the eastern Daqingshan Mountains (Figure 4), suggesting
relatively weak denudation and cooling therein than that
in the southern part of the eastern Daqingshan Mountains
during the Late Paleocene–Eocene.

5.2.2. The Initiation of the Extension Around the Northeast‐
ern Margin of the Ordos Block During the Cenozoic. Several
fault cliffs of the normal fault F1 are outcropped along the
southern piedmont of the eastern Daqingshan Mountains
with relatively steep dips of ca. ∠50° [16]. Three sets
of striations on the fault cliffs [16] suggest multistage
of extension. The syn-tectonic Cenozoic strata in the
Hohhot Depression demonstrated by the geophysical data
[25] also correspond to the multistage of activities of
the normal fault F1. In particular, the basal conglomer‐
ate rocks of the Tertiary strata uncomfortably overlying
the Lower Cretaceous suggest the timing of initial exten‐
sion between the eastern Daqingshan Mountains and the
Hohhot Depression to be Miocene or Late Paleocene–Early
Eocene [24, 33].

Notably, the differential denudation during the Late
Paleocene–Eocene in the eastern Daqingshan Mountains
is probably dominated by the normal fault F1, indicated
by the relationship between the pattern of AHe ages and
the normal faults F1 and F2. AHe ages show a younger-
older-younger-older pattern from the footwall of F1 to the
hanging wall of F2 (Figure 4) along the transect, conforming
to the tilting and following differential denudation caused
by the activities of the normal faults F1 and F2. Gener‐
ally, rocks in the fault zone of the normal fault would be
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differentially exhumed along with the downward movement
of the hanging wall, whereas rocks on the footwall may
also suffer from differential denudation caused by the tilting
of the fault plane which is usually brought about in faults
with steep dips (Figure 4). Samples D18-11 and D18-12
are in the fault zone of F1. Samples D18-14 to D18-16
and D18-24 are on the footwall of F1 and F2, respec‐
tively. The rapid cooling of samples D18-11 to D18-12 and
D18-14 to D18-16 from below the AHe PRZ to above the
AHe PRZ is probably caused by the downward movement
of the hanging wall and the tilting of the footwall of
F1 with subsequent denudation (Figure 4). As a result,
their AHe ages are similarly younger, and AHe thermal
history modeling results show rapid cooling during the
Late Paleocene–Eocene (Figures 9(a)–9(d)), which might
represent the timing of the activity of F1. However, the
activity of the normal fault F2 might not be as intensive
as F1, as only one sample D18-24 was denudated from
the AHe PRZ to above the AHe PRZ by the downward
movement of the hanging wall of F2 (Figure 4) and kept the
record of previous Late Cretaceous denudation and cooling
(Figure 9(e)). Whereas samples D18-17 and D18-22, far
away from F1 and F2, might be hardly influenced by the
activity of both normal faults (Figure 4). Thus, their AHe
ages are similarly older and only keep records of previous

Late Cretaceous denudation and cooling (Figure 8). As
with D18-23, it is on the hanging wall of F2 and more
far away from F1, the only record of previous Late Creta‐
ceous denudation and cooling is retained as well (Figure
8). To conclude, the spatial pattern of AHe ages across
the eastern Daqingshan Mountains is consistent with the
differential denudation induced by the faulting and tilting of
the normal faults F1 and F2.

On these grounds, the differential denudation during
the Late Paleocene–Eocene in the eastern Daqingshan
Mountains shares the same dynamics with the syn-tectonic
Tertiary strata in the Hohhot Depression. Moreover, it is
temporally overlapped with the Wulate Fm. Correspond‐
ingly, the normal fault F1 was probably initiated during
the Late Paleocene–Eocene and triggered the tilting and
resultant differential denudation in the eastern Daqingshan
Mountains and the subsidence of the Hohhot Depression.
The eroded materials were probably deposited in the nearby
Hohhot Depression and formed the syn-tectonic deposition
of the Wulate Fm. The normal fault F2 was also reactivated
to accommodate the mass movement [53]. The embryo of
the current mountain-basin system around the northeastern
margin of the Ordos Block was then shaped (Figure 4).

5.2.3. Tectonic Implications. Temporal and dynamic
coupling between the Late Paleocene–Eocene denudation
in the eastern Daqingshan Mountains and the syn-tectonic
deposition of the Wulate Fm. in the Hohhot Depression
suggests that extension probably had already occurred
around the northeastern margin of the Ordos Block during
the Late Paleocene–Eocene. Regionally, Paleocene–Eocene
denudation and cooling event in the Lvliangshan, Huoshan,
Zhongtiaoshan, Huashan, and Taibai Mountains [19, 20,
84–87] and Paleocene–Eocene deposition in the Weihe-
Lingbao Basins [18] are also reported, together with the
compilation of AFT and AHe ages centering at 38 Ma
[19], indicating widespread Eocene extension in the Shanxi
Rift System, eastern and southeastern margin of the Ordos
Block (Figure 1). The Cenozoic extension and syn-tectonic
deposition also initiated during the Eocene in the Yinchuan
Basin, western margin of the Ordos Block ([22]; Figure
1). The syn-tectonic Wulate Fm. in the Linhe Depression
of the Hetao Basin [26] and cooling in the Langshan [28]
and Seertengshan Mountains [29] around the northwest‐
ern margin and the cooling in the western Daqingshan
Mountains [30, 31] around the northern margin of the
Ordos Block occurred in the Late Paleocene–Eocene as
well (Figure 1). More widely, the Bohai Bay Basin to the
east of the Ordos Block suffered from intensive rifting and
deposition during the Paleocene–Early Eocene ([88–90],
along with dispersed cooling around the Bohai Bay Basin,
including the Yanshan Mountains, the Taishan Mountains,
the Jiaodong Peninsula, the Subei Basin, the Hefei Basin,
the Qinling–Dabie Mountains, and the Taihang Mountains
(58, 71, 74 and references therein, 91–97; Figure 1). Notably,
the orientation of the aforesaid Eocene extension across
the NCC is similarly NW-SE [12, 16]. Striations on the
fault cliffs of the normal fault F1 in the eastern Daqingshan
Mountains also indicate nearly NW-SE extension in the

Figure 8: AHe thermal history modeling results of samples with
the Late Cretaceous AHe ages. Blue rectangles indicate constraints.
Green and magenta curves indicate the acceptable and good fit
paths, respectively; black and bold curve indicates the best fit
model; blue and bold curve indicates the weighted mean path.
Semitransparent vertical gray band indicates the Late Cretaceous
cooling event. APRZ, AHe partial retention zone.
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early stage [16], suggesting that the eastern Daqingshan
Mountains is controlled by a likely unified geodynamics
mechanism within the NCC during the Eocene.

Geodynamically, the Izanagi-Pacific plate to the east was
subducted along the eastern margin of East Asia during
the Cenozoic [3, 5, 98, 99]. The subduction rate reduced

significantly with the direction changing from N-NNW
to NW about 50 Ma ago [3] or with the transition of
the subducted plate from the Izanagi plate to the Pacific
plate in the process of the ridge subduction around 56–46
Ma [5]. The Eocene extension across the NCC is coinci‐
ded kinematically and temporally with the northwestward

Figure 9: AHe thermal history modeling results of samples with the Late Paleocene–Early Eocene AHe ages. Blue rectangles indicate
constraints. Green and magenta curves indicate the acceptable and good fit paths, respectively; black and bold curve indicates the best fit
model; blue and bold curve indicates the weighted mean path. Semitransparent vertical gray band indicates the Late Paleocene–Eocene
cooling event. APRZ, AHe partial retention zone.
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subduction of the Izanagi-Pacific plate and the decrease
in subduction rate. Dynamically, the reduction of the
compressive stress triggered by the deceleration of the
subduction also agrees with the extension in the overly‐
ing plate. Therefore, the subduction of the Izanagi-Pacific
plate probably plays a major role in the Eocene exten‐
sion across the NCC. However, the continued India-Asia
collision to the southwest substantially influenced the
Cenozoic evolution of East Asia (1, 82 and references
therein, 100) as well. The Eastern Kunlun, Altyn, Qilian,
and Western Qinling Mountains were rapidly denudated
around 54–50 Ma with sedimentation in adjacent basins
and thrusting or strike slipping of the bounded faults
[101–106] in the northern and northeastern Tibet Plateau,
despite that substantial surface uplift to high elevations of
the Kunlun Mountains and the northern Tibet probably
occurred after ca. 25 Ma (9 and references therein). The
far-field effect of the India-Asia collision is probably almost
synchronously transmitted northeastward to the NCC, and
the resulting eastward lateral mantle flow may contribute to
the widespread Cenozoic extension in eastern China [107].
Accordingly, the influence of the India-Asia collision could
not be ignored.
6. Conclusions
AHe ages are reported for the first time on eight granitic and
gneissic samples across the eastern Daqingshan Mountains
around the northeastern margin of the Ordos Block, western

NCC. Eight mean corrected AHe ages range from 99.2 ± 11.0
to 45.0 ± 8.0 Ma. Specifically, four mean corrected AHe ages
in the southern part of the eastern Daqingshan Mountains
are overlapped within the standard deviations between 50.0
± 0.4 and 45.0 ± 8.0 Ma. However, three mean corrected
AHe ages in the northern part of the eastern Daqingshan
Mountains are obviously older of 99.2 ± 11.0 to 86.6 ±17.1
Ma with the rest one of 56.1 ± 8.6 Ma. Along the sampled
transect, mean corrected AHe ages show a younger-older-
younger-older pattern which correlates with the normal faults
F1 and F2. AHe thermal history modeling results demon‐
strate widespread cooling during the Late Cretaceous and
differential cooling during the Late Paleocene–Eocene in the
eastern Daqinghsan Mountains. The Late Cretaceous cooling
is probably resulted from contemporaneous wholescale uplift
and denudation of the NCC. The Late Paleocene–Eocene
differential cooling and the relationship between the spatial
pattern of AHe ages and the normal faults are probably caused
by the activity of the normal faults, accompanied by the
titling and differential denudation of the eastern Daqingshan
Mountains. Regional comparative analysis indicates that the
Late Paleocene–Eocene extension occurred widely across
the NCC and is temporally, kinematically, and dynamically
coupled with the subduction of the Izanagi-Pacific plate.
The subduction of the Izanagi-Pacific plate is probably
dominantly responsible for this regional extension event,
whereas the effect of the India-Asia collision could not be
neglected.

Figure 10: Thermochronological T-t paths in the eastern Daqingshan Mountains. Gray straight-lines A, B, C, E, and G indicate the
Miocene, Oligocene, Eocene, Late Cretaceous, and Early Cretaceous cooling events in the southern part of the eastern Daqingshan
Mountains shown by the AFT thermal history modeling results from References 34, 35 and the 40Ar/39Ar ages from References 47, 48. Black
straight-line D and black dotted straight-line F indicate the Late Paleocene–Eocene and Late Cretaceous cooling events in the southern
and northern parts of the eastern Daqingshan Mountains, respectively, shown by the weighted mean paths from the AHe thermal history
modeling results in this study. Abbreviations: Hbl, hornblende; Ser, sericite; Ms, muscovite; Bt, biotite; Kfs, k-Feldspar; APAZ, AFT partial
annealing zone; APRZ, AHe partial retention zone.
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