
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(11): 26045–26069.
DOI:10.3934/math.20231327
Received: 29 June 2023
Revised: 25 August 2023
Accepted: 30 August 2023
Published: 08 September 2023

Research article

An efficient outer space branch-and-bound algorithm for globally
minimizing linear multiplicative problems

Xiaoli Huang1,3 and Yuelin Gao2,3,∗

1 School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
2 Ningxia province cooperative innovation center of scientific computing and intelligent information

processing, North Minzu University, Yinchuan 750021, China
3 Nixngxia mathematics basic discipline research center, Ningxia University, Yinchuan 750021,

China

* Correspondence: Email: gaoyuelin@263.net.

Abstract: We propose an efficient outer space branch-and-bound algorithm for minimizing linear
multiplicative problems (LMP). First, by introducing auxiliary variables, LMP is transformed into an
equivalent problem (ELMP), where the number of auxiliary variables is equal to the number of linear
functions. Subsequently, based on the properties of exponential and logarithmic functions, further
equivalent transformation of ELMP is performed. Next, a novel linear relaxation technique is used to
obtain the linear relaxation problem, which provides a reliable lower bound for the global optimal value
of LMP. Once more, branching operation takes place in the outer space of the linear function while
embedding compression technique to remove infeasible regions to the maximum extent possible, which
significantly reduces the computational cost. Therefore, an outer space branch-and-bound algorithm
is proposed. In addition, we conduct convergence analysis and complexity proof for the algorithm.
Finally, the computational performance of the algorithm is demonstrated based on the experimental
results obtained by testing a series of problems.

Keywords: global optimization; linear multiplicative problem; linear relaxation; branch and bound
Mathematics Subject Classification: 90C26, 90C57

1. Introduction

We mainly consider the linear multiplicative problem of the following form:

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.20231327

26046

(LMP) :

min f (y) =

p∏
i=1

(cT
i y + di)αi ,

s.t. y ∈ Y = {y ∈ Rn|Ay ≤ b},

where ci is an n-dimensional column vector, di is a real number and αi is a real number different from
zero. T represents the transpose of a vector, A ∈ Rm×n, b ∈ Rm and Y is a non-empty bounded set. In
this article, for any y ∈ Y, we suppose that cT

i y + di > 0, i = 1, ..., p.
LMP is a typical non-convex optimization problem with important applications in real life. It and its

variants have been applied in various fields such as robust optimization [1], financial optimization [2],
VLSI chip design [3], decision tree optimization [4], network flow optimization [5], supply chain
problem [6], investment portfolio [7], etc. Moreover, LMP is an NP-hard problem [8] with multiple
local solutions rather than global solutions, which increases the computational complexity. Hence,
researching this problem holds great significance.

Various solution algorithms for LMP and its special forms have been proposed by numerous experts
and scholars. These algorithms can be broadly categorized into the following groups: branch-and-
bound algorithms [9–14], finite algorithm [15], heuristic method [16], approximation algorithm [17],
polynomial time algorithm [18], parameterized simplex method [19], cutting-plane method [20], level
set algorithm [21], etc. Despite the advancements made by these approaches, solving high-dimensional
LMP remains a challenging task. In the past 20 years, searching for global solutions of LMP in the
outer space using different relaxation methods has become a hot topic among scholars [22–29]. For
example, the authors in references [22, 27] used new convex relaxation techniques to put forward
different outer space branch-and-bound algorithms for solving LMP. References [23, 25, 26, 28–30]
adopted various linear relaxation programming problems and proposed novel outer space branch-and-
bound algorithms, respectively.

In this paper, an outer space branch-and-bound algorithm is designed to solve large-scale LMP.
The major characteristics of the algorithm are as follows: First, p auxiliary variables are introduced to
transform LMP into an equivalent problem, where p is the number of linear functions. Second, based
on the properties of exponential and logarithmic functions, the second equivalent problem (ELMP1)
is established. Third, a novel linear relaxation approach is employed to derive the linear relaxation
programming problem for ELMP1. Moreover, the branching rule in p-dimensional outer space is
given, and the corresponding outer space branch-and-bound algorithm is developed by embedding the
rectangular compression technique into the branch-and-bound framework. Finally, the computational
complexity of the algorithm is analyzed to estimate the number of iterations in the worst case, which
also implies that our algorithm is convergent.

Compared with existing methods [10, 23, 26, 28], the proposed algorithm has the following
advantages:

(1) The solved LMP is universal, and the exponents of its objective function are real numbers rather
than being limited to just 1 or only positive values.

(2) After the first equivalent conversion, the exponents of the objective function are all positive.
Therefore, when linearly approximating the objective function of equivalent problems, there is no need
to consider the case where the coefficient is negative, which simplifies the implementation of linear
relaxation.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26047

(3) The branching process takes place only in the p-dimensional outer space of the linear function.
This leads to cost savings compared to the branching operation in the n-dimensional decision variable
space, as p is often much smaller than n in practical problems.

(4) To demonstrate the efficiency of the algorithm, we compared it with the methods in
references [10,23,26,28], our algorithm is suitable for solving LMP with large-scale decision variables.

The rest of this paper is organized as follows: Section 2 presents the equivalent problems of LMP
and establishes its linear relaxation problem. In Section 3, the branching operation and compression
technology are discussed in detail. Moreover, the outer space branch-and-bound algorithm and its
properties are described. Section 4 provides numerical comparison results for some problems. Finally,
a brief summary of this paper is presented in Section 5.

2. Equivalent problem and its linear relaxation problem

In order to search the global optimal solution of LMP, we transform it into the equivalent problem
(ELMP). For convenience, we first define the following sets:

I+ = {i|αi > 0, i ∈ {1, ..., p}}, I− = {i|αi < 0, i ∈ {1, ..., p}}.

For any i ∈ {1, ..., p}, denote

0 < t0
i = min

y∈Y
cT

i y + di, t0
i = max

y∈Y
cT

i y + di, i ∈ I+;

0 < t0
i =

1
maxy∈Y cT

i y + di
, t0

i =
1

miny∈Y cT
i y + di

, i ∈ I−.

Since cT
i y + di is a bounded linear function, by solving the above 2p linear programs, we can easily get

that t0
i and t0

i . Simultaneously, the initial hyper-rectangle

H0 = {t ∈ Rp|t0
i ≤ ti ≤ t0

i , i = 1, ..., p}

is constructed. Thus, let us consider the following equivalent problem:

(ELMP) :

min
∏

αi>0,i∈{1,...,p}

tαi
i

∏
αi<0,i∈{1,...,p}

t−αi
i

s.t. ti = cT
i y + di, i ∈ I+,

ti =
1
zi
, i ∈ I−,

zi = cT
i y + di, i ∈ I−,

y ∈ Y, t ∈ H0.

We denote the feasible region of ELMP asV = {ti = cT
i y+di, i ∈ I+, ti = 1

zi
, zi = cT

i y+di, i ∈ I−, y ∈
Y, t ∈ H0}. It is evident thatV is a nonempty bounded compact set if and only if Y , ∅. Theorem 1
below explains the equivalence between LMP and ELMP.

Theorem 1. (y∗, t∗, z∗) is a global optimal solution for ELMP if and only if y∗ is a global optimal
solution for LMP, where t∗i = cT

i y∗ + di when i ∈ I+, t∗i = 1
z∗i

and z∗i = cT
i y∗ + di when i ∈ I−.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26048

Proof. We will develop our proof in two aspects. On one hand, for any y ∈ Y, let ti = cT
i y + di for

i ∈ I+, ti = 1
zi

and zi = cT
i y + di for i ∈ I−, thus (y, t, z) ∈ V. If y∗ is a global optimal solution for LMP,

then t∗i = cT
i y∗ + di for i ∈ I+, t∗i = 1

z∗i
and z∗i = cT

i y∗ + di for i ∈ I−, so (y∗, t∗, z∗) ∈ V, which shows that
(y∗, t∗, z∗) is a feasible solution to ELMP, and by the optimality of y∗, the following inequalities hold:∏

i∈I+

(t∗i)αi
∏
i∈I−

(t∗i)−αi =
∏
i∈I+

(t∗i)αi
∏
i∈I−

(z∗i)αi =

p∏
i=1

(cT
i y∗ + di)

<

p∏
i=1

(cT
i y + di)αi =

∏
i∈I+

tαi
i

∏
i∈I−

zαi
i

=
∏
i∈I+

(ti)αi
∏
i∈I−

(ti)−αi .

Thus, (y∗, t∗, z∗) is a global optimal solution for ELMP.
On the other hand, if (y∗, t∗, z∗) is a global optimal solution of ELMP, where t∗, z∗ are satisfied: if

i ∈ I+, then t∗i = cT
i y∗ + di; if i ∈ I−, then t∗i = 1

z∗i
and z∗i = cT

i y∗ + di. Suppose y is a global optimal
solution of LMP such that

∏p
i=1(cT

i y + di)αi <
∏p

i=1(cT
i y∗ + di)αi holds, for i ∈ I+, let ti = cT

i y + di, for
i ∈ I−, let ti = 1

zi
and zi = cT

i y + di, it follows that∏
i∈I+

tαi
i

∏
i∈I−

t−αi
i <

∏
i∈I+

(t∗i)αi
∏
i∈I−

(t∗i)−αi .

This contradicts the optimality of (y∗, t∗, z∗), thus y∗ is a global optimal solution of LMP. �

For the sake of convenience, we denote βi = −αi > 0 for i ∈ I−. In the meantime, ln(•) and exp(•)
represent the logarithmic and the exponential functions, respectively. The objective function of ELMP
is further equivalently transformed according to the properties of the exponential and logarithmic
functions, namely, ∏

i∈I+

tαi
i

∏
i∈I−

t−αi
i =

∏
i∈I+

tαi
i

∏
i∈I−

zαi
i =

∏
i∈I+

tαi
i

∏
βi>0,i∈{1,...,p}

tβi
i

= exp

ln
∏

i∈I+

tαi
i

∏
βi>0,i∈{1,...,p}

tβi
i

= exp

 κ∑
i=1,i∈I+

αilnti +

p∑
i=κ+1,βi>0

βilnti

= exp

 p∑
i=1

ζilnti

 ,
where ζ ∈ Rp and ζ = [α1, α2, · · · , ακ, βκ+1, · · · , βp]. Hence, ELMP is reformulated to the following
form:

(ELMP1) :

min L(y, t, z) =

p∑
i=1

ζilnti

s.t. ti = cT
i y + di, i ∈ I+,

zi =
1
ti
, zi = cT

i y + di, i ∈ I−,

y ∈ Y, t ∈ H k,

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26049

where H k represents H0 or the sub-rectangle of H0. Obviously, the optimal solution for ELMP1 is
the same as that for ELMP. Therefore, we shift our focus to solving ELMP1, but ELMP1 cannot be
solved directly due to the nonlinearity of the objective function and the constraints zi = 1

ti
for i ∈ I−. To

address this, we propose a linear relaxation technique to obtain the lower bound problem of ELMP1.

Theorem 2. For i = 1, ..., p, ti ∈ [ti, ti], define

g(ti) = lnti, g(ti) = lnti + ki(ti − ti), L(y, t, z) =

p∑
i=1

ζig(ti),

where ki =
lnti−lnti

ti−ti
. Then we have the following conclusions:

(i) g(ti) ≤ g(ti); (ii) L(y, t, z) ≤ L(y, t, z).

Proof. Since the function g(ti) is a monotonically increasing concave function on [ti, ti] with respect to
ti, g(ti) is its secant approximation, so (i) and (ii) obviously hold. �

Theorem 3. For each i ∈ I−, define

ψ(ti) = −
1

titi
ti +

2√
titi

, ψ(ti) = −
1

titi
ti +

1
ti

+
1
ti
.

Then the functions ψ(ti) and ψ(ti) satisfy the conclusions below:
(i) ψ(ti) ≤ 1

ti
≤ ψ(ti);

(ii) Denote ∆ti = ti − ti, then lim
∆ti→0

(1
ti
− ψ(ti)) = 0, lim

∆ti→0
(ψ(ti) − 1

ti
) = 0.

Proof. (i) For each i ∈ I−, since ti ∈ [ti, ti] and ti > 0, it follows from the definitions of ψ(ti) and ψ(ti)
that

1
ti
− ψ(ti) =

1
ti

+
1

titi
ti −

2√
titi

=
1
ti
−

1√
titi

+
1

titi
ti −

1√
titi

=

√
titi − ti

ti

√
titi

+
ti −

√
titi

titi
=

(ti −

√
titi)2

tititi
≥ 0.

and

ψ(ti) −
1
ti

= −
1

titi
ti +

1
ti

+
1
ti
−

1
ti

=
−t2

i + titi + titi − titi

tititi
=

(ti − ti)(ti − ti)

tititi
≥ 0.

(ii) From (i), when ∆ti → 0 for each i ∈ I−, the following inequalities are valid:

lim
∆ti→0

(
1
ti
− ψ(ti)

)
= lim

∆ti→0

√
titi − ti

ti

√
titi

+
ti −

√
titi

titi

≤ lim
∆ti→0

|ti − ti|

|ti

√
titi|

+
|ti − ti|

|titi|

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26050

= lim
∆ti→0

 1

|ti

√
titi|

+
1
|titi|

 ∆ti

≤ lim
∆ti→0

2∆ti

min{t2
i , titi}

= 0.

and

lim
∆ti→0

(
ψ(ti) −

1
ti

)
= lim

∆ti→0

(ti − ti)(ti − ti)

tititi
≤ lim

∆ti→0

∆t2
i

min{t2
i ti, t

2
i ti}

= 0.

�

Consequently, we obtain the linear relaxation program of ELMP1:

(LRP) :

min L(y, t, z)
s.t. ti = cT

i y + di, i ∈ I+,

ψ(ti) ≤ zi ≤ ψ(ti), zi = cT
i y + di, i ∈ I−,

y ∈ Y, t ∈ H k.

In the constraint of LRP, we substitute zi = cT
i y + di into the inequalities zi ≤ ψ(ti) and ψ(ti) ≤ zi,

respectively, that is

cT
i y +

1
titi

ti ≤
1
ti

+
1
ti
− di, − cT

i y −
1

titi
ti ≤ di −

2√
titi

, i ∈ I−.

For each i = 1, ..., p, ζi > 0, LRP is reformulated as

(LRP(H k)) :

min
p∑

i=1

ζi(lnti + ki(ti − ti))

s.t. − cT
i y + ti = di, i ∈ I+,

cT
i y +

1
titi

ti ≤
1
ti

+
1
ti
− di, i ∈ I−,

− cT
i y −

1
titi

ti ≤ di −
2√
titi

, i ∈ I−,

y ∈ Y, t ∈ H k.

We have derived the linear relaxation problem for ELMP1 through a series of relaxation processes.
This relaxation enables us to simplify the problem by loosening certain constraints while providing a
reliable lower bound for the global optimal value of ELMP1, facilitating informed decision-making in
subsequent optimization steps.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26051

3. Branch-and-bound algorithm and its property analysis

In this section, we present an efficient deterministic algorithm for solving ELMP1 by combining the
linear relaxation problem proposed in Section 2 with subsequent branching operation in Section 3.1
and rectangle compression technique in Section 3.2. The algorithm requires solving a series of linear
relaxation problems on the subdivided rectangles ofH0. Furthermore, we provide rigorous proofs for
the convergence and complexity of the algorithm based on the employed branching operation.

3.1. Branching operation

For any selected sub-rectangle H k = {t ∈ Rp|ti ≤ ti ≤ ti} ⊆ H
0, the following branching rules are

given:
(i) Let τ = argmax{ti − ti, i = 1, ..., p};
(ii)H k is divided into two sub-rectangles

H k1 = Πτ−1
i=1Hi ×

tτ, tτ + tτ
2

 × Π
p
i=τ+1Hi,

H k2 = Πτ−1
i=1Hi ×

 tτ + tτ
2

, tτ

 × Π
p
i=τ+1Hi,

whereHi = [ti ∈ R|ti ≤ ti ≤ ti, i = 1, ..., p, i , τ].

3.2. Compression technology

We introduce a compression technique to enhance the convergence speed of the algorithm. When
the algorithm iterates to the kth time, multiple sub-rectangles are obtained through rectangular
subdivision. For any sub-rectangle H̃ k ⊆ H k, we further investigate whether ELMP1 over H̃ k has
a global minimum, where H̃ k = H̃1 × H̃2 × · · · × H̃p and H̃i = {ti ∈ R|ti ≤ ti ≤ ti, i = 1, ..., p}. The
embedded compression technology in the algorithm involves replacing sub-rectangles with smaller
rectangles H̃ k, while ensuring that the global optimal solution of ELMP1 remains intact and unaffected.

Theorem 4. When the algorithm iterates to the kth time, let ÛB be the current best upper bound of the
global optimum of ELMP1. Denote

Ξ =

p∑
i=1

ζilnti, πι = exp

ÛB − Ξ + ζιlntι
ζι

 , ι ∈ {1, 2, · · · , p}.

For any sub-rectangle H̃ k ⊆ H k, it can be inferred that
(i) If Ξ > ÛB, then there is no global optimal solution over H̃ k for ELMP1;
(ii) If Ξ < ÛB, then ELMP1 has no global optimal solution over Ḧ , where

Ḧ = Ḧ1 × · · · × Ḧι−1 × Ḧι × Ḧι+1 × · · · × Ḧp

with Ḧι = {tι ∈ R|πι ≤ tι ≤ tι} ∩ H̃ι.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26052

Proof. (i) If Ξ > ÛB, then

min
p∑

i=1

ζilnti =

p∑
i=1

ζilnti = Ξ > ÛB.

Therefore, H̃ k does not contain a global optimal solution for ELMP1.
(ii) If Ξ < ÛB, for any t ∈ Ḧ ,

min
t∈Ḧ

p∑
i=1

ζilnti = min
t∈Ḧ

p∑
i=1,i,ι

ζilnti + min
t∈Ḧ

ζιlntι

>

p∑
i=1,i,ι

ζilnti + ζιlnπι

=

p∑
i=1,i,ι

ζilnti + ζιln

exp

ÛB − Ξ + ζιlntι
ζι

=

p∑
i=1,i,ι

ζilnti + ζιlntι + ÛB − Ξ

= ÛB.

Therefore, Ḧ does not contain a global optimal solution for ELMP1. �

3.3. Branch-and-bound algorithm

The branching operation proposed in Section 3.1 partitions the initial rectangle H0 into smaller
sub-rectangles, enabling the algorithm to search for local optimal solutions of ELMP1 over V that
necessarily include the global minimal solution of ELMP1. During the kth iteration of the algorithm,
we provide some relevant notations. Qk denotes the list of active nodes. For each branching node
H ∈ Qk, (y(H), t(H)) and LB(H) represent the optimal solution and the optimal value of LRP(H),
respectively. The current best lower bound for ELMP1 is noted as LBk = min{LB(H),H ∈ Qk}.
vk represents the objective function value corresponding to the best feasible solution of ELMP1,
and the current best upper bound of vk is denoted as UB. We choose a divided rectangle H k

from Qk that satisfies LB(H) = LBk, and segment it into two sub-rectangles H k1 and H k2 by
branching operation. These sub-rectangles are then added to the set T , and the set T is updated as
T = {T \H k}

⋃
{H k1,H k2}. Let F be the set of feasible points, and ε denotes algorithmic tolerance.

In a more precise manner, we can describe the presented outer space branch-and-bound algorithm as
follows:
Step 0. Initialize the best known solution as null and the best known upper bound as infinity. Create a
root node and initialize the list of active nodes with this root node. Set the algorithmic tolerance to the
desired value.

F = ∅, UB = +∞, Q0 = {H0}, ε ≥ 0, k = 0.

Step 1. Solve a relaxation problem LRP(H0) in order to get a lower bound (or prove infeasibility). If
problem is feasible, update the incumbent if necessary. Let

LB0 = LB(H0), (y0, t0, z0) = (y(H0), t(H0), z(H0)).

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26053

If (y0, t0, z0) is a feasible solution of ELMP1, then let UB = L(y0, t0, z0), F = F
⋃
{y0, t0, z0}. If

UB−LB0 ≤ ε, the algorithm terminates and obtains the global ε-optimal solution (y0, t0, z0) for ELMP1.
Otherwise, denote T = {H0}.
Step 2. Split the current node H k into two new nodes H k j(j = 1, 2) and reduce them by using
the compression technique, the reduced rectangle is still denoted as H k j(j = 1, 2) and set T =

{T \H k}
⋃
{H k1,H k2}.

Step 3. For each child nodeH k j ∈ T (j = 1, 2), the corresponding optimal value LB(H k j) and optimal
solution (y(H k j), t(H k j)) are obtained by solving LRP(H k j). Set F = F

⋃
(y(H k j), t(H k j), z(H k j)),

(ŷk, t̂k, ẑk) = argmin(y,t,z)∈FL(y, t, z), set vk = L(ŷk, t̂k, ẑk). If vk < UB, then update the upper bound
UB = vk, the current best solution for ELMP1 is updated as (yk, tk, zk) = (ŷk, t̂k, ẑk), and set F = ∅. If
LB(H k j) > UB, then remove it from T , i.e. T = T\{H k j}. Set Qk = (Qk\H

k)
⋃
T and update the

lower bound LBk = min{LB(H)|H ∈ Qk}.

Step 4. Let the list of active nodes Qk+1 = {H|UB − LB(H) > ε,H ∈ Qk}. If Qk+1 is empty,
return the best known solution as a global ε-optimal solution. Otherwise select an active node
H k+1 ∈ argmin{LB(H),H ∈ Qk+1}. Set k = k + 1 and go back to Step 2.

Definition 1 provides the concept of the global ε-optimal solution involved in the proposed
algorithm.

Definition 1. Given ε > 0, the feasible solution (ŷ, t̂, ẑ) is considered a global ε-optimal solution for
ELMP1, if L(ŷ, t̂, ẑ) ≤ v + ε, where v represents the global optimal value of ELMP1.

3.4. Convergence analysis

This subsection discusses the convergence analysis of the algorithm. Supposing the algorithm is
infinite, according to the branching operation, there exists an infinite rectangular sequence {H k}∞k=1
such that for each k = 1, 2, ..., we have H k+1 ⊆ H k ⊆ · · · ⊆ H0, where H k ∈ Rp. The following
Lemma 1 provides a theoretical basis for Theorem 5.

Lemma 1. For any t ∈ H , when ti − ti → 0, i = 1, ..., p, for which we have L(y, t, z) − L(y, t, z)→ 0.

Proof. It follows from Theorem 2 that

L(y, t, z) − L(y, t, z) =

p∑
i=1

ζi[lnti − (lnti + ki(ti − ti)]

≤ max{
p∑

i=1

ζi[lnti − (lnti + ki(ti − ti)]}

≤

p∑
i=1

max{ζi}max
ti∈Hi

{lnti − (lnti + ki(ti − ti))}

=

p∑
i=1

max{ζi}[lnti − lnti +
lnti − lnti

ti − ti

(ti − ti)]

=

p∑
i=1

max{ζi} · 2(lnti − lnti)

≤

p∑
i=1

2 max{ζi}

ti

(ti − ti).

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26054

Therefore, for any t ∈ H , L(y, t, z) − L(y, t, z)→ 0 holds while ti − ti → 0, i = 1, ..., p. �

Theorem 5. Given ε > 0, assuming that the feasible domain of ELMP1 is non-empty, the algorithm
either obtains a global ε-optimal solution of ELMP1 at a finite number of iterations, or produces a
sequence of feasible solutions {(yk, tk, zk)}, each of whose accumulation points is a global ε-optimal
solution of ELMP1.

Proof. Assuming that the algorithm terminates within a finite number of iterations, without loss of
generality, let us assume that the algorithm terminates at the kth iteration, which gets UB − LBk ≤ ε.

According to Step 3 in the algorithm, we have UB = vk = L(ŷk, t̂k, ẑk), thus

L(ŷk, t̂k, ẑk) − LBk ≤ ε. (3.1)

It follows from (3.1) that
L(ŷk, t̂k, ẑk) ≤ LBk + ε ≤ v + ε.

Thereby, (ŷk, t̂k, ẑk) is a global ε-optimal solution to ELMP1.
If the algorithm iterates an infinite number of times and produces an infinite sequence of rectangles

{H k}∞k=1, whereH k =
∏p

i=1[tk
i , t

k
i] ∈ R

p. Without losing generality, suppose that lim
k→∞
H k = H∞, then for

the subsequences K of sequence {1, 2, ...} we have

lim
k∈K
H k = H∞. (3.2)

For any k ∈ K, depending on Step 3 of the algorithm, the lower bound is updated to

LB(H k) = min
t∈V
L(yk, tk, zk) ≤ vk ≤ L(ŷk, t̂k, ẑk) ≤ L(yk, tk, zk).

For any k ∈ K, it follows that tk ∈ H k ⊆ H . Therefore, {tk}∞k=1 exists a convergent subsequence {tk}k∈K ,
by formula (3.2), the limit of {tk}k∈K is inH∞, let

lim
k∈K

tk = t̂, (3.3)

where t̂ is a accumulation point of {tk}k∈K . Since L(y, t, z) is continuous, combining with (3.3) we have

lim
k∈K
L(yk, tk, zk) = L(ŷ, t̂, ẑ). (3.4)

For any k ∈ K, tk ∈ H k, it follows from Lemma 1 that

lim
k∈K

(L(yk, tk, zk) − L(yk, tk, zk)) = 0. (3.5)

Hence, we have
lim
k∈K
L(yk, tk, zk) = L(ŷ, t̂, ẑ). (3.6)

Integrating (3.4)–(3.6), we obtain L(ŷ, t̂, ẑ) = limk∈K L(yk, tk, zk) = limk∈K L(yk, tk, zk). For each k ∈ K
we get L(ŷk, t̂k, ẑk) =

∑p
i=1 ζiln(tk

i), therefore

lim
k→∞

vk = lim
k→∞

p∑
i=1

ζiln(tk
i) = v. (3.7)

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26055

Because {
∑p

i=1 ζiln(tk
i)}k∈K is a subsequence of {

∑p
i=1 ζiln(tk

i)}∞k=1, following from (3.7), we then obtain
limk∈K

∑p
i=1 ζiln(tk

i) = v. From the continuity of L(y, t, z) and formula (3.5), we have

lim
k∈K

p∑
i=1

ζiln(tk
i) =

p∑
i=1

ζiln(t̂k
i).

So we get
p∑

i=1

ζiln(t̂k
i) = v. (3.8)

Combining Eq (3.8), we conclude that (ŷk, t̂k, ẑk) is a globally optimal solution to ELMP1. �

3.5. Complexity analysis

We use Ω(H) to define the size of the sub-rectangleH = {t ∈ Rp, ti ≤ ti ≤ ti, i = 1, ..., p}, i.e.,

Ω(H) = max{ti − ti, i = 1, ..., p}.

In addition,

θ = 2 max{ζi, i = 1, ..., p}, λ = max
{

1
ti

, i = 1, ..., p
}
.

Lemma 2. Given any ε > 0, for a sub-rectangleH ⊆ H0, if Ω(H) < ε, then for any optimal solution
(y, t) of LRP(H), we have

|L(y, t, z) − L(y, t, z)| ≤ pδθλε.

Proof. Clearly, (y, t, z) is a feasible solution to ELMP1, it follows from Lemma 1 that

L(y, t, z) − L(y, t, z) ≤
p∑

i=1

2 max{ζi}

ti

(ti − ti) ≤ pθλΩ(H) ≤ pθλε.

�

The following Theorem 6 illustrates an estimation of the maximum number of iterations for the
proposed algorithm in the worst case, indirectly indicating that the algorithm will eventually find the
global optimal solution for LMP.

Theorem 6. For any ε0 ∈ (0, 1), the algorithm iterates at most

2
∑p

i=1

⌈
log2

pθλΩ(H0)
ε0

⌉
− 1

times to obtain a global ε0-optimal solution in a worst case.

Proof. Let ε = ε0, suppose that during the kth iteration, when the algorithm reaches Step 3,H ⊆ H0 is
a rectangle selected by the branching rule to be dissected, which satisfies

ti − ti ≤ Ω(H) ≤
ε0

pθλ
, i = 1, · · · , p,

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26056

then, the algorithm is terminated. In the worst case, when the algorithm terminates at Step 4 on the kth
iteration, splitting the initial rectangleH0 results in k + 1 sub-rectangles, with the assumption thatH ι

is any one of these sub-rectangles and satisfies

tιi − tιi ≤ Ω(H ι) ≤
1
2ιi

Ω(H0), i = 1, · · · , p,

here, ιi denotes the initial interval [t0
i , t

0
i] after ιi subdivision to produce [tιi, t

ι

i]. From Lemma 2, it
follows that

1
2ιi

Ω(H0) ≤
ε0

pθλ
, i = 1, · · · , p. (3.9)

Since the subdivision H0 yields no more than
∏p

i=1 2ιi sub-rectangles, if every sub-rectangle
satisfies (3.9), the algorithm must terminate. By Eq (3.9) we have

ιi ≥ log2
pθλΩ(H0)

ε0
, i = 1, ..., p.

Let χi = dlog2
pθλΩ(H0)

ε0
e, i = 1, ..., p. The initial rectangle is split into k + 1 sub-rectangles and k + 1 =∏p

i=1 2χi . At this point the algorithm terminates. Thus, the algorithm iterates at most 2
∑p

i=1dlog2
pθλΩ(H0)

ε0
e
−1

times. Furthermore, it can be derived that

ε0 ≥ |L(y, t, z) − L(y, t, z)| ≥ L(y, t, z) − LB(H) ≥ L(y, t, z) − L(y∗, t∗, z∗) ≥ 0, (3.10)

where (y∗, t∗, z∗) is a global optimal solution of ELMP1. For i ∈ I+, t∗i = cT
i y∗ + di. For i ∈ I−, z∗i = 1

t∗i
and z∗i = cT

i y∗ + di. Based on the bounding process, let ŷk be the best feasible solution obtained so far,
and denote that { f (ŷk)} is the decreasing sequence such that f (ŷk) ≤ f (y). Combined with (3.10) can
be obtained

ε0 ≥ f (y) − f (y∗) ≥ f (ŷk) − f (y∗).

Therefore, the algorithm terminates, and ŷk is a global ε0-optimal solution to LMP. �

4. Numerical experiments

In this section, several problems are employed to demonstrate the feasibility and effectiveness
of the proposed algorithm in this paper. All linear programming problems are solved by the dual-
simplex method, all tests of the algorithm are carried out using MATLAB9.2.0.538062 (R2017a) on an
Inter(R)Core(TM) i5-8250U, CPU@1.60GHz, 4GB memory and 64 bit Windows10 operating system.

Initially, we utilize the existing branch and bound algorithms [10, 23, 26, 28] and the proposed
algorithm to compute the deterministic Problems 1–8 with a predefined convergence tolerance. This
is to demonstrate the feasibility of our algorithm. To validate the efficiency of the proposed algorithm,
we conduct tests on random Problems 9–11 with a tolerance of 10−6.
Problem 1 [10, 26, 28] min (−y1 + 2y2 + 2)(4y1 − 3y2 + 4)(3y1 − 4y2 + 5)−1(−2y1 + y2 + 3)−1

s.t. y1 + y2 ≤ 1.5, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26057

Problem 2 [10, 26, 28]
min (y1 + y2)(y1 − y2 + 7)
s.t. 2y1 + y2 ≤ 14, y1 + y2 ≤ 10, − 4y1 + y2 ≤ 0,

2y1 + y2 ≥ 6, y1 + 2y2 ≥ 6, y1 − y2 ≤ 3,
y1 + y2 ≥ 0, y1 − y2 + 7 ≥ 0, y1, y2 ≥ 0.

Problem 3 [10, 26, 28] min (y1 + y2 + 1)2.5(2y1 + y2 + 1)1.1(y1 + y2 + 1)1.9

s.t. y1 + 2y2 ≤ 6, 2y1 + 2y2 ≤ 8, 1 ≤ y1 ≤ 3, 1 ≤ y2 ≤ 3.

Problem 4 [26, 28]
min (3y1 − 4y2 + 5)(y1 + 2y2 − 1)0.5(2y1 − y2 + 4)(y1 − 2y2 + 8)0.5(2y1 + y2 − 1)
s.t. 5y1 − 8y2 ≥ −24, 5y1 + 8y2 ≤ 44, 6y1 − 3y2 ≤ 15,

4y1 + 5y2 ≤ 44, 1 ≤ y1 ≤ 3, 0 ≤ y2 ≥ 1.

Problem 5 [10, 26, 28] min (3y1 − 2y2 − 2)
2
3 (y1 + 2y2 + 2)

2
5

s.t. 2y1 − y2 ≥ 2, y1 − 2y2 ≤ 2, y1 + y2 ≤ 5, 3 ≤ y1 ≤ 5, 1 ≤ y2 ≤ 3.

Problem 6 [26, 28]

min
(
y1 +

1
9

y3

) (
y2 +

1
9

y3 + 2
)

s.t. 9y1 + 9y2 + 2y3 ≤ 81, 8y1 + y2 + 8y3 ≤ 72
y1 + 8y2 + 8y3 ≤ 72, 7y1 + y2 + y3 ≥ 9,
y1 + 7y2 + y3 ≥ 9, y1 + y2 + 7y3 ≥ 9,
0 ≤ y1 ≤ 8, 0 ≤ y2 ≤ 9, 0 ≤ y3 ≤ 9.

Problem 7 [23, 26, 28]

min (−4y1 − 4y4 + 3y5 + 21)(4y1 + 2y2 + 3y3 − 4y4 + 4y5 − 3)
× (3y1 + 4y2 + 2y3 − 2y4 + 2y5 − 7)(−2y1 + y2 − 2y3 + 2y5 + 11)

s.t. 4y1 + 4y2 + 5y3 + 3y4 + y5 ≤ 25, − y1 − 5y2 + 2y3 + 3y4 + y5 ≤ 2,
y1 + 2y2 + y3 − 2y4 + 2y5 ≥ 6, 4y2 + 3y3 − 8y4 + 11y5 ≤ 8,
y1 + y2 + y3 + y4 + y5 ≤ 6, y1 + y2 + 7y3 ≥ 9,
y1, y2, y3, y4, y5 ≥ 1.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26058

Problem 8 [23, 26, 28]

min (0.813396y1 + 0.67440y2 + 0.305038y3 + 0.129742y4 + 0.217796)
× (0.224508y1 + 0.063458y2 + 0.932230y3 + 0.528736y4 + 0.091947)

s.t. 0.488509y1 + 0.063458y2 + 0.945686y3 + 0.210704y4 ≤ 3.562809,
− 0.324014y1 − 0.501754y2 − 0.719204y3 + 0.099562y4 ≤ −0.052215,
0.445225y1 − 0.346896y2 + 0.637939y3 − 0.257623y4 ≤ 0.427920,
− 0.202821y1 + 0.647361y2 + 0.920135y3 − 0.983091y4 ≤ 0.840950,
− 0.886420y1 − 0.802444y2 − 0.305441y3 − 0.180123y4 ≤ −1.353686,
− 0.515399y1 − 0.424820y2 + 0.897498y3 + 0.187268y4 ≤ 2.137251,
− 0.591515y1 + 0.060581y2 − 0.427365y3 + 0.579388y4 ≤ −0.290987,
0.423524y1 + 0.940496y2 − 0.437944y3 − 0.742941y4 ≤ 0.373620,
y1, y2, y3, y4 ≥ 0.

Problem 9 [10, 23]

min
2∏

i=1

 n∑
j=1

ĉi jy j + 1

 s.t. Ây ≤ b̂, y ≥ 0.

where ĉi j is generated randomly in the interval [0,1], i = 1, 2, j = 1, ..., n. All elements âi j of the
matrix Â are randomly generated in the interval [-1,1], i.e., âi j = 2λ̂−1, where λ̂ is randomly generated
in [0,1]. The components of b̂ is set to

∑n
j=1 âi j + 2t̂, where t̂ is randomly generated at [0,1].

Problem 10 [23, 26]

min
p∏

i=1

n∑
j=1

c̃i jy j

s.t.
n∑

j=1

ãm jy j ≤ b̃m,m = 1, ...,M.

0 ≤ y j ≤ 1, j = 1, ..., n.

where c̃i j is randomly generated in [0,1]. ãm j is randomly generated at [-1,1], m = 1, ...,M, j = 1, ..., n.
b̃m =

∑n
j=1 ãm j + 2t̃, where t̃ is randomly generated at [0,1].

Problem 11 [26, 28]
min

p∏
i=1

 n∑
j=1

ci jy j + di

αi

s.t. Ay ≤ b, y ≥ 0.

where ci j, and di are randomly generated in [0,1], i = 1, ..., p, j = 1, ..., n. Each element of the matrix A
and αi are randomly generated in [-1,1]. The components of the vector b are generated by

∑n
j=1 āi j + 2t̄,

where t̄ is generated randomly at [0,1].
Table 1 shows the numerical comparison between some algorithms and our algorithm on

Problems 1–8.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26059

Table 1. Numerical comparisons among some other algorithms and our algorithm on
Problems 1–8.

Problems Algorithms Optimal solution Opt.val Iter Time Tolerance

1 Algorithm in [10] (0,0) 0.5333 290 41.4735 10−3

Algorithm in [26] (0,0) 0.5333 68 1.1780 10−6

Algorithm in [28] (0,0) 0.5333 67 1.2418 10−6

Our algorithm (0,0) 0.5333 3 0.0350 10−6

2 Algorithm in [10] (1.9975,8) 9.9725 122 17.1740 10−3

Algorithm in [26] (2,8) 10 4 0.05146 10−6

Algorithm in [28] (2,8) 10 1 0.00003 10−6

Our algorithm (2,8) 10 1 0.00004 10−6

3 Algorithm in [10] (1,1) 997.6613 29 4.0872 10−3

Algorithm in [26] (1.0,1.0) 997.6613 1 0.0000351 10−6

Algorithm in [28] (1.0,1.0) 997.6613 1 0.0000403 10−6

Our algorithm (1.0,1.0) 997.6613 1 0.0000389 10−6

4 Algorithm in [26] (1.25,1.00) 263.78893 2 0.010338 10−6

Algorithm in [28] (1.25,1.00) 263.78893 2 0.013769 10−6

Our algorithm (1.25,1.00) 263.78893 2 0.00876 10−6

5 Algorithm in [10] (3.0000,1.9990) 5.01105 48 6.66627 10−3

Algorithm in [26] (3,2) 5.00931 1 0.0000338 10−6

Algorithm in [28] (3,2) 5.00931 1 0.0000348 10−6

Our algorithm (3,2) 5.00931 1 0.0000317 10−6

6 Algorithm in [26] (0,8,1) 0.90123 10 0.1977365 10−6

Algorithm in [28] (8,0,1) 0.90123 9 0.17455 10−6

Our algorithm (8,0,1) 0.90123 9 0.1405001 10−6

7 Algorithm in [26] (1,2.000,1,1,1) 9504.0 5 0.0826865 10−6

Algorithm in [28] (1,2,1,1,1) 9504.0 1 0.0000387 10−6

Algorithm in [23] (1,2,1,1,1) 9503.9999 2 0.069 10−6

Our algorithm (1,2,1,1,1) 9504.0 1 0.0000542 10−6

8 Algorithm in [26] (1.3148,0.1396,0,0.4233) 0.8902 2 0.0194 10−6

Algorithm in [28] (1.3148,0.1396,0,0.4233) 0.8902 2 0.0394 10−6

Algorithm in [23] (1.3148,0.1396,0,0.4233) 0.8902 1 0.0266 10−6

Our algorithm (1.3148,0.1396,0,0.4233) 0.8902 2 0.0093 10−6

For stochastic Problems 9–11, we solve 10 randomly generated problems for each set of parameters
(p,m, n) and place their average number of iterations and average CPU time in Tables 2–6. Specifically,
Problem 9 represents an LMP with only two linear functions and exponents of 1. Table 2 shows
the results of numerical comparisons between our algorithm and the algorithms proposed in [10, 23].
Problem 10 is an LMP with multiple linear functions and exponents of 1. Tables 3 and 4 display the
numerical results of our algorithm compared with the algorithms in [23, 26]. Additionally, Figures 1
and 2 plot some of the data results in Table 3. Problem 11 is an LMP with real exponents and multiple
linear functions. Tables 5 and 6 show the numerical results of our algorithm compared with the

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26060

algorithms in [26, 28]. Figures 3–6 depict some of the data results from Tables 5 and 6.
For convenience, the symbols in the table headers in Tables 1–6 are specified as follows: Opt.val: the

global optimum of the tested problem; Iter: the number of iterations of the algorithm; Time: the CPU
time in seconds; Avg.Iter: the average number of iterations of the 10 randomly generated problems;
Std.Iter: the standard deviation of the number of iterations; Avg.Time: the average CPU time of the 10
randomly generated problems; Std.Time: the standard deviation of the average CPU time; p: the
number of linear functions; m: the number of constraints; n: the dimensionality of decision variables.

As can be seen from the numerical results in Table 1, our algorithm effectively calculates the
global optimal solutions and optimal values for low-dimensional Problems 1–8. In comparison to the
algorithms proposed in [10, 26, 28], our algorithm demonstrates shorter computation time and fewer
iterations. Most deterministic problems require only one iteration, with a maximum of nine iterations,
indicating the feasibility of our algorithm.

Upon observing Table 2, it is evident that our algorithm exhibits a lower average number of
iterations and shorter average CPU time compared to the algorithm proposed in [10] for medium-
scale Problem 9. The primary reason for this disparity is that our algorithm solves the problem in
the p-dimensional space, whereas the algorithm in [10] tackles it in the n-dimensional space. In
comparison to the algorithm presented in [23], it is apparent that the iterations of the algorithm in [23] is
generally lower than our algorithm. However, when considering the average CPU time, our algorithm
outperforms in terms of efficiency.

Table 2. Numerical comparisons among the algorithms in [10, 23] and our algorithm on
Problem 9.

(m, n)
Our algorithm Algorithm in [10] Algorithm in [23]

Avg(Std).Iter Avg(Std).Time Avg(Std).Iter Avg(Std).Time Avg(Std).Iter Avg(Std).Time

(10,20) 10.3(3.4655) 0.1712(0.0666) 14.2 (1.5492) 0.6062 (0.0695) 2.6 (6.2561) 0.2083 (0.3861)
(20,20) 8.9(3.7802) 0.2018(0.1548) 17.4 (1.7127) 0.8368 (0.0756) 4.8 (6.9793) 0.2814 (0.5504)
(22,20) 8.8(3.8678) 0.1375(0.0726) 18.5 (1.9003) 0.9460 (0.1235) 6.0 (12.2564) 0.3231 (0.9257)
(20,30) 12.3(3.8223) 0.2059(0.0737) 19.9 (0.5676) 1.0781 (0.0674) 6.4 (7.4951) 0.3302 (0.4899)
(35,50) 11.6(1.8) 0.2234(0.0404) 21.2 (0.4316) 1.8415 (0.1338) 8.1 (11.6772) 0.4267(0.8646)
(45,60) 11.3(2.1471) 0.3004(0.1370) 23.0 (0.6667) 2.4338 (0.1016) 8.7 (14.2688) 0.4867 (0.8930)
(40,100) 11.3(0.9) 0.3790(0.1208) 35.7 (1.1595) 5.1287 (0.0935) 11.9 (12.3809) 0.6049 (0.9664)
(60,100) 11.9(2.3854) 0.4781(0.1569) 36.1 (0.7379) 6.8143 (0.1713) 9.7 (12.9822) 0.7955 (1.2783)
(70,100) 11.1(1.7578) 0.4682(0.1673) 36.6 (1.2649) 8.1967 (0.2121) 8.3 (11.6638) 0.8152 (1.3057)
(70,120) 11.9(3.7802) 0.5736(0.4449) 39.1 (1.6633) 9.5642 (0.2975) 10.1 (14.6462) 0.9693 (1.3529)
(100,100) 9.1(1.8682) 0.5069(0.2585) 37.5 (2.1731) 13.0578 (0.3543) 11.1 (9.0549) 1.1889 (1.2506)

From Table 3, it is easy to see that the proposed algorithm is more efficient in solving Problem 10.
First, when compared to the algorithm in [26], our algorithm consumes less time and requires fewer
iterations. Second, in comparison to the algorithm in [23], our algorithm exhibits a lower number
of iterations for parameter sets where p is fixed at 7. Although the algorithm in [23] may have less
iterations than ours for some parameter groups, our average CPU time is still lower than that of [23].

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26061

For instance, when p = 4, our algorithm demonstrates higher iterations than [23] as m and n vary, yet
our CPU time is shorter than theirs.

Table 3. Numerical comparisons among the algorithms in [23, 26] and our algorithm on
medium-sized Problem 10.

p (m, n) Our algorithm Algorithm in [23] Algorithm in [26]

Avg.Iter Avg.Time Avg.Iter Avg.Time Avg.Iter Avg.Time

4 (10,20) 45.3 0.5224 10.8 0.6654 66.1 0.8137
(20,40) 56.4 0.7212 25.1 1.1668 86.8 1.1674
(30,60) 61.1 0.8918 32.6 1.8145 89.4 1.3799
(40,80) 54.9 0.9787 46.4 2.2780 89.1 1.6630
(50,100) 59.8 1.3421 42.6 2.5277 89.3 2.1077
(60,120) 64.1 1.8703 76.5 6.5797 96.7 2.9471
(70,140) 62.9 2.3383 62.2 8.1493 95.1 3.6654
(80,160) 73.7 3.4148 43.8 14.7688 109.5 5.2437
(90,180) 70.1 4.1754 37.2 19.2281 110.7 6.8075
(100,200) 69.7 5.2313 79.2 46.8494 111.7 8.6532

5 (10,20) 77.8 0.9546 45.7 1.2609 120.9 1.5939
(20,40) 89.5 1.2246 45.7 1.3929 142.1 2.0816
(30,60) 104.8 1.6322 184.6 7.6766 180.5 3.0199
(40,80) 100.8 1.9369 117.6 10.4108 154.9 3.1245
(50,100) 100 2.3850 167 15.5902 178.9 4.4852
(60,120) 117.2 3.5787 143.4 18.3711 203.8 6.5421
(70,140) 123.3 4.5434 212.5 38.7537 231.6 9.0070
(80,160) 97.6 4.6827 310.2 81.1816 175.8 8.7630
(90,180) 116.1 6.8339 298.4 93.8722 211.9 12.8401
(100,200) 98.8 7.4864 230.6 114.7671 176.9 13.7859

6 (10,20) 88.5 1.0468 43.8 1.7287 158.5 1.9954
(20,40) 116.9 1.5515 77.0 6.6506 204.6 2.8660
(30,60) 171 2.5808 101.9 11.1125 334.9 5.3399
(40,80) 175.5 3.2212 133.1 16.3945 342.3 6.6506
(50,100) 163.8 3.8391 271.2 22.0331 307.7 7.5644
(60,120) 147.3 4.3689 387.1 25.2491 289.2 9.0304
(70,140) 168.6 6.3815 766.5 63.8334 327.5 12.8848
(80,160) 187.2 8.7670 315.4 98.5674 384 18.5743
(90,180) 166.5 9.8465 444.2 110.7434 310.2 18.9719
(100,200) 173.4 13.2959 657.8 120.0034 323.5 25.7361

7 (10,20) 133.6 1.5839 458.8 19.2006 284.1 3.6194
(20,40) 140.4 1.8923 496.6 23.8151 265.2 3.7999
(30,60) 182.1 2.8005 1013.5 64.3865 330.2 5.3898
(40,80) 202.7 3.7863 1177.3 86.1229 470.7 9.3001
(50,100) 250.7 5.8942 1398 127.1028 542.5 13.4583
(60,120) 225.4 6.8489 640.2 155.5248 456.0 14.5520
(70,140) 275.6 10.6270 1197.4 185.5591 604.2 24.1463
(80,160) 258.9 12.7324 891.1 278.3208 542.2 27.5974
(90,180) 211.3 13.1138 816.7 293.8722 463.1 29.6745
(100,200) 234.4 18.4294 469.3 321.4063 510.6 41.1299

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26062

To visualize the effectiveness of the proposed algorithm in this paper, Figures 1 and 2 depict the
trends of the average number of iterations and average CPU time for fixing (m, n) to (10,20), (100,200)
and p to change from 4 to 7 in Problem 10, respectively. From Figure 1, when (m, n) = (10, 20)
(indicated by the solid line), the green solid line is always above the blue solid line, indicating that
the number of iterations of the algorithm in [26] is higher than ours. On the other hand, the red solid
line is above the blue solid line only after p = 6, which means that the iterations of the algorithm
in [23] are higher than ours after p > 6. When (m, n) = (100, 200) (indicated by the dashed line),
both the red dashed line and the green dashed line are above the blue dashed line, indicating that the
number of iterations of our algorithm is lower than the other two algorithms. In the vertical direction,
the blue dashed line is always higher than the blue solid line, but the vertical distance between them is
shorter than the corresponding vertical distance of the other two algorithms. This implies that as (m, n)
increases, the number of iterations of our algorithm exhibits a slight increase, but the magnitude of the
increase is not significant. Based on Figure 2, we observe that when (m, n) = (10, 20), p = 4, 5, 6, the
three solid lines approximately coincide and when p = 7, it is obvious that our algorithm takes less
time. When (m, n) = (100, 200), the distance between the red dashed line and the blue dashed line
becomes larger as p increases. The time taken by our algorithm increases as (m, n) increases, but not
significantly.

4 5 6 7

p

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Our algorithm:(10,20)
Algorithm in [23]:(10,20)
Algorithm in [26]:(10,20)
Our algorithm:(100,200)
Algorithm in [23]:(100,200)
Algorithm in [26]:(100,200)

Figure 1. Comparison of average number of iterations in Problem 10.

4 5 6 7

p

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 C
P

U
 ti

m
e

Our algorithm:(10,20)
Algorithm in [23]:(10,20)
Algorithm in [26]:(10,20)
Our algorithm:(100,200)
Algorithm in [23]:(100,200)
Algorithm in [26]:(100,200)

Figure 2. Comparison of average CPU time in Problem 10.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26063

Table 4 gives the numerical results for solving the large-scale Problem 10. It can be observed that
our algorithm is more time-saving compared to the algorithm in [26]. In contrast to the algorithm
in [23], the first two sets of parameters yield better results than ours. However, for the case of
(m, n) = (3, 10, 1000), the number of iterations in our algorithm is comparable to that of [23],
but our algorithm exhibits lower time consumption. When (p,m,m) = (3, 10, 2000), although
our algorithm requires fewer iterations than that of [23], the CPU time is slightly longer. When
(p,m, n) = (4, 10, 1000), (4, 10, 2000), respectively, our algorithm demonstrates clear advantages.
Specifically, the algorithm in [23] requires twice as many iterations and three times as much CPU
time as ours.

Table 4. Numerical comparisons among the algorithms in [23, 26] and our algorithm on
large-scale Problem 10.

(p,m, n)
Our algorithm Algorithm in [23] Algorithm in [26]

Avg.Iter Avg.Time Avg.Iter Avg.Time Avg.Iter Avg.Time

(2,10,1000) 27.7 4.1565 15.5 2.6293 39.7 6.2742
(2,10,2000) 33.9 18.1454 28.5 14.0012 48.6 26.5702
(3,10,1000) 106.1 16.8598 101.8 19.3235 193.7 31.8366
(3,10,2000) 173.4 98.8698 185.4 90.3898 352.7 204.3262
(4,10,1000) 361.8 59.9727 757.6 156.5649 878.4 149.7120
(4,10,2000) 552.6 332.8818 1352.1 995.4707 1519.3 921.7023

Table 5 shows the results of a medium-scale test for Problem 11. Compared to the algorithms
in [26, 28], our algorithm exhibits a distinct advantage. Figures 3 and 4 show the average number
of iterations and the average CPU time among the algorithms in [26, 28] and our algorithm when
(m, n) is fixed (10,20), (100,200) on Problem 11, respectively. From Figure 3, it can be observed that
the average number of iterations in the algorithm proposed by [26] is higher than our algorithm when
(m, n) = (10, 20) and lower than our algorithm only when p = 5. When (m, n) = (100, 200), the average
number of iterations in our algorithm is lower than those of the algorithms in [26, 28]. Moreover, our
algorithm significantly outperforms the algorithms in [26, 28] when (m, n) = (100, 200). From Figure
4, we find that while (m, n) = (10, 20), (100, 200), the average CPU time of the proposed algorithm is
less than the other two algorithms, and the trend of time change is not obvious as p increases.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26064

Table 5. Numerical comparisons among the algorithms in [26, 28] and our algorithm on
medium-scale Problem 11.

p (m, n)
our [26] [28]

Avg(Std).Iter Avg(Std).Time Avg(Std).Iter Avg(Std).Time Avg(Std).Iter Avg(Std).Time

4 (10,20) 31.9(32.8312) 0.4150(0.4459) 120.1(118.6612) 2.0917(2.0855) 112.2(97.3764) 1.8487(1.5777)
(20,40) 35.4(28.3944) 0.5178(0.4354) 142(109.9582) 2.6908(2.1186) 114.3(92.8041) 2.0269(1.6408)
(30,60) 46.6(56.5194) 0.8169(1.0093) 93.1(58.7409) 1.9714(1.3202) 93.0(69.5054) 1.8041(1.2743)
(40,80) 34.5(33.5894) 0.7204(0.7070) 85.6(74.8441) 2.0867(1.8616) 63.5(54.9641) 1.4810(1.3050)
(50,100) 40.8(39.5596) 1.0568(1.0764) 91.8(99.0372) 2.6335(2.8371) 71.1(54.9735) 1.8772(1.4905)
(60,120) 21.8(17.0458) 0.6746(0.5693) 89.2(61.4684) 3.2295(2.2926) 68.5(51.9870) 2.3788(1.8911)
(70,140) 16.0(11.1893) 0.6336(0.4974) 78.7(80.9519) 3.6159(3.7190) 63.7(76.3375) 2.7302(3.2902)
(80,160) 27.8(19.9038) 1.4628(1.0860) 88.7(53.3555) 5.1639(3.3558) 74.6(49.2020) 4.2010(2.9670)
(90,180) 21.2(21.6601) 1.3846(1.5300) 67.0(62.3217) 4.6670(4.5688) 59.6(54.8584) 3.9347(3.8613)
(100,200) 37.3(30.3942) 3.3410(3.0137) 122.5(55.1693) 11.0229(5.1801) 96.9(53.5807) 8.3233(4.7203)

5 (10,20) 123.2(173.7980) 1.6461(2.3781) 160.5(122.7992) 2.6874(2.0730) 98.4(70.0303) 1.5646(1.0756)
(20,40) 57.8(77.3586) 0.8393(1.16481) 101.5(90.8947) 1.8805(1.7787) 71.6(67.9591) 1.3059(1.3715)
(30,60) 63.2(39.3568) 1.1174(0.7884) 155.5(135.708) 3.3789(3.0502) 98.4(88.7437) 2.0061(1.7969)
(40,80) 54.9(95.2979) 1.3205(2.362) 203.9(146.9084) 5.4791(4.0027) 145.5(118.9128) 3.7432(3.0424)
(50,100) 42.3(33.77) 1.1217(0.9049) 343.5(382.1019) 10.8698(11.9164) 267.8(361.9276) 8.0793(10.2894)
(60,120) 51.0(47.8623) 1.8003(1.8125) 268.0(146.4281) 10.6335(6.2604) 191(131.6716) 7.2388(5.0948)
(70,140) 31.8(40.5038) 1.3226(1.8188) 117.8(114.8893) 5.4516(5.4995) 86.9(82.3619) 3.8601(3.8865)
(80,160) 30.4(29.2684) 1.5684(1.5981) 67.5(55.9897) 3.86(3.2299) 46.0(21.5639) 2.4507(1.2596)
(90,180) 31.9(31.3989) 2.0009(2.0368) 96.6(77.3139) 6.8571(5.7645) 68.4(65.7529) 4.6769(4.6839)
(100,200) 33.4(33.6309) 3.1802(3.3664) 198.4(169.6061) 19.0294(16.5882) 119.5(105.2675) 11.0382(9.6674)

6 (10,20) 99.3(117.1632) 2.1315(2.2123) 466.3(514.9322) 12.2852(14.0562) 356(416.9149) 8.8802(9.4876)
(20,40) 348.7(651.2854) 5.6616(10.6349) 439.7(617.1514) 9.5253(14.0514) 287.9(355.6457) 4.7303(5.8901)
(30,60) 83.8(62.7117) 1.3889(1.0594) 197.5(149.0156) 4.0838(3.1896) 109.3(72.8190) 2.1971(1.5108)
(40,80) 89.3(116.0233) 2.8242(3.4539) 385.6(404.1607) 15.9517(16.6636) 267.0(311.3747) 10.6983(12.9213
(50,100) 215.1(205.3667) 10.4319(10.0666) 418.3(258.3912) 19.7742(13.2598) 280.8(200.1099) 13.2487(9.9695)
(60,120) 64.0(104.2929) 3.7668(6.0989) 536.4(451.0098) 32.1704(27.5837) 386.8(327.6687) 23.1508(20.6228)
(70,140) 127.5(136.0230) 9.7495(10.2623) 239.6(159.1353) 16.9048(11.5614) 143.4(101.6545) 10.1235(7.9464)
(80,160) 128.0(247.0591) 12.2207(23.8867) 255.10(288.4623) 23.7336(27.8770) 168.7(192.1182) 15.9113(19.6485)
(90,180) 140.2(191.3007) 17.0936(23.5297) 392.10(326.3545) 46.8629(40.9758) 256.1(248.8777) 30.1672(29.1070)
(100,200) 65.1(60.5532) 5.5949(5.6379) 214.8(257.7537) 18.8967(23.1908) 133.2(188.4955) 11.3892(16.4153)

7 (10,20) 134.3(171.9087) 1.9250(2.4624) 434.7(817.5430) 7.6743(14.2808) 268.8(489.3136) 4.7123(8.6148)
(20,40) 379.6(645.6239) 6.1832(9.991) 1029.2 (2443.5000) 19.9616(46.747) 492.3(1137.0000) 8.843(19.9798)
(30,60) 359.5(780.0254) 6.8852(14.7182) 294.5(595.5877) 6.9729(14.0042) 209.1(425.2718) 4.4931(8.9504)
(40,80) 72.0(152.2281) 1.5577(3.3768) 416.8(624.1418) 10.5708(15.7193) 240.5(412.5630) 5.9042(10.0912)
(50,100) 39.8(61.3560) 0.9973(1.5611) 281.7(481.0314) 8.1550(14.1022) 192.1(366.9682) 5.2928(10.2618)
(60,120) 164.5(227.7056) 5.9599(8.0338) 672.5(906.5232) 26.0214(34.4929) 444.9(682.5063) 16.7892(24.8233)
(70,140) 77.3(98.5231) 2.6876(3.4708) 276.2(303.7498) 10.102(11.0515) 139.6(142.7895) 5.13(5.3474)
(80,160) 74.1(122.941) 5.2043(8.8393) 474.8(780.9027) 27.3175(45.6091) 289.6(552.5047) 16.8792(32.7485)
(90,180) 70.0(140.4179) 5.2749(10.985) 429.5(705.4637) 30.0896(48.8796) 318.2(562.72) 22.3532(39.7114)
(100,200) 70.5(96.0742) 6.8665(9.7942) 694.6(1073.2000) 68.3707(108.5662) 384.0(623.8142) 34.5013(56.7705)

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26065

4 5 6 7

p

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Our algorithm:(10,20)
Algorithm in [26]:(10,20)
Algorithm in [28]:(10,20)
Our algorithm:(100,200)
Algorithm in [26]:(100,200)
Algorithm in [28]:(100,200)

Figure 3. Comparison of average number of iterations in problem 11.

4 5 6 7

p

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

A
ve

ra
ge

 C
P

U
 ti

m
e

Our algorithm:(10,20)
Algorithm in [26]:(10,20)
Algorithm in [28]:(10,20)
Our algorithm:(100,200)
Algorithm in [26]:(100,200)
Algorithm in [28]:(100,200)

Figure 4. Comparison of average CPU time in problem 11.

Table 6 shows the numerical results of a large-scale Problem 11, we can see that the number of linear
functions p is much smaller than n. Fixing (p,m) = (2, 10), the number of iterations of our algorithm
decreases as the decision variable n increases, while the number of iterations of the algorithms in the
references [26, 28] decreases and then increases as the decision variable n increases, as reflected in
Figure 5. Moreover, we find that the algorithm in [26,28] consume more CPU time than our algorithm.
Furthermore, we conclude that CPU time increases with an increase in the decision variable or linear
function. Figure 6 provides a clearer picture of this conclusion.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26066

Table 6. Numerical comparisons among the algorithms in [26, 28] and our algorithm on
large-scale Problem 11.

(p,m, n)
Our algorithm Algorithm in [26] Algorithm in [28]

Avg(Std).Iter Avg(Std).Time Avg(Std).Iter Avg(Std).Time Avg(Std).Iter Avg(Std).Time

(2,10,1000) 11.3(5.6223) 1.8230(1.0482) 28.1(29.4192) 4.9508(5.5044) 33.2(47.4042) 4.9860(6.9212)
(2,10,2000) 13.1(8.8707) 7.6748(5.8547) 38.1(35.5006) 24.5339(24.0695) 45(45.1597) 24.0173(23.0733)
(2,10,3000) 10.3(4.9406) 13.2076(7.6065) 21.1(14.1736) 29.3624(21.9892) 66.9(60.9843) 71.8731(62.9537)
(2,10,4000) 8.8(8.0100) 18.9312(20.8423) 35.9(29.7740) 90.5241(79.8744) 59.1(58.9024) 117.6200(111.2727)
(3,10,1000) 77.1(61.2576) 15.0725(12.4141) 216.1(156.9888) 41.7395(30.3254) 243.6(199.4228) 40.3785(32.9021)
(3,10,2000) 161.8(394.4629) 114.8995(283.4199) 250.1(365.6067) 174.4885(259.0985) 349.7(438.3820) 202.5456(251.7850)
(4,10,1000) 80.5(84.4562) 14.3938(15.3816) 887.9(706.9598) 163.7237(130.5653) 1047.7(944.1833) 168.5456(152.1507)
(4,10,2000) 290.2(348.2453) 169.9271(208.815) 739.2(749.6237) 423.9934(419.0576) 387.2(331.2992) 208.3637(176.7977)

1000 2000 3000 4000

n

5

15

25

35

45

55

65

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Our algorithm
Algorithm in [26]
Algorithm in [28]

Figure 5. Comparison of average number of iterations in problem 11.

1000 2000 3000 4000

n

0

10

20

30

40

50

60

70

80

90

100

110

120

A
ve

ra
ge

 C
P

U
 ti

m
e

Our algorithm
Algorithm in [26]
Algorithm in [28]

Figure 6. Comparison of average CPU time in problem 11.

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

26067

5. Conclusions

We propose a new branch-and-bound algorithm for solving LMP in outer space. First, the original
problem is reduced to an equivalent problem by introducing auxiliary variables. Then, the equivalent
problem is further simplified by leveraging the properties of exponential and logarithmic functions.The
focus switches to resolving the second equivalent problem. Afterwards, the nonlinear constraints are
linearly relaxed, and the objective function of the equivalent problem is linearly approximated to obtain
the linear relaxation programming problem. Consequently, the proposed rectangular compression
technique is embedded into the branch-and-bound framework, leading to the development of the outer
space branch-and-bound algorithm. Furthermore, we demonstrate the computational complexity to
estimate the maximum number of iterations of the algorithm in the worst case. Finally, in order to
verify the feasibility and efficiency of the algorithm, some deterministic and random problems are
tested. The experimental results show that the algorithm exhibits good computational performance,
particularly for large-scale random LMP where the number of linear functions p is significantly smaller
than the decision variable n.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11961001), the
Construction Project of first-class subjects in Ningxia higher Education(NXYLXK2017B09), the Basic
discipline research projects supported by Nanjing Securities(NJZQJCXK202201).

Conflict of interest

The authors declare no conflicts of interest.

References

1. J. Mulvey, R. Vanderbei, S. Zenios, Robust optimization of large-scale systems, Oper. Res., 43
(1995), 264–281. https://doi.org/10.1287/opre.43.2.264

2. H. Konno, H. Shirakawa, H. Yamazaki, A mean-absolute deviation-skewness portfolio
optimization model, Ann. Oper. Res., 45 (1993), 205–220. https://doi.org/10.1007/BF02282050

3. M. Domeich, N. Sahinidis, Global optimization algorithms for chip design and compaction, Eng.
Optimiz., 25 (1995), 131–154. https://doi.org/10.1080/03052159508941259

4. K. Bennett, Global tree optimization: a non-greedy decision tree algorithm, Computing Science
and Statistics, 26 (1994), 156–161.

5. R. Cambini, C. Sodini, On the minimization of a class of generalized linear functions on a flow
polytope, Optimization, 63 (2014), 1449–1464. https://doi.org/10.1080/02331934.2013.852548

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

http://dx.doi.org/https://doi.org/10.1287/opre.43.2.264
http://dx.doi.org/https://doi.org/10.1007/BF02282050
http://dx.doi.org/https://doi.org/10.1080/03052159508941259
http://dx.doi.org/https://doi.org/10.1080/02331934.2013.852548

26068

6. S. Qu, L. Shu, J. Yao, Optimal pricing and service level in supply chain considering
misreport behavior and fairness concern, Comput. Ind. Eng., 174 (2022), 108759.
https://doi.org/10.1016/j.cie.2022.108759

7. C. Maranas, I. Androulakis, C. Floudas, A. Berger, J. Mulvey, Solving long-term financial
planning problems via global optimization, Comput. Ind. Eng., 21 (1997), 1405–1425.
https://doi.org/10.1016/S0165-1889(97)00032-8

8. T. Matsui, NP-hardness of linear multiplicative programming and related problems, J. Glob.
Optim., 9 (1996), 113–119. https://doi.org/10.1007/bf00121658

9. H. Ryoo, N. Sahinidis, Global optimization of multiplicative programs, J. Glob. Optim., 26 (2003),
387–418. https://doi.org/10.1023/A:1024700901538

10. C. Wang, S. Liu, A new linearization method for generalized linear multiplicative programming,
Comput. Oper. Res., 38 (2011), 1008–1013. https://doi.org/10.1016/j.cor.2010.10.016

11. Y. Zhao, S. Liu, An efficient method for generalized linear multiplicative programming problem
with multiplicative constraints, SpringerPlus, 5 (2016), 1302. https://doi.org/10.1186/s40064-016-
2984-9

12. P. Shen, H. Jiao, Linearization method for a class of multiplicative programming with exponent,
Appl. Math. Comput., 183 (2006), 328–336. https://doi.org/10.1016/j.amc.2006.05.074

13. C. Wang, Y. Bai, P. Shen, A practicable branch-and-bound algorithm for globally
solving linear multiplicative programming, Optimization, 66 (2017), 397–405.
https://doi.org/10.1080/02331934.2016.1269765

14. P. Shen, B. Huang, Global algorithm for solving linear multiplicative programming problems,
Optim. Lett., 14 (2020), 693–710. https://doi.org/10.1007/s11590-018-1378-z

15. S. Schaible, C. Sodini, Finite algorithm for generalized linear multiplicative programming, J.
Optim. Theory Appl., 87 (1995), 441–455. https://doi.org/10.1007/bf02192573

16. X. Liu, T. Umegaki, Y. Yamamoto, Heuristic methods for linear multiplicative programming, J.
Glob. Optim., 15 (1999), 433–447. https://doi.org/10.1023/A:1008308913266

17. Y. Zhao, J. Yang, Inner approximation algorithm for generalized linear multiplicative programming
problems, J. Inequal. Appl., 2018 (2018), 354. https://doi.org/10.1186/s13660-018-1947-9

18. B. Zhang, Y. Gao, X. Liu, X. Huang, An efficient polynomial time algorithm for a class of
generalized linear multiplicative programs with positive exponents, Math. Probl. Eng., 2021
(2021), 8877037. https://doi.org/10.1155/2021/8877037

19. H. Konno, Y. Yajima, T. Matsui, Parametric simplex algorithms for solving a special
class of nonconvex minimization problems, J. Glob. Optim., 1 (1991), 65–81.
https://doi.org/10.1007/BF00120666

20. P. Bonami, A. Lodi, J. Schweiger, A. Tramontani, Solving quadratic programming by cutting
planes, SIAM J. Optimiz., 29 (2019), 1076–1105. https://doi.org/10.1137/16M107428X

21. E. Youness, Level set algorithm for solving convex multiplicative programming problems, Appl.
Math. Comput., 167 (2005), 1412–1417. https://doi.org/10.1016/j.amc.2004.08.028

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

http://dx.doi.org/https://doi.org/10.1016/j.cie.2022.108759
http://dx.doi.org/https://doi.org/10.1016/S0165-1889(97)00032-8
http://dx.doi.org/https://doi.org/10.1007/bf00121658
http://dx.doi.org/https://doi.org/10.1023/A:1024700901538
http://dx.doi.org/https://doi.org/10.1016/j.cor.2010.10.016
http://dx.doi.org/https://doi.org/10.1186/s40064-016-2984-9
http://dx.doi.org/https://doi.org/10.1186/s40064-016-2984-9
http://dx.doi.org/https://doi.org/10.1016/j.amc.2006.05.074
http://dx.doi.org/https://doi.org/10.1080/02331934.2016.1269765
http://dx.doi.org/https://doi.org/10.1007/s11590-018-1378-z
http://dx.doi.org/https://doi.org/10.1007/bf02192573
http://dx.doi.org/https://doi.org/10.1023/A:1008308913266
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1947-9
http://dx.doi.org/https://doi.org/10.1155/2021/8877037
http://dx.doi.org/https://doi.org/10.1007/BF00120666
http://dx.doi.org/https://doi.org/10.1137/16M107428X
http://dx.doi.org/https://doi.org/10.1016/j.amc.2004.08.028

26069

22. Y. Gao, C. Xu, Y. Yang, An outcome-space finite algorithm for solving linear
multiplicative programming, Appl. Math. Comput., 179 (2006), 494–505.
https://doi.org/10.1016/j.amc.2005.11.111

23. B. Zhang, Y. Gao, X. Liu, X. Huang, Output-space branch-and-bound reduction algorithm
for a class of linear multiplicative programs, Mathematics, 8 (2020), 315.
https://doi.org/10.3390/math8030315

24. Y. Zhao, T. Zhao, Global optimization for generalized linear multiplicative
programming using convex relaxation, Math. Probl. Eng., 2018 (2018), 9146309.
https://doi.org/10.1155/2018/9146309

25. Z. Hou, S. Liu, Global algorithm for a class of multiplicative programs using piecewise linear
approximation technique, Numer. Algor., 92 (2023), 1063–1082. https://doi.org/10.1007/s11075-
022-01330-x

26. H. Jiao, W. Wang, J. Yin, Y. Shang, Image space branch-reduction-bound algorithm for globally
minimizing a class of multiplicative problems, RAIRO-Oper Res., 56 (2022), 1533–1552.
https://doi.org/10.1051/ro/2022061

27. C. Wang, Y. Deng, P. Shen, A novel convex relaxation-strategy-based algorithm for
solving linear multiplicative problems, J. Comput. Appl. Math., 407 (2022), 114080.
https://doi.org/10.1016/j.cam.2021.114080

28. H. Jiao, W. Wang, Y. Shang, Outer space branch-reduction-bound algorithm for solving
generalized affine multiplicative problems, J. Comput. Appl. Math., 419 (2023), 114784.
https://doi.org/10.1016/j.cam.2022.114784

29. H. Zhou, G. Li, X. Gao, Z. Hou, Image space accelerating algorithm for solving a class
of multiplicative programming problems, Math. Probl. Eng., 2022 (2022), 1565764.
https://doi.org/10.1155/2022/1565764

30. H. Jiao, S. Liu, Y. Zhao, Effective algorithm for solving the generalized linear multiplicative
problem with generalized polynomial constraints, Appl. Math. Model., 39 (2015), 7568–7582.
https://doi.org/10.1016/j.apm.2015.03.025

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 11, 26045–26069.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.11.111
http://dx.doi.org/https://doi.org/10.3390/math8030315
http://dx.doi.org/https://doi.org/10.1155/2018/9146309
http://dx.doi.org/https://doi.org/10.1007/s11075-022-01330-x
http://dx.doi.org/https://doi.org/10.1007/s11075-022-01330-x
http://dx.doi.org/https://doi.org/10.1051/ro/2022061
http://dx.doi.org/https://doi.org/10.1016/j.cam.2021.114080
http://dx.doi.org/https://doi.org/10.1016/j.cam.2022.114784
http://dx.doi.org/https://doi.org/10.1155/2022/1565764
http://dx.doi.org/https://doi.org/10.1016/j.apm.2015.03.025
http://creativecommons.org/licenses/by/4.0

	Introduction
	Equivalent problem and its linear relaxation problem
	Branch-and-bound algorithm and its property analysis
	Branching operation
	Compression technology
	Branch-and-bound algorithm
	Convergence analysis
	Complexity analysis

	Numerical experiments
	Conclusions

