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1. Introduction and preliminaries

In general commutators are undefined in semirings. However, this notion is well defined in a special
class of semirings called MA-semirings, therefore Lie theory and other related notions can be studied
in semirings. Javed et al. [1] defined MA-semiring as an additive inverse semiring S with absorbing
zero ′0′ satisfying A2 condition of Bandlet and Petrich [2] that is u + u

′

∈ Z(S ) for all u ∈ S , where u
′

is
the pseudo inverse of u ∈ S , and Z(S ) is the center of S . The class of MA-semirings properly contains
the class of rings, meaning every ring is an MA-semiring while converse may not be true (for more
detail, and examples of MA-semirings, we refer reader to [3–7]).

Theory of ideals has become a notion of special worth in certain algebras and ring theory. Several
ideals, such as prime ideals, k-ideals, Q-ideals, Quasi-ideals, Jordan ideals, Lie ideals have been
defined and studied for different types of algebraic structures (for ready reference one can see [8–13]).
An ideal I of a semiring S is called prime if for a, b ∈ S , aS b ⊆ I implies either a ∈ I or b ∈ I. An
ideal I of a semiring S is said to be a Q-ideal if there exists a partitioning subset Q of S such that
S =
⋃
{q + I : q ∈ Q} and if q1, q2 ∈ Q, then (q1 + I)

⋂
(q2 + I) , φ if and only if q1 = q2 (see [9]). An
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ideal I of a semiring S is said to be k-ideal if a + b ∈ I and b ∈ I, then a ∈ I. In fact, every Q-ideal is
k-ideal but converse may not be true in general (see [8]). Throughout the sequel by IQ, we mean prime
Q-ideal unless mentioned otherwise.

Derivations and its generalized formats defined for any algebraic structure have become a very rich
area of investigation and researchers have contributed a remarkable work on it (for reference, one can
see [1, 3, 14–18]). A derivation is an additive mapping d : S −→ S such that d(ut) = d(u)t + ud(t).
An additive mapping Gd : S −→ S fulfilling Gd(tu) = Gd(t)u + td(u) is a generalized derivation
associated with a derivation d. The commutator and Jordan product of t, u ∈ S are respectively defined
as [t, u] = tu + u

′

t and t ◦ u = tu + ut. For the sequel, we state some useful identities of MA-semirings:
For all t, u, v ∈ S , we have [tu, v] = t[u, v] + [t, v]u, [t, tu] = t[t, u], [t, u] + [u, t] = u(t + t

′

) = t(u + u
′

),
[t, uv] = [t, u]v + u[t, v], [t, u]

′

= [t, u
′

] = [t
′

, u], (tu)
′

= t
′

u = tu
′

, t ◦ (u + v) = t ◦ u + t ◦ v. For more
on MA-semirings, we refer [1, 3].

A ring R is commutative if and only if [u, v] = 0, for all u, v ∈ R. However, in the case of an MA-
semiring, the sufficiency of the above said statement is valid while the necessity part may not be true
in general. One can find many reasonable examples in support of this statement. To make it more easy
to understand: in rings [u, u] = 0 but in MA-semirings [u, u] = 0 may not hold in general. Nadeem and
others [19] proved some results on commutativity of Quotient rings enforced by generalized derivations
satisfying different identities on prime ideals. In this paper we prove these results for MA-semirings.

2. Main results

Unless otherwise specified, in the sequel, we refer to Gd as a generalized derivation associated with
a derivation d.

Theorem 2.1. Let (S ,+, .) be an MA-semiring and IQ be a prime Q-ideal of S . Then the set S/IQ =

{u + IQ : u ∈ S } forms an MA-semiring with respect to the addition ⊕ and multiplication � defined by

(1) (u + IQ) ⊕ (t + IQ) = u + t + IQ,

(2) (u + IQ) � (t + IQ) = u.t + IQ,

for all u, t ∈ S .

Proof. We only verify A2 axiom of Bandlet and Petrich [2], the other axioms of the definition of MA-
semiring are straightforward. For this let u + IQ, t + IQ ∈ S/IQ. Then

[(u + IQ) ⊕ (u + IQ)
′

] � (t + IQ)

= [(u + IQ) ⊕ (u
′

+ IQ)] � (t + IQ)

= [(u + u
′

+ IQ)] � (t + IQ)

= (u + u
′

)t + IQ = t(u + u
′

) + IQ

= (t + IQ) � [(u + IQ) ⊕ (u
′

+ IQ)]

= (t + IQ) � [(u + IQ) ⊕ (u + IQ)
′

].

Thus, (S/IQ,⊕,�) is an MA-semiring. �

The following theorem is an extension of Lemma 1.2 of [19].
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Theorem 2.2. Let IQ be a prime Q-ideal of an MA-semiring S . If

(1) [t, u] ∈ IQ or

(2) t ◦ u ∈ IQ,

for all t, u ∈ S , then S/IQ is a commutative MA-semiring.

Proof. (1). Based on the hypothesis, we have [t, u] ∈ IQ, for all t, u ∈ S . As 0 ∈ IQ ⊆ S , therefore
[t, u] + IQ = IQ and therefore by the addition and multiplication in S/IQ,we can write IQ = (t + IQ)(u +

IQ) + (u + IQ)(t
′

+ IQ). Hence (t + IQ)(u + IQ) = (u + IQ)(t + IQ). This shows that S/IQ is commutative.
(2). Using the same reasoning as above, we have

(t + IQ)(u + IQ) + (u + IQ)(t + IQ) = IQ, (2.1)

which further implies
(t + IQ)(u + IQ) = (u + IQ)(t

′

+ IQ). (2.2)

In (2.1) substituting ur for u, we get [(t+IQ)(u+IQ)](r+IQ)+(u+IQ)[(r+IQ)(t+IQ)] = IQ and using (2.2),
we obtain [(t+IQ)(u+IQ)](r+IQ)+[(u+IQ)(t

′

+IQ)](r+IQ) = IQ. Therefore [(t+IQ), (u+IQ)](r+IQ) = IQ.
As IQ is prime and IQ , S , therefore [t, u] + IQ = [(t + IQ), (u + IQ)] = IQ. By the first part, we conclude
that S/IQ is a commutative MA-semiring. �

Corollary 2.1. Let S be a prime MA-semiring S . If

(1) [t, u] = 0 or

(2) t ◦ u = 0,

for all t, u ∈ S , then S is a commutative MA-semiring.

Remark 2.1. If S/IQ is commutative, then it has no nonzero zero divisors. Indeed, suppose that
IQ = (t + IQ)(u + IQ). Then IQ = tu + IQ which implies that tu ∈ IQ. As IQ is prime, either t ∈ IQ

or u ∈ IQ and therefore either t + IQ = IQ or u + IQ = IQ.

Following result is an extension of Proposition 1.3 of [19].

Theorem 2.3. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation
satisfying

[t,Gd(t)] ∈ IQ (2.3)

for all t ∈ S , then either S/IQ is a commutative or d(S ) ⊆ IQ.

Proof. Linearizing (2.3), we get [t,Gd(u)] + [t,Gd(t)] + [u,Gd(t)] + [u,Gd(u)] ∈ IQ. As IQ is prime
Q-ideal, again using (2.3) and the fact that IQ is a k-ideal, we obtain

[t,Gd(u)] + [u,Gd(t)] ∈ IQ (2.4)

for all t, u ∈ S . Substituting ut for u in (2.4), we get [t,Gd(ut)]+[ut,Gd(t)] ∈ IQ and using MA-semiring
identities, we can write

[t,Gd(u)]t + [t, u]d(t) + u[t, d(t)] + u[t,Gd(t)] + [u,Gd(t)]t ∈ IQ,
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which further implies
[t, u]d(t) + u[t, d(t)] ∈ IQ. (2.5)

Substituting vu for u in (2.5) and again using (2.5), we obtain [t, v]ud(t) ∈ IQ (i.e [t, v]S d(t) ⊆ IQ). As
IQ is prime, we have either [t, v] ∈ IQ for all t, v ∈ S or d(t) ∈ IQ for all t ∈ S . By Theorem 2.2, we
have either S/IQ is commutative or d(S ) ⊆ IQ. �

Theorems 2.4–2.8 are the extended version of the corresponding results proved in [19].

Theorem 2.4. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation of S
such that

Gd(tu) + Gd(t)Gd(u) ∈ IQ, (2.6)

for all t, u ∈ S . Then either S/IQ is commutative or d(S ) ⊆ IQ.

Proof. In (2.6) substituting uw for u, we get Gd(tuw)+Gd(t)Gd(uw) = Gd(tu)w+tud(w)+Gd(t)Gd(u)w+

Gd(t)ud(w) ∈ IQ and using (2.6) again and the fact that IQ is a k-ideal, we have

tud(w) + Gd(t)ud(w) ∈ IQ. (2.7)

In (2.7) substituting ts for t, we obtain tsud(w) + Gd(ts)ud(w) ∈ IQ and therefore , which can be further
written as

tsud(w) + Gd(t)sud(w) + td(s)ud(w) ∈ IQ. (2.8)

In (2.7) substituting su for u, we obtain tsud(w) + Gd(t)sud(w) ∈ IQ and therefore

tsud(w) + Gd(t)sud(w) ∈ IQ. (2.9)

As IQ is Q-ideal, therefore using (2.8) and (2.9), we obtain td(s)ud(w) ∈ IQ and therefore
[t, r]d(s)S d(w) ∈ IQ. As IQ is prime ideal, therefore either [t, r]d(s) ∈ IQ or d(w) ∈ IQ. If d(w) ∈ IQ,
then d(S ) ⊆ IQ. On the other hand, if [t, r]d(s) ∈ IQ, then using commutator identities, we find
[t, r]S d(s) ∈ IQ. Using the same arguments as before, we find either d(S ) ⊆ IQ or [t, r] ∈ IQ and
employing Theorem 2.2, we obtain S/IQ is commutative. �

We can establish Theorem 2.5 by similar reasoning used in the proof of Theorem 2.4.

Theorem 2.5. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation of S
such that

Gd(tu) + Gd(t)(Gd(u))
′

∈ IQ,

for all t, u ∈ S , then either S/IQ is commutative or d(S ) ⊆ IQ.

Theorem 2.6. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation of S
such that

Gd(tw) + Gd(w)(Gd(t))
′

∈ IQ, (2.10)

for all t,w ∈ S , then either S/IQ is commutative or d(S ) ⊆ IQ.
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Proof. In (2.10) writing tw in place of t, we obtain Gd(tw)w+twd(w)+Gd(w)Gd(t)w
′

+Gd(w)t
′

d(w) ∈ IQ.
As IQ is Q-ideal, therefore

twd(w) + Gd(w)t
′

d(w) ∈ IQ. (2.11)

In (2.11) substituting st for t, we obtain stwd(w) + Gd(w)st
′

d(w) ∈ IQ and therefore stwd(w) + IQ +

Gd(w)st
′

d(w) + IQ = IQ, which further implies

stwd(w) + IQ = Gd(w)std(w) + IQ. (2.12)

Left multiplying (2.11) by s, we obtain

stwd(w) + IQ + sGd(w)t
′

d(w) + IQ = IQ. (2.13)

Using (2.12) in (2.13), we get [Gd(w), s]td(w) + IQ = IQ, therefore [Gd(w), s]S d(w) ⊆ IQ. As IQ is
prime, we get either [Gd(w), s] ∈ IQ or d(S ) ⊆ IQ. As a result of Theorem 2.3 S/IQ is commutative or
d(S ) ⊆ IQ. �

Using the proof of Theorem 2.6, we can establish the following result.

Theorem 2.7. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation of S
such that

Gd(tw) + Gd(w)Gd(t) ∈ IQ,

for all t,w ∈ S , then either S/IQ is commutative or d(S ) ⊆ IQ.

Following result provide a generalized form of Theorem 1.5 of [19].

Theorem 2.8. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation
meeting one of the conditions given below:

(1) Gd(tw) + tw ∈ IQ,

(2) Gd(tw) + t
′

w ∈ IQ,

(3) Gd(tw) + wt ∈ IQ,

(4) Gd(tw) + w
′

t ∈ IQ,

(5) Gd(t)Gd(w) + tw ∈ IQ,

(6) Gd(t)Gd(w) + t
′

w ∈ IQ,

(7) Gd(t)Gd(w) + wt ∈ IQ,

(8) Gd(t)Gd(w) + w
′

t ∈ IQ,

for all t,w ∈ S , then either S/IQ is commutative or d(S ) ⊆ IQ.

Proof. (1). Based on the hypothesis, we have

Gd(tw) + tw ∈ IQ, for all t,w ∈ S . (2.14)
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If Gd = 0, then from (2.14), we have tw ∈ IQ and interchanging t and w, we get wt ∈ IQ. From the last
two expressions, we have t ◦ w ∈ IQ. Employing Theorem 2.2, we conclude that S/IQ is commutative.
Next, we consider the case when Gd , 0. In (2.14), writing ws in place of w, we get (Gd(tw) + tw)s +

twd(s) ∈ IQ. As IQ is Q-ideal, therefore using (2.14), we obtain twd(s) ∈ IQ and therefore substituting
wr for w, we obtain

twrd(s) ∈ IQ. (2.15)

In (2.15) interchanging t and w, we get
wtrd(s) ∈ IQ. (2.16)

From (2.15) and (2.16), we can write (t ◦ w)S d(s) ⊆ IQ and by the primeness of IQ, we obtain either
t ◦ w ∈ IQ or d(S ) ⊆ IQ. Again by the Theorem 2.2, we conclude either S/IQ is commutative or
d(S ) ⊆ IQ.

By the similar arguments, we can prove (2).
(3). An appeal to the hypothesis, we have

Gd(tw) + wt ∈ IQ for all t,w ∈ S (2.17)

For Gd = 0, we have wt ∈ IQ. We can prove that S/IQ is commutative using the same reasoning as in
the proof of (1). Next we consider the case when Gd , 0. In (2.17) substituting wt for t, we obtain
(Gd(tw) + wt)t + twd(t) ∈ IQ and using (2.17) again, we obtain twd(t) ∈ IQ. Remaining part follows
through similar arguments of the proof of (1).

Part (4) can be followed similarly as part (3).
(5). Based on the hypothesis

Gd(t)Gd(w) + tw ∈ IQ, (2.18)

for all t,w ∈ S . The case when Gd = 0 is straightforward. For the second case when Gd , 0, substituting
ws for w in (2.18), we get (Gd(t)Gd(w) + tw)s + Gd(t)wd(s) ∈ IQ. As IQ is Q-ideal, using (2.18) again,
Gd(t)wd(s) ∈ IQ. Since IQ is prime, therefore either Gd(t) ∈ IQ or d(S ) ⊆ IQ. If

Gd(t) ∈ IQ. (2.19)

In (2.19) substituting tw for t, we get Gd(t)w + td(w) ∈ IQ. As IQ is Q-ideal, using (2.19) we obtain
td(w) ∈ IQ and writing [r, s]t in place of t, we further get [r, s]S d(w) ⊆ IQ. As IQ is prime, we obtain
[r, s] ∈ IQ or d(w) ∈ IQ. In view of Theorem 2.2, we conclude that S/IQ is commutative or d(S ) ⊆ IQ.

Proof of (6) is not quite different from the proof of (5).
(7). Based on the hypothesis, we have

Gd(t)Gd(w) + wt ∈ IQ for all t,w ∈ S . (2.20)

The case when Gd = 0 is straightforward. We consider the case when Gd , 0. In (2.20) replacing w
by wt, we obtain (Gd(t)Gd(w) + wt)t + Gd(t)wd(t) ∈ IQ. As IQ is Q-ideal, using (2.20) again, we obtain
Gd(t)wd(t) ∈ IQ. Remaining part can be followed by the similar arguments of the proof of part (5).

On the similar lines of (7), we can establish (8). �

The following is an extension of Theorem 1.6 of [19].
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Theorem 2.9. Let IQ be a prime Q-ideal of an MA-semiring S . If Gd is a generalized derivation
meeting one of the conditions below:

(1) Gd(tw) + [t,w]
′

∈ IQ,

(2) Gd(tw) + [t,w] ∈ IQ,

(3) Gd(tw) + t
′

◦ w ∈ IQ,

(4) Gd(tw) + t ◦ w ∈ IQ,

(5) Gd(t)Gd(w) + [t,w]
′

∈ IQ,

(6) Gd(t)Gd(w) + [t,w] ∈ IQ,

(7) Gd(t)Gd(w) + t
′

◦ w ∈ IQ,

(8) Gd(t)Gd(w) + t ◦ w ∈ IQ,

for all t,w ∈ S , then S/IQ is a commutative.

Proof. (1). Based on the hypothesis, we have

Gd(tw) + [t,w]
′

∈ IQ, for all t,w ∈ S . (2.21)

If Gd = 0, then by Theorem 2.2, we obtain the required result. Suppose that Gd , 0. In (2.21)
substituting ws for w and using MA-semiring identities, we obtain (Gd(tw)+[t,w]

′

)s+twd(s)+w[t, s]
′

∈

IQ. As IQ is Q-ideal, therefore using (2.21) again, we get

twd(s) + w[t, s]
′

∈ IQ. (2.22)

In (2.22) writing rw in place of w, we obtain

trwd(s) + rw[t, s]
′

∈ IQ. (2.23)

From (2.22) we can also write trwd(s) + IQ + rw[t, s]
′

+ IQ = IQ, which further implies

trwd(s) + IQ = rw[t, s] + IQ. (2.24)

Multiplying (2.22) by r from the left, we obtain rtwd(s) + rw[t, s]
′

∈ IQ which can further written as

rtwd(s) + IQ + rw[t, s]
′

+ IQ = IQ. (2.25)

Using (2.24) into (2.25), we obtain [r, t]wd(s) + IQ = IQ and therefore [r, t]S d(s) ⊆ IQ. As IQ is prime,
therefore either [r, t] ∈ IQ or d(S ) ⊆ IQ. For the first possibility, employing Theorem 2.2, we conclude
that S/IQ is commutative. On the other hand if d(S ) ⊆ IQ, then from (2.23), we have rw[t, s] ∈ IQ and
hence [t, s]S [t, s] ⊆ IQ. In view of the primeness of IQ, using Theorem 2.2, we get the required result.

Part (2) can be established on the similar lines of Part (1).
(3). Based on the hypothesis, we have

Gd(tw) + t
′

◦ w ∈ IQ for all t,w ∈ S . (2.26)
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For Gd = 0, from Theorem 2.2, we obtain the required result. Assume that Gd , 0. In (2.26)
substituting wr for w, we obtain Gd(tw)r + twd(r) + t

′

wr + wrt
′

∈ IQ and using the definition of
MA-semiring, we can write

Gd(tw)r + twd(r) + t
′

wr + wrt
′

+ wr(t + t
′

) = Gd(tw)r + twd(r) + t
′

wr + wrt
′

+ w(t + t
′

)r

= Gd(tw)r + twd(r) + t
′

wr + wt
′

r + wtr + wrt
′

= Gd(tw)r + twd(r) + (t
′

◦ w)r + w[t, r].

Therefore Gd(tw)r + (t
′

◦ w)r + twd(r) + w[t, r] ∈ IQ. As IQ is Q-ideal, using (2.26), we obtain

twd(r) + w[t, r] ∈ IQ. (2.27)

In (2.27) substituting sw for w and using MA-semiring identities, we obtain tswd(r) + sw[t, r] ∈ IQ,
which further gives tswd(r) + IQ + sw[t, r] + IQ = IQ and therefore

t
′

swd(r) + IQ = sw[t, r] + IQ. (2.28)

Multiplying (2.27) by s from the left, we obtain stwd(r) + sw[t, r] ∈ IQ and therefore

stwd(r) + IQ + sw[t, r] + IQ = IQ. (2.29)

Using (2.28) into (2.29), we get stwd(r) + IQ + t
′

swd(r) + IQ = IQ and therefore

[s, t]wd(r) ∈ IQ. (2.30)

As IQ is prime, therefore either [s, t] ∈ IQ or d(S ) ⊆ IQ. Repeating the same arguments as above, we
obtain the required result.

Part (4) can be proved on the similar lines of Part (3).
(5). Based on the hypothesis, we have

Gd(t)Gd(w) + [t,w]
′

∈ IQ for all t,w ∈ S . (2.31)

In view of Theorem 2.2, the case when Gd = 0, is straightforward. Assume that Gd , 0. In (2.31)
substituting wv for w and using MA-semiring commutator identities, we get Gd(t)Gd(w)v+Gd(t)wd(v)+
w[t, v]

′

+ [t,w]v
′

∈ IQ. Using (2.31) again, we obtain

Gd(t)wd(v) + w[t, v]
′

∈ IQ. (2.32)

In (2.32), substituting sw for w, we obtain Gd(t)swd(v) + sw[t, v]
′

∈ IQ, which further implies
Gd(t)swd(v) + IQ + sw[t, v]

′

+ IQ = IQ and therefore

Gd(t)swd(v) + IQ = sw[t, v] + IQ. (2.33)

Multiplying (2.32) by s from the left, we obtain sGd(t)wd(v) + sw[t, v]
′

∈ IQ which further gives

sGd(t)wd(v) + IQ + sw[t, v]
′

+ IQ = IQ. (2.34)
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Using (2.33) in (2.34), we get [s,Gd(t)]wd(v) + IQ = IQ, therefore [s,Gd(t)]S d(v) ⊆ IQ. By the
primeness of IQ, we have either [s,Gd(t)] ∈ IQ or d(S ) ⊆ IQ. If d(S ) ⊆ IQ, then from (2.32), we have

w[t, v] ∈ IQ. (2.35)

In (2.35) substituting [t, v]w for w, we obtain [t, v]S [t, v] ⊆ IQ. As IQ is prime, [t, v] ∈ IQ and hence by
Theorem 2.2, S/IQ is commutative. Second, suppose [s,Gd(t)] ∈ IQ. By Theorem 2.3, we have either
S/IQ is commutative or d(S ) ⊆ IQ. If d(S ) ⊆ IQ, then by the same arguments, we again find S/IQ is
commutative.

Part (6) can be followed on the similar lines of Part (5).
(7). Based on the hypothesis, we have

Gd(t)Gd(w) + t
′

◦ w ∈ IQ for all t,w ∈ S . (2.36)

If Gd = 0, then t ◦ w ∈ IQ, for all t,w ∈ S and hence by Theorem 2.2 S/IQ is commutative. Next, we
suppose that Gd , 0. In (2.36) writing ws in place of w, we obtain

Gd(t)Gd(w)s + Gd(t)wd(s) + t
′

ws + wst
′

∈ IQ. (2.37)

By the definition of MA-semiring, we have

Gd(t)Gd(w)s + Gd(t)wd(s) + t
′

ws + wst
′

= Gd(t)Gd(w)s + Gd(t)wd(s) + t
′

ws + ws(t
′

+ t + t
′

)

= Gd(t)Gd(w)s + Gd(t)wd(s) + t
′

ws + w(t
′

+ t)s + wst
′

= Gd(t)Gd(w)s + Gd(t)wd(s) + (t
′

◦ w)s + w[t, s]

= (Gd(t)Gd(w) + (t
′

◦ w))s + Gd(t)wd(s) + w[t, s].

Therefore (2.37) becomes

(Gd(t)Gd(w) + (t
′

◦ w))s + Gd(t)wd(s) + w[t, s] ∈ IQ.

As IQ is a Q-ideal, therefore using (2.36) again, we

Gd(t)wd(s) + w[t, s] ∈ IQ. (2.38)

Remaining part can be followed through the similar arguments of Part (5).
Part (8) can be followed on the same lines of the proof of Part (7). �

3. Conclusions

We discussed some notions about generalized derivations and prime Q-ideals of MA-semirings.
Some interesting results about the commutativity of quotient MA-semirings under certain differential
identities are proved. Taking IQ = {0}, one can obtain important consequences of the results for prime
MA-semirings.
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