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Abstract: In this work, we consider the model of shallow water equation with horizontal density
gradients. We develop the modified Rusanov (mR) scheme to solve this model in one and two
dimensions. Predictor and corrector are the two stages of the suggested scheme. The predictor stage
is dependent on a local parameter (αn

i+ 1
2
) that allows for diffusion control. The balance conservation

equation is recovered in the corrector stage. The proposed approach is well-balanced, conservative, and
straightforward. Several 1D and 2D test cases are produced after presenting the shallow water model
and the numerical technique. In the 1D case, we compared the proposed scheme with the Rusanov
scheme, mR with constant α and analytical solutions. The numerical simulation demonstrates the
mR’s great resolution and attests to its capacity to produce accurate simulations of the shallow water
equation with horizontal density gradients. Our results demonstrate that the mR technique is a highly
effective instrument for solving a variety of equations in applied science and developed physics.
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1. Introduction

Recently, geophysical fluid dynamics modeling has grown in prominence due to the importance
of forecasting and understanding the time development of a wide range of atmospheric and oceanic
flows. The characteristics of the flows and the corresponding scales are used to construct models for
simulating geophysical flows. A significant horizontal length scale in proportion to depth distinguishes
several geophysical and atmospheric processes. That is, they are shallow, and shallow water equations
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are suited for explaining their time evolution in those conditions [1]. The one-dimensional shallow
water model in Eulerian coordinates is considered [2, 3].

One way to depict fluid flow is as a multi-layered flow where one layer flows over another to
generate a new layer. The shallow water is a narrow layer of constant density fluid in hydrostatic
equilibrium, bounded from below by a rigid surface and from above by a free surface. The shallow
water model is one of the most vital models of the hyperbolic systems. In applied science and new
physics, nonlinear hyperbolic systems of conservation laws are crucial for creating mathematical
representations of a variety of natural processes [4–8]. It is the most fundamental layer example of
an incompressible fluid moving across a free surface [9]. Utilizing this approach, channels, hydraulic
jumps, tsunamis and reservoirs may all be simulated. Because the topography may be irregular
and the geometry may be complicated, replicating these natural flow problems is difficult. Some
bottom topographies need moving meshes in Eulerian coordinates that are stationary meshes in mass
Lagrangian coordinates [2].

Various mathematical methods for finding analytical and numerical solutions to nonlinear partial
differential equations (NPDEs) have been developed over the years [10–15]. In the ongoing work,
we take into account a system of flows for shallow water where horizontal density fluctuations are
considered. The Euler equations are vertically averaged to produce this model. We develop the
mR scheme to solve the shallow water flows via horizontal density fluctuations. This approach has
predictor and corrector stages. The Riemann invariants and limiters principles serve as the foundation
for the control parameter for numerical diffusion through the predictor stage. The balance conservation
equation is recovered in the corrector stage, see [16–21]. In most common schemes, the numerical flux
was estimated using the Riemann solution. In contrast to earlier schemes, the intriguing property of
the modified Rusanov (mR) scheme is to evaluate the numerical flux in the absence of the Riemann
solution [22]. As long as the prerequisite for the canonical Courant-Friedrichs-Lewy (CFL) is obeyed,
this scheme is linearly stable.

The remainder of this article’s framework is constructed as follows. Section 2 introduces the
mathematical model for shallow water equation with horizontal density gradients. Section 3 provides
the 1D mR method to solve the proposed model. Section 4 shows various 1D test cases for investigating
the development mechanisms of constructed waves. Section 5 depicts the 2D shallow water with
horizontal density gradients. Section 6 offers various numerical test cases to check the accuracy and
performance of the proposed scheme in 2D. Conclusions and observations about the current results are
presented in Section 7.

2. Mathematical model

We consider the shallow water model with influences of horizontal density gradients, which given
as follows [1]:

∂(ρh)
∂t

+
∂(ρhu)
∂x

= 0,
(2.1)

∂(ρhu)
∂t

+
∂
(
ρhu2 + 1

2gρh2
)

∂x
= −gρh

∂Z
∂x∂(h)

∂t
+
∂(hu)
∂x

= 0,
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h is the height of the water above the bottom, g is the gravity acceleration, u is the water velocity, Z
is the function that describes the bottom topography and ρ is the vertical averaged density. The above
system can write in the conservation form as the following

∂W
∂t

+
∂F
∂x

= Q(W). (2.2)

The vector-valued functions W; F(W) and Q(W) in R3 are

W =


ρh
ρhu

h

 , F(W) =


ρhu

ρhu2 + 1
2gρh2

hu

 , and Q(W) =


0

−gρh∂Z
∂x

0

 . (2.3)

It is clear that system of Eq (2.2) is strictly hyperbolic, and the associated eigenvalues are

λ1 = u −
√

gh, λ2 = u and λ3 = u +
√

gh. (2.4)

3. Modified Rusanov scheme

The integration of the (2.2) on the domain [xi−1/2, xi+1/2][tn, tn+1], which gives the finite volume
scheme, which equivalent the corrector stage and we can be written as the following

Wn+1
i = Wn

i −
∆t
∆x

(
F

(
Wn

i+1/2

)
− F

(
Wn

i−1/2

))
+ ∆tQi

n, (3.1)

Wn
i is the average value of the solution W over [xi−1/2, xi+1/2] at time tn i.e.,

Wn
i =

1
∆x

∫ xi+1/2

xi−1/2

W(tn, x) dx,

and F(Wn
i±1/2) represents the numerical flux at the time tn and place x = xi±1/2. Generally, in the finite

volume scheme (3.1), the Riemann solution at the cell interfaces xi±1/2 is required for the building of
the numerical fluxes F(Wn

i±1/2). The objective is to create the intermediate states, which are denoted by
Wn

i±1/2. To achieve this, we must integrate the Eq (2.2) through the interval [tn, tn + θn
i+1/2] × [x−, x+].

We achieve the intermediate state, which has the following written form:∫ x+

x−
W(tn + θn

i+1/2, x) dx

= ∆x−Wn
i + ∆x+Wn

i+1 − θ
n
i+1/2

(
F(Wn

i+1) − F(Wn
i )

)
+ θn

i+1/2(∆x− − ∆x+)Qn
i+ 1

2
, (3.2)

whereas, the distance measurements, ∆x− and ∆x+ can be stated as follows.

∆x− =
∣∣∣x− − xi+1/2

∣∣∣ , ∆x+ =
∣∣∣x+ − xi+1/2

∣∣∣ .
Qn

i+ 1
2

refers to an approximation of the source term Q(W)

Qn
i+ 1

2
=

1
θn

i+ 1
2
(∆x− + ∆x+)

∫ tn+θn
i+ 1

2

tn

∫ x+

x−
Q(W)dt dx. (3.3)
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When, we substitute x− by xi and x+ by xi+1 in the Eq (3.2), we get the following equation.

Wn
i+1/2 =

1
2

(
Wn

i + Wn
i+1

)
−
θn

i+1/2

∆x

(
F(Wn

i+1) − F(Wn
i )

)
+ θn

i+ 1
2
Qn

i+ 1
2
, (3.4)

whereas Wn
i+1/2 is define as the following are additional alternatives for x+ and x−. According to the

stability analysis in [16] for conservation laws, we selected the control parameter θn
j+1/2 for completing

our scheme, and we are able to pick the parameter θn
j+1/2 as follows:

Wn
i+1/2 =

1
∆x

∫ xi+1

xi

W(x, tn + θn
i+1/2)dx. (3.5)

The Eq (3.2) shows that the

θn
i+1/2 = αn

i+1/2θ̄i+1/2, θ̄i+1/2 =
∆x

2S n
i+1/2

, (3.6)

whereas
S n

i+1/2 = max
k=1,...,K

(max(| λn
k,i |, | λ

n
k,i+1 |)), (3.7)

sn
i+1/2 = min

k=1,...,K
(max(| λn

k,i |, | λ
n
k,i+1 |)), (3.8)

and the control parameter is αn
i+1/2. The kth eigenvalue of (2.2) is represented by λn

k,i and k is the
number of of eigenvalues of the system (2.2). As a result of this discussion, we can choose the control
parameter in the following ways:

i) αn
i+1/2 = 1, the mR scheme becomes the upwind scheme in the linear case with this decision [16].

ii) αn
i+1/2 = ∆t

∆xS n
i+1/2, by making this decision, the suggested scheme return to the Lax-Wendroff

scheme.
iii) αn

i+1/2 = α̃n
i+1/2 =

S n
i+1/2

sn
i+1/2

, with this decision, the scheme is transformed into a first-order scheme.
iv) All calculations in this paper were made using the following formula for

αn
i+1/2 = (1 − Φ(ri+1/2))

S n
i+1/2

sn
i+1/2

+
∆t
∆x

S n
i+1/2Φ(ri+1/2), (3.9)

where Φi+1/2 = Φ
(
ri+1/2

)
is a function that limits slope, with

ri+1/2 =
Wi+1−q −Wi−q

Wi+1 −Wi
, q = sgn

[
F′(Xn+1,Wn

i+1/2)
]
.

At last, we write the propose scheme for shallow water equation with horizontal density gradients as
the following Wn

i+1/2 = 1
2

(
Wn

i + Wn
i+1

)
−

αn
i+1/2

2S n
i+1/2

(
F(Wn

i+1) − F(Wn
i )

)
+

αn
i+1/2

2S n
i+1/2

∆xQn
i+ 1

2
,

Wn+1
i = Wn

i −
∆t
∆x

(
F

(
Wn

i+1/2

)
− F

(
Wn

i−1/2

))
+ ∆tQi

n.
(3.10)

The proposed scheme is well-balanced in the sense of [23–25], if the source term Qn
i in the corrector

stage is approximated in such a way that the still-water balance (C-property) [26] is obeyed, if the
condition

u = 0, h + Z = constant, and ρ = constant (3.11)
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is satisfied the steady state solutions, then, we said the numerical scheme for the shallow water equation
with horizontal density gradients satisfies the C-property.

Proof of the exact C-property. In (2.1) and (2.2), we assume that u = 0, which represents a stationary
flow in rest. Then Eq (2.1) can be written as follows

∂t


ρh
0
h

 + ∂x


0

1
2ρgh2

0

 =


0

−gρh∂xZ
0

 . (3.12)

We applied the predictor stage in (3.10) for the system (3.12), we have

Wn
i+ 1

2
=


1
2 ((ρh)n

i + (ρh)n
i+1)

−
ρn

i α
n
i+ 1

2
4S n

i+ 1
2

g(hn
i+1 + hn

i )[hn
i+1 − hn

i + Zi+1 − Zi]

1
2 ((hn

i + hn
i+1)

 =


1
2 ((ρh)n

i + (ρh)n
i+1)

0
1
2 (hn

i + hn
i+1)

 . (3.13)

During the corrector stage, the solution is updated as
(ρh)n+1

i

(ρhu)n+1
i

hn+1
i

 =


(ρh)n

i

(ρhu)n
i

hn
i

 −
rgρn

2


0

(hn
i+ 1

2
)2 − (hn

i− 1
2
)2

0

 +


0

∆tnQn
i

0

 . (3.14)

To obtain a stationary solution Wn+1
i = Wn

i , the sum of the discretized flux gradients and source terms
in Eq (3.12) must be equal to zero.

rρn

2
g((hn

i+ 1
2
)2 − (hn

i− 1
2
)2) = −(ghρ∂xZ)n

i . (3.15)

Then, the previous expression (3.15), which is equivalent to

(ghρ∂xZ)n
i = −

g
8∆x

((ρh)n
i+1 + 2(ρh)n

i + (ρh)n
n−1)(Zi+1 − Zi−1). (3.16)

Therefore, if the source term in the corrector stage of Eq (3.16) is discretized as follows
0

−
g

8∆x ((ρh)n
i+1 + 2(ρh)n

i + (ρh)n
n−1)(Zi+1 − Zi−1)

0.

 (3.17)

the proposed scheme satisfied the C-property.

4. Numerical results

We present several test cases for numerical simulation of the shallow water equation with horizontal
density gradients. We selected the stability condition [16] in the manner described below in order to
demonstrate the effectiveness and accuracy of the suggested finite volume scheme

∆t = CFL
∆x

max
i

(∣∣∣∣∣αn
i+ 1

2
S n

i+ 1
2

∣∣∣∣∣) , (4.1)

where the chosen constant CFL equals 0.5.
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4.1. Test 1

With the following initial conditions [1], this case’s solution includes a rarefaction wave; contact
discontinuity; shock wave:

(h, u, ρ) =


(13.41, 5, 0.1) if x ≤ 0,

(3, 5, 2) if x > 0.
(4.2)

This test case is simulated using modified Rusanov and classical Rusanov, when compared to the
reference solution produced by applying the classical Rusanov technique with a smaller mesh size of
30000 uniform cells over the range [−10, 10] and time t=1 s with gravity (g = 1). Figures 1–3 show the
results of water height, velocity, density, quantity of movement, pressure and parameter of control. For
the another the domain [0, 12] and gravity 9.81, we simulate this test case with a more refined mesh of
20000 uniform cells. In this case, Figures 4–6 show the results.

Figure 1. Water height and speed at t=1 s.

Figure 2. Water density and quantity of movement at t=1 s.
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Figure 3. Pressure and αn
i+ 1

2
at t=1 s.

Figure 4. Water height and speed at t=0.5 s.

Figure 5. Water density and quantity of movement at t=0.4 s.
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Figure 6. Pressure and αn
i+ 1

2
at t=0.4 s.

4.2. Test 2

According to the initial conditions listed in [4], this example has been suggested:

(h, u, ρ) =


(33.0416, 5.9484, 0.1) if x ≤ 0,

(4, 6.5, 4) if x > 0.5.
(4.3)

The mesh has 300 cells and the domain of computation is [−10, 10] with a final time of t=0.5 s, by
applying the mR technique and the classical Rusanov method. Figure 7 displays the numerical results
for the water height and velocity, which are contrasted with the reference solution that was produced
utilizing the classical Rusanov method and a finer mesh made up of 30000 uniform cells. We find
that the results from the modified Rusanov scheme are more precise than those from the classical and
modified Rusanov schemes with alpha constant (αn

i+ 1
2

= 1.4). Figure 8 shows the density and quantity
of movement. Figure 9 shows the pressure and αn

i+ 1
2
.

Figure 7. Water height and velocity at t= 0.5 s.
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Figure 8. Water density and quantity of movement at t=0.5 s.

Figure 9. Pressure and αn
i+ 1

2
at t=0.5 s.

4.3. Test 3 non homogeneous

We consider the same case in the first example with source term as follows

(h, u, ρ,Z) =


(13.41, 5, 0.1, 0) if x ≤ 0,

(3, 5, 2, 1) if x > 0.
(4.4)

This test case is simulated using classical Rusanov and modified Rusanov, when compared to the
reference solution produced by the classical Rusanov method using a smaller mesh size of 20000 cells
over the interval [0, 12] and time t=0.4 s, with gravity (g = 9.81). Figures 10–12 show the results of
water height, velocity, density, quantity of movement, pressure and parameter of control.
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Figure 10. Water height and speed at t=0.4 s.

Figure 11. Water density and quantity of movement at t=0.4 s.

Figure 12. Pressure and αn
i+ 1

2
at t=0.4 s.
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4.4. Test 4 non homogeneous

We consider the same case in the first example with source term and we can write it as follows

(h, u, ρ,Z) =


(13.41, 5, 0.1, 0) if x ≤ 0,

(3, 5, 2, 1) if x > 0.
(4.5)

Modified Rusanov and classical Rusanov are used to simulate this test case, in comparison to the
reference solution produced by the classical Rusanov method using a smaller grid of 20000 uniform
cells over the interval [0, 12] and time t=0.4 s, with gravity (g = 9.81). Figures 13–15 show the results
height, velocity, density, quantity of movement, pressure and parameter of control. Also, Figure 16
shows the effect of parameter of control (α = 1, 1, 5, 2, 2.5) on the diffusion of density and quantity of
movement.

Figure 13. Water height and speed at t=0.5 s.

Figure 14. Water density and quantity of movement at t=0.5 s.
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Figure 15. Pressure (left) and αn
i+ 1

2
(right) at t=0.5 s.

Figure 16. Water density and quantity of movement at t=0.5 s.

5. Two-dimensional shallow water with horizontal density gradients

The shallow water with horizontal density gradients can be expressed as follows in two dimensions:

∂W
∂t

+
∂F(W)
∂x

+
∂G(W)
∂y

= Q(W), (5.1)

with

W =



ρh

ρhu

ρhv

h


, F(W) =



ρhu

ρhu2 + 1
2gρh2

ρhuv

hu


, (5.2)
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and

G(W) =



ρhv

ρhuv

ρhv2 + 1
2gρh2

hv


, Q(W) =



0

−gρh∂Z
∂x

−gρh∂Z
∂y

0


. (5.3)

where ρ, h, u, v are the density, water height and velocity respectively

5.1. Two-dimensional problems with modified Rusanov scheme

In order to deducing the modified Rusnov scheme in two dimension, we integrate the Eq (5.1) on a
generic control volume ci as shown in Figure 17, which are produced when the domain is divided into
several control volumes, presents

Wn+1
i = Wn

i −
∆t
Ai

∑
j∈K(i)

∫
γi j

F (W, ~ni j)dσ +
∆tn

Ai

∫
ci

Q(x, y,W) dx dy, (5.4)

where Ai refers to the cell’s area ci, K(i) is the index set of adjacent triangles that share an edge with
the cell ci, ~ni j denotes the unit outward normal vector to the surface that surround the control volume,∫
γi j
F (W, ~ni j)dσ = φ(Wn

i ,W
n
j , ~ni j)mes(γi j) is the numerical flux, mes(γi j) is the interface between cells

ci and c j, with Wn
i and Wn

j are the left and right values of W at cell ci and c j.

Figure 17. The control volume.

It is possible to express the modified Rusanov scheme as
Wn

i j =
1
2

(Wn
i + Wn

i+1) −
αn

i j

2S n
i j

[
F (Wn

j ) − F (Wn
i )

]
· ~ni j +

αn
i j

2S n
i j

Qn
i j,

Wn+1
i = Wn

i −
∆t
Ai

∑
j∈K(i)

φ(Wn
i ,W

n
j , ~ni j)mes(γi j) + ∆tnQn

i ,

(5.5)

where S n
i j is the local Rusanov speed represented by

S n
i j = max

p
((| λn

p,i |, | λ
n
p, j |)),
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and the local control parameter αn
i j is chosen to meet the stability condition; for more information,

see [16]. The eigenvalues of the Jacobien matrix (5.1) areλn
p,i and λn

p, j.

5.2. Calculation of Wn
i j

Here, we aim to rewrite the numerical flux to resemble the 1D situation. To achieve this, we write
φ(Wn

i ,W
n
j , ~ni j) = F (Wn

i j, ~ni j), Wn
i j is determined at the predictor stage. To determine the Wn

i j, we project
the system (5.1) on the local cell’s outward normal µ and tangential µ⊥ as shown in Figure 17. Then,
we have 

∂ρh
∂t

+
∂ρhU
∂µ

= 0,

∂ρhU
∂t

+
∂(ρhU2 + p)

∂µ
+ gρh

dZ
dµ

= 0,

∂ρhV
∂t

+
∂ρhUV
∂µ

= 0,

∂h
∂t

+
∂hU
∂µ

= 0,

(5.6)

where U = ~V · η = unx + vny represent the normal speed and V = ~V · µ⊥ = −uny + vnx represents the
tangential velocity. The predictor phase (5.5) expressed as

(ρh)i j = Mi j(ρh) −
αn

i j

2S n
i j

∆i j(ρhU),

(ρhU)i j = Mi j(ρhU) −
αn

i j

2S n
i j

∆i j(ρhU2 + p) −
αn

i j

2S n
i j

gρ̃hi j∆i j(Z),

(ρhV)i j = Mi j(ρhV) −
αn

i j

2S n
i j

∆i j(ρhUV),

(h)i j = Mi j(h) −
αn

i j

2S n
i j

∆i j(hU),

(5.7)

with ∆i j(X) = X j−Xi and Mi j(X) = 1
2 (Xi + X j). Where ρ̃hi j is the linear interpolation between (ρh)i and

(ρh) j given by ρ̃hi j =
Ai(ρh)i + A j(ρh) j

Ai + A j
. The solution Wn

i j is recovered via the transformation

(hu)i j = nx(hU)i j − ny(hV)i j

and
(hv)i j = ny(hU)i j + nx(hV)i j.

6. Numerical results in two dimensions

To test the precision and effectiveness of the suggested scheme in 2D, we provide several test cases.
Due to presented CFL condition [16], the theoretical maximum stable time step ∆t is specified.

∆t max
i

(
|δCi|

Ai

) [
1 + α

M
m

] M
2

= Cr, (6.1)
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the constant Currant number Cr is chosen to be less than unity, in this case Cr = 0.2 in all simulations,
and the time step ∆t is changed using Eq (6.1), with M = max

i, j
(S n

i j), m = min
i, j

(sn
i j), where S n

i j is the

local Rusanov speed, Ai refers to the cell’s area ci, the control parameter for the suggested scheme is
αn

i j = 1.8 , and |δCi| denotes the perimeter of the cell Ci.

We consider the this test case with and without source term. The initial conditions are

(h, u, v, ρ,Z) =


(13.41, 5, 0, 0.1, 0) if x ≤ 0,

(3, 5, 0, 2, 1) if x > 0.
(6.2)

At the end, we simulate this test case using the mR scheme on the domain [0, 12] × [0, 1] meshgrid
150× 15 equivalent 1903 cells and final time t = 0.4. Figures 18–20 display water height, velocity and
density with out and with source term.

Figure 18. Water height without bed and water height with bed at t=0.4 s.

Figure 19. Velocity without bed and velocity with bed at t=0.4 s.
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Figure 20. Density without bed and density with bed at t=0.4 s.

7. Conclusions

The mR scheme was proposed and applied to numerically simulate the shallow water equation
with horizontal density gradients. This approach can properly represent discontinuance profiles and
prevents numerical diffusion in the solution. In contrast to earlier schemes, the mR scheme has the
intriguing ability to compute the numerical flow in the absence of the Riemann solution. This method,
in fact, can be utilized as a box solver for a wide range of other conservation law models. Numerical
results in one and two dimensions were introduced to depict the efficiency of the presented scheme.
The Rusanov approach and analytical solutions were compared with the mR scheme. Several test cases
were introduced in 1D and 2D. The numerical results display the high resolution of the proposed mR
scheme and show that it can provide precise and effective simulations for the shallow water equation
with horizontal density gradients.
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