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Spatial proteomics identifies
a spectrum of immune
dysregulation in acquired
bone marrow failure syndromes
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Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia, 4Bioinformatics Division, The
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia, 5Department of Medical
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Poor graft function (PGF), manifested by multilineage cytopenias and complete

donor chimerism post-allogeneic stem cell transplantation (alloSCT), and

acquired aplastic anaemia (AA) are immune-mediated acquired bone marrow

(BM) failure syndromes with a similar clinical presentation. In this study, we used

spatial proteomics to compare the immunobiology of the BMmicroenvironment

and identify common mechanisms of immune dysregulation under these

conditions. Archival BM trephines from patients exhibited downregulation of

the immunoregulatory protein VISTA and the M2 macrophage marker and

suppressor of T-cell activation ARG1 with increased expression of the immune

checkpoint B7-H3 compared to normal controls. Increased CD163 and CD14

expression suggested monocyte/macrophage skewing, which, combined with

dysregulation of STING and VISTA, is indicative of an environment of reduced

immunoregulation resulting in the profound suppression of hematopoiesis in

these two conditions. There were no changes in the immune microenvironment

between paired diagnostic AA and secondary MDS/AML samples suggesting that

leukaemic clones develop in the impaired immune microenvironment of AA

without the need for further alterations. Of the eight proteins with dysregulated

expression shared by diagnostic AA and PGF, the diagnostic AA samples had a

greater fold change in expression than PGF, suggesting that these diseases

represent a spectrum of immune dysregulation. Unexpectedly, analysis of

samples from patients with good graft function post-alloSCT demonstrated

significant changes in the immune microenvironment compared to normal

controls, with downregulation of CD44, STING, VISTA, and ARG1, suggesting

that recovery of multilineage haematopoiesis post-alloSCT does not reflect

recovery of immune function and may prime patients for the development of
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PGF upon further inflammatory insult. The demonstrable similarities in the

immunopathology of AA and PGF will allow the design of clinical interventions

that include both patient cohorts to accelerate therapeutic discovery

and translation.
KEYWORDS

aplastic anaemia, poor graft function, stem cell transplant, spatial proteomics, bone
marrow, microenvironment, autoimmune, inflammation
Introduction

Acquired aplastic anaemia (AA) and poor graft function (PGF)

following allogeneic stem cell transplantation (alloSCT) are

acquired bone marrow failure syndromes (BMFS) that lead to

infection and bleeding as a result of persisting leukopenia

and thrombocytopenia.

Aplastic anaemia has an incidence of 2.35 cases per million

people, and mortality rates in newly diagnosed AA are up to 50%

and in relapsed AA are up to 70% (1). First-line therapy for patients

with AA is dependent on patient age and alloSCT donor availability.

Patients who are young and have an appropriate donor are treated

using alloSCT. Patients over 40 are at increased risk of transplant-

related mortality and are therefore initially treated with

immunosuppressive therapies such as antithymocyte globulin +

cyclosporin, to which 20% of patients have a poor response and

one-third relapse within 2 years (2). Up to 15% of patients will

develop secondary myelodysplasia (MDS) or acute myeloid

leukaemia (AML) (3–6), which has a poorer prognosis than

primary MDS/AML (7).

Poor graft function is a syndrome of severe, life-threatening

peripheral cytopenias despite >95% donor engraftment (8). Analysis

of our transplant centre data (929 patients, alloSCT 2000–2016) has

shown that PGF occurs in 13% of patients undergoing alloSCT, with a

mortality rateof 60% in thosewithoutbonemarrow(BM) recovery (9).

Risk factors for PGF include an antecedent diagnosis of

myeloproliferative disorder (e.g., myelofibrosis), age ≥50 years,

concurrent graft vs. host disease (GVHD), pre-engraftment

infection, early ICU admission, and post-engraftment viral infection

(9). There are currently no standardised treatments for patients with

PGF. Most patients are treated with supportive care (monitoring of

blood counts, transfusions, and G-CSF as required), though the use of

repeat stem cell infusions, thrombopoietin (TPO) agonists, reactive

oxygen species scavengers, and treatment with donor-derived

mesenchymal stem cel ls has been reported (10). The

immunopathology of PGF has not been previously described.

Aplastic anaemia is a condition of hyperactive T-cell activation

resulting in excessive interferon-g (IFN-g) production, which in

turn suppresses HSC proliferation, inducing T-cell-mediated HSC

apoptosis and the clinical presentation of pancytopenia (11). In

addition, mouse models of acquired bone marrow failure have

demonstrated that IFN-g induces tumour necrosis factor alpha

(TNF-a) (12) and CCR5 expression (13) in BM resident
02
macrophages, inducing further IFN-g expression and setting up a

positive feedback loop of IFN-g/TNF-a production and a hyper-

inflammatory state. Similarly, excessive IFN-g has been

demonstrated in mouse models of GVHD-driven BM aplasia

(14). Analysis of primary AA patient samples has demonstrated

skewing of CD4 and CD8 T-cell memory subsets (15, 16),

reductions in T regulatory cells (17), oligoclonal expansions of

CD8 T cells (18), including loss or mutation of HLA (19, 20), and

increased IFN-g expression in T cell and monocyte subsets (12, 15).

However, few studies have examined the immunology of PGF in

primary patient samples or the co-contribution of dysregulated

myeloid and lymphoid lineages within the BM immune

microenvironment of AA.

The similar clinical presentations and potentially IFN-g driven
inflammatory pathology described by others lead us to hypothesise

that AA and PGF share similarities in the mechanism of disease

pathogenesis and immunobiology. In this study, we utilised primary

patient BM samples to directly compare the immunopathology of

patients with PGF and AA.
Methods

Patient cohort

The analysis of archival samples left over from diagnostic

procedures was approved under a waiver of consent by the

Melbourne Health Human Research Ethics Committee (Project

2018.239) and conducted in accordance with the Declaration of

Helsinki. Clinical data were obtained from review of patient records

(Supplementary Table S1).

Peripheral blood samples were collected with informed consent

from patients at the Peter MacCallum Cancer Centre and The Royal

Melbourne Hospital (Melbourne, Australia) under ethics approval

of the Melbourne Health Human Research Ethics Committee

(Projects 2016.207, 2018.017, and 2019.280) and in accordance

with the Declaration of Helsinki. Peripheral blood mononuclear

cells (PBMC) were isolated using Ficoll–Paque Plus (GE Healthcare,

Chicago, IL, USA) density gradient separation and cryopreserved

until required. Peripheral blood samples from age-matched healthy

donors were obtained from the Australian Red Cross Blood Service

with ethics approval from the Melbourne Health Human Research

Ethics Committee (Project 2013.288).
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Through a review of our centre records, patients with

appropriate BM trephine samples available were selected. Patient

characteristics are listed in Supplementary Table S1. For severe AA,

patients with diagnostic and progression to myeloid malignancy

samples prior to alloSCT were selected, of whom six patients had

paired diagnostic and progression samples. Normal controls (NC)

were selected from patients undergoing staging for high-grade

lymphomas with morphologic and immunophenotypically

uninvolved bone marrow biopsies.

For PGF, patients were selected based on the following

parameters (1): complete myeloid chimerism at the last reading (2),

Hb ≤85, neutrophils ≤1.0 × 109/L (3), platelets ≤100 × 109/L for 30

days post-D30. Morphological disease must not be present. As a

control, a cohort of patients with good graft function (GGF) post-

alloSCT was selected if they had normal blood counts, complete

donor chimerism, and no features of disease relapse. PGF and GGF

patients were matched 1:1 by the following variables: age, sex, disease/

disease risk index, conditioning intensity, donor relation, graft, and

donor sex match. Trephines from PGF and GGF were taken at a

similar time point post-alloSCT ± 10 days. Where possible, a GGF

control with identical matching variables to the PGF patients was

selected. If this was not possible, patients were matched with a control

that had identical age, conditioning intensity, and disease risk index.

The final judgement to use control based on the available matched

variables was made by two clinical haematologists.
Spatial proteomics

At the time of sample collection, BM trephines were processed

using standard diagnostic laboratory practice (fixation in B5,

decalcification in acid, and paraffin embedding). From identified

archival BM trephine blocks, 4 mm sections were cut and mounted

on super-frosted slides. Spatial proteomics was performed using the

GeoMX platform as previously described (21). Briefly, the tissue

area of interest was located using fluorescence imaging, and 6 × 300

µm regions of interest were selected by dual CD45+/CD3+

expression for each trephine sample (Supplementary Figure S1).

For multiplexed protein expression, samples were analysed using

the GeoMX Immune Cell Profiling Core, IO Drug Target Module,

Immune Activation Status Module, Immune Cell Typing Module,

and Pan-Tumour Module to determine the expression of 57

proteins (Supplementary Table S2). As this analysis used

predesigned panels, it included markers that are not known to be

expressed in the BM, such as MART1, Her2, and NY-ESO-1. These

markers were included in the statistical analysis but were not

considered further for the dissection of tissue pathology.
Flow cytometry analysis

Details of the antibodies used are listed in Supplementary Table

S3. PBMC were stained with Live/Dead Aqua (Thermo Fisher,

Waltham, MA, USA) for 30 min at 4°C, washed in FACS buffer (2%

FBS in PBS), and blocked in Fc block (BD Biosciences, Franklin

Lakes, NJ, USA) and CellBlox Blocking Buffer (Thermo Fisher) for
Frontiers in Immunology 03
10 min at RT. Cells were stained with NovaRed685-antiCD25 for 30

min at 4°C, followed by remaining surface antibodies for a further

30 min at 4°C. Cells were washed twice in FACS buffer and

permeabilised using Cytofix/Cytoperm Kit (BD Biosciences)

according to the manufacturer’s instructions. Cells were stained

with BV421-antiSTING in Perm/Wash buffer for 30 min at 4°C

prior to two washes with perm/wash buffer. Samples were

resuspended in FACS buffer, acquired on an Aurora Spectral

Flow Cytometer (Cytek Biosciences, Fremont, California, USA),

and analysed using FlowJo (BD Biosciences). The representative

gating strategy is shown in Supplementary Figure S2.
Immunohistochemistry

Tissue sections of BM trephines were baked for 2 h at 65°C and

deparaffinised/rehydrated using a Leica Jung XL Autostainer (Leica

Microsystems Pty Ltd, Macquarie Park, Australia). Antigen

retrieval was performed using 10 mM of sodium citrate buffer at

pH 6 (Chem Supply, Gillman, SA, Australia) in a Prestige Medical

Pressure Cooker (Aptum Biologics Ltd., Southampton, UK). Slides

were allowed to come to room temperature and blocked in 1%

bovine serum albumin (Sigma Aldrich, Darmstadt, Germany) in

PBS with 0.3% Triton X-100 (Sigma Aldrich, Darmstadt, Germany)

for 1 h at room temperature. Slides were stained overnight at 4°C

with human anti-STING antibody [EPR13130] (ab198952, Abcam,

Cambr idge , UK) . Sec t ions were post -fixed with 4%

paraformaldehyde for 30 min at room temperature, and nuclei

were stained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma

Aldrich, Darmstadt, Germany) at 0.1 mg/ml for 5 min at room

temperature. Sections were mounted in ProLong glass antifade

(Thermo Fisher Scientific, Waltham, MA, USA). Images were

captured using the Vectra Polaris Automated Quantitative

Pathology Imaging System (Akoya Biosciences, Menlo Park, CA,

USA) and analysed using the Phenocart 1.1.0 imaging software

(Akoya Biosciences, Menlo Park, CA, USA).
Statistical analysis

Spatial proteomics analyses were conducted as previously

described (22). Data exploration and quality checks were

conducted using relative log expression (RLE) plots and principal

component analysis (PCA). The raw counts were normalised using

the trimmed mean of M-values (TMM) method (23) to normalise

the raw counts (Supplementary Figure S3), and PCA was used to

identify the progression effect and graft functions as the factors

explaining the variation in the data. Differential expression (DE)

analysis was undertaken using R/Bioconductor package limma

(v3.48.0) (24). For AA studies, comparisons modelled include

“AA DX vs. Normal” and “AA PROG vs. Normal”, with batch as

a covariate. For PGF studies comparisons undertaken were “PGF vs.

Normal” and “GGF vs. Normal”, with batch as a covariate. For all

contrasts, the voom-limma with duplication correlation pipeline

(25) was used and the TREAT criteria applied (26) (p-value <0.05)

to conduct statistical tests and to calculate the t-statistics, log-fold
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change (logFC), and adjusted p-values. p-values <0.05 were

considered statistically significant. Heatmaps were graphed using

log normalised counts (logCPM) of DE genes for samples of interest

with the R package pheatmap. For box plots, data are graphed as

centre line, median; box limits, first and third quartiles; whiskers,

1.5 × interquartile range; and points, outliers.

Flow cytometry data were analysed in GraphPad Prism Version

6.07 using a Kruskal–Wallis one-way ANOVA with Dunn’s

multiple comparisons tests. The data are graphed as individual

points and mean ± standard deviation.
Results

Spatial proteomics identifies dysregulated
BM immunity in patients with AA and PGF

One of the major barriers to the study of patients with AA or

PGF is a lack of cryopreserved BM samples stored at the time of

diagnosis that are suitable for immunological examination by either

flow cytometry or single-cell gene expression analysis. We have

recently described the application of spatial proteomics using the

GeoMX platform, which enables the analysis of BM immunity in

archival trephine samples (21, 22). This has allowed us to construct

a unique cohort of patients (Supplementary Table S1) treated at our

centre between 2002 and 2020 to provide the first direct comparison

of the immunobiology of AA and PGF. Our analysis consisted of

severe AA patients at diagnosis (AA_DX, n = 15, median age: 45

(21–50)) and patients with newly diagnosed PGF (n = 20, median

age: 55 (19–68)). In addition, we collated samples from patients

with severe AA who had progressed to AML/MDS (AA_PROG, n =

15, median age: 47 (25–61)) to allow analysis of immune

determinants of AA progression, while a cohort of patients with

GGF post-alloSCT (n = 20, median age 49 (19–64)), matched for

transplant characteristics to those with PGF, were included to allow

dissection of the immune impacts of alloSCT vs. those of PGF. The

most common indication for alloSCT was AML (45%) and BM

trephines were taken at amedian of 100 days (60–118) post-alloSCT.

Normal controls (n = 20, median age: 51 (18–78)) were included as a

reference. Six regions of immune infiltrate per trephine, selected by

dual CD45/CD3 staining, were selected (Supplementary Figure S1)

and analysed for the expression of 57 proteins using predesigned

panels to explore immune cell types, memory phenotype, and

activation status (Supplementary Table S2) to provide a

comprehensive overview of the immune microenvironment in each

sample. Data were processed and analysed using a spatial proteomics-

specific bioinformatics pipeline (22) to control for confounders such as

variations in cell number, analysis batch, and intra-patient sampling.

For subsequent comparisons, each region of immune infiltrate is

reported as a single value, giving six values per sample, which were

accounted for in our bioinformatics analysis. All p-values are therefore

reported as adjusted p-values (adj p). Analysis of the cohort by PCA

showed that normal control patients clustered tightly compared to

disease groups. Separationwas observed onPC1based on disease, with

AA_DX and PGF samples clustering together away from normal

controls (Figure 1).
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Compared to normal controls, all patient samples in any of the

patient cohorts (AA at diagnosis or progression, PGF or GGF)

showed significantly dysregulated immunobiology (Figures 2A–D;

Table 1), with AA_DX having the highest number of significantly

differentially expressed proteins. As would be expected given the

hypocellular BM of these conditions, expression of CD45 was

significantly reduced compared to normal controls across AA_DX

(adj p = 5.413E−10), AA_PROG (adj p = 8.299E−08), and PGF (adj

p = 8.634E−09) groups (Figure 2E; Table 1). More surprisingly,

patients with GGF showed a similar reduction in CD45 (adj p =

1.06E−04). In addition, all patient groups had downregulation of

the immunoregulatory protein VISTA and the M2 macrophage

marker and suppressor of T-cell activation ARG1 with increased

expression of the immune checkpoint B7-H3 compared to normal

controls (Figures 2F–H; Table 1), suggesting a common

microenvironment of immune dysregulation leading to

marrow hypoplasia.

Analysis of the AA_DX cohort reveals changes in both immune

cell frequency and function (Figure 2A; Table 1). Significant

downregulation of CD66b (adj p = 8.46E−24) is likely reflective of

neutropenia in these patients but may also indicate a reduced

granulocytic myeloid suppressor cell (MDSC) population. This is

augmented by the markedly decreased expression of the

immunoregulatory protein VISTA (adj p = 6.84E−27), which is

highly expressed in immunosuppressive myeloid populations

(including MDSCs) but also has a critical role in naïve T-cell

maintenance and peripheral tolerance (27). While total myeloid

cells were unchanged based on CD11c expression, the combined

increase in CD14 (adj p = 0.018) and CD163 expression (adj p =

4.53E−06) indicated a skewing toward an inflammatory monocyte

phenotype. The pathogen recognition and dsDNA sensor protein

STING, which plays a central role in both innate and adaptive

immunity across dendritic cells and T cells (28), was also decreased

in AA_DX patients (adj p = 6.14E−13). The decreased expression of

both STING and VISTA, combined with increased expression of

ICOS (adj p = 0.002) and B7-H3 (adj p = 0.002), indicates an

environment of profound T-cell activation and cytokine

production. The nonimmune BM microenvironment is also

impacted with increased expression of FAP-alpha (adj p = 1.22E

−05) and S100B (adj p = 7.02E−09), indicating changes in

mesenchymal stem cells (29) and Schwann cells (30), respectively.

Finally, decreased Ki-67 (adj p = 4.53E−06) combined with

increased Bcl-2 (adj p = 0.017) may reflect an environment of

reduced proliferation and apoptosis resistance in residual

haematopoietic cells.
Progression of AA to AML/MDS is
not associated with changes to the
immune microenvironment

Changes in protein expression between AA_DX and

AA_PROG samples were analysed to assess the contribution of

the BM immune microenvironment to the progression to myeloid

malignancy. When all patient samples were included, STING was

the top protein upregulated at progression (adj p = 2.59E−06) with
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CD66b, VISTA, and CD34 also significantly upregulated

(Figure 3A; Table 2). However, when the analysis was restricted

to the six patients with matched diagnosis and post-progression

samples available, while there was a trend to increased expression of

STING, CD34, and VISTA after progression, this was not

significant (Supplementary Figure S4), indicating that the

significant results when all patients are included may be a

consequence of inter-patient variation in disease biology rather

than disease stage. Furthermore, when the AA_DX samples were

separated into those patients who would go on to develop

progressive disease vs. those who did not, there were no

differentially expressed proteins. Overall, this suggests that the

immune microenvironment in AA does not change upon the

development of subsequent myeloid malignancies.
Patients undergoing alloSCT have
dysregulated BM immunity, which is
further dysregulated in PGF

Despite having normal blood counts and full donor chimerism

at day 100 post-alloSCT, GGF samples also exhibited a dysregulated

BM immune microenvironment. Most significantly, the adhesion

marker CD44 was downregulated compared to normal controls (adj

p = 1.06E−04, Figure 2D) and PGF samples (adj p = 0.007,
Frontiers in Immunology 05
Figure 2B), with PGF samples exhibiting normal expression of

CD44. Expression of VISTA, ARG1, and B7-H3 had a greater

degree of dysregulation in PGF patients compared to GGF patients

(Figures 2F–H), but this difference was not significant (Figure 3B),

suggesting the ongoing contribution of these proteins to immune

dysregulation in the BM post-alloSCT regardless of graft function.

Indeed, PCA demonstrated a significant overlap between PGF and

GGF samples (Supplementary Figure S5).

Within PGF samples, CD163 expression was increased

compared to GGF samples (adj P = 0.007), suggesting skewing of

monocyte/macrophage populations, with decreased CD66b

reflecting the neutropenia of PGF (adj p = 9.89E−06) (Figure 3B).

In addition, multiple proteins were dysregulated in PGF, including

upregulation of IDO1 (adj p = 1.40E−04), TIM-3 (adj p = 0.041),

and HLA-DR (adj p = 0.041), and downregulation of CD45RO (adj

p = 0.041) compared to normal controls (Figure 2C), suggesting

changes in T-cell immunomodulation and/or a bias toward

monocytes/macrophages.
PGF parallels the dysfunctional BM
immune microenvironment seen in AA

PCA of AA_DX and normal controls demonstrated the

overlap in the immune microenvironment between AA_DX and
FIGURE 1

Principal component analysis of study samples demonstrates separation based on disease group along PC1. Comparison of the pattern of protein
expression across aplastic anaemia at diagnosis (AA_DX), aplastic anaemia at progression (AA_PROG), poor graft function (PGF), good graft function
(GGF), and normal controls (normal).
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PGF, with AA_DX and normal control samples separating into

two distinct groups along PC1, with PGF clustering either with

AA_DX or between the two groups (Supplementary Figure S6).

There was greater similarity between AA_DX and PGF samples,

with eight of the top 9 proteins dysregulated in PGF also
Frontiers in Immunology 06
dysregulated in AA_DX samples when compared to normal

controls (Table 1; Supplementary Figure S7), than in PGF and

GGF samples, where only CD45, VISTA, ARG1, and B7-H3 are

shared (Figure 2). However, there were important differences

between AA_DX and PGF (Figure 3C), with PGF samples
A B

D

E F

G H

C

FIGURE 2

Multivariate analysis identifies significant immune dysregulation across patient groups compared to normal controls. MAplots from multivariate
analysis demonstrating changes in expression in (A) aplastic anaemia at diagnosis (AA_DX), (B) aplastic anaemia at progression (AA_PROG), (C) poor
graft function (PGF), and (D) good graft function (GGF) compared to normal controls. Expression of (E) CD45, (F) VISTA, (G) ARG1, and (H) B7-H3
was significantly different across all patient groups compared to normal controls. See Table 1 for the full list of significant proteins shown in (A).
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TABLE 1 Multivariate analysis of significant changes in protein expression vs. normal control.

Comparator Proteina Log fold change Average expression t p-value adj p-
value

AA_DX VISTA −2.342 13.49 −12.18 1.32E−28 6.84E−27

CD66b −5.126 13.18 −11.23 3.25E−25 8.46E−24

STING −2.635 14.3 −7.831 3.54E−14 6.14E−13

ARG1 −1.491 11.84 −6.699 4.71E−11 5.41E−10

CD45 −1.387 15.23 −6.682 5.20E−11 5.41E−10

PR 1.368 9.935 6.2 8.66E−10 7.02E−09

S100B 1.796 12.81 6.184 9.45E−10 7.02E−09

MART1 1.203 9.925 5.337 8.95E−08 5.81E−07

Her2 1.071 10.23 4.983 5.12E−07 2.96E−06

Ki-67 −1.576 12.8 −4.869 8.80E−07 4.53E−06

CD163 1.64 11.32 4.851 9.58E−07 4.53E−06

FAP-alpha 0.9578 10.54 4.618 2.81E−06 1.22E−05

Beta-2-microglobulin −0.6059 12.22 −3.552 2.20E−04 8.80E−04

GZMB −0.6705 13.06 −3.375 4.14E−04 0.002

B7-H3 0.7707 11.65 3.344 4.61E−04 0.002

ICOS 0.7085 9.991 3.149 8.97E−04 0.002

Fibronectin 1.268 14.82 3.146 9.05E−04 0.002

Bcl-2 0.6046 11.9 2.525 0.006 0.017

CD14 0.7191 13.66 2.495 0.007 0.018

CD40 0.5862 9.84 2.362 0.009 0.024

EpCAM 0.7074 8.988 2.359 0.009 0.024

CD68 −0.5879 16.42 −2.139 0.017 0.039

AA_PROG CD66b −3.341 13.18 −7.189 2.30E−12 1.19E−10

CD45 −1.276 15.23 −5.967 3.19E−09 8.30E−08

VISTA −1.145 13.49 −4.882 8.29E−07 1.20E−05

CD163 1.636 11.32 4.859 9.22E−07 1.20E−05

B7-H3 0.7994 11.65 3.57 2.06E−04 0.002

ARG1 −0.8308 11.84 −3.188 7.87E−04 0.007

FAP-alpha 0.6383 10.54 2.585 0.005 0.038

MART1 0.6988 9.925 2.525 0.006 0.039

PGF CD66b −3.643 13.11 −8.282 4.32E−16 2.24E−14

CD45 −1.318 15 −6.282 3.32E−10 8.63E−09

CD163 1.966 11.54 6.103 9.61E-10 1.58E-08

VISTA −1.364 13.41 −6.063 1.22E−09 1.58E−08

B7-H3 1.157 11.8 6.02 1.56E−09 1.62E−08

ARG1 −1.054 11.72 −4.326 8.96E−06 1.06E−04

IDO1 1.259 9.463 4.219 1.43E−05 1.40E−04

CD14 0.885 13.78 3.54 2.17E−04 0.001

(Continued)
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having decreased expression of CD3 (adj p = 0.001) and CD27 (adj

p = 0.026), suggesting impaired antigen-specific T-cell responses

(31). As outlined above, PGF and AA_DX exhibited a similar

pattern of monocyte/macrophage skewing with increased CD163

and CD14 expression. Furthermore, while there were statistically

significant differences between these groups for the expression of

STING (adj p = 2.38E−06), VISTA (adj p = 0.001), and CD66b (adj

p = 0.026), each marker’s expression is highest in normal controls,

with decreases in PGF and further decreases in AA_DX samples.

This pattern of expression was confirmed by examining STING

expression via fluorescent immunohistochemistry (Figure 4) in

study trephine samples, suggesting that PGF (allogeneic) and AA

(autologous) exist on a spectrum of immune dysregulation with a

common mechanism of immunopathology in the BM.
Peripheral blood immunity does not reflect
changes in BM immunity

To further confirm the dysregulated expression of VISTA and

STING, their expression was examined in PBMC from patients with

AA, PGF, and GGF. There were small changes in the proportions of

B cells, NK cells, T cells, and monocytes across the groups, with

CD4 T cells reduced in patients with PGF and GGF and reduced

classical monocytes in AA patients (Supplementary Figure S8).

Unexpectedly, patients with AA and PGF exhibited significantly

different percentages of STING and VISTA-positive cells across B,

NK, T, and monocyte subsets (Figures 5A–E), with AA patients

having expression equivalent to normal controls and most PGF

patients having higher expression, equivalent to that of GGF

patients. The dysregulated expression was consistent across T-cell

memory subsets (Supplementary Figure S9). An increased

proportion of cells positive for STING and VISTA in patients

with GGF provides further evidence of dysregulated immunity in

a cohort of patients that are often considered to have normal
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immunity post-alloSCT. Given the lymphopenia in AA and PGF

patients, the absolute number of positive cells is similar, with AA

and PGF patients having lower total STING and VISTA positive

cells compared to GGF patients (Supplementary Figure S10). It

should be noted that PBMC samples lack granulocytes, and we were

therefore unable to assess changes in STING and VISTA expression

in this cell population. Overall, the discordance between peripheral

blood (PB) and BM immunity underscores the importance of BM

examination in these conditions. Assessment of PB immunology

does not necessarily mirror the BM microenvironment and is most

likely reflective of ongoing inefficient haematopoiesis, consisting of

the cells remaining from disease onset that are not subsequently

replaced, rather than the immunopathology of bone marrow failure.
Discussion

Aplastic anaemia and PGF following alloSCT are acquired

BMFS that both present clinically as multilineage cytopenias with

BM aplasia. The objective of this study was to investigate the

potential of a common BM immunopathology underpinning

these conditions. We utilised spatial proteomics analysis of

primary archival patient samples from patients treated at our

centre over an 18-year period, allowing us to carefully construct

our patient cohort to include samples from patients with PGF or

GGF and AA patients at diagnosis or post-AML/MDS progression.

Our analysis revealed a common microenvironment of immune

dysregulation with inflammatory monocyte skewing and increased

T-cell activation and identified many potential areas for future

investigation for their contribution to BMFS.

Expression of ARG1 was decreased across all patient groups.

While commonly used to identify alternatively activated M2

macrophages, ARG1 is also highly expressed in polymorphonuclear

neutrophils, where it plays an important role in the suppression of T-

cell proliferation and cytokine production (32, 33). Furthermore, the
TABLE 1 Continued

Comparator Proteina Log fold change Average expression t p-value adj p-
value

S100B 1.035 12.86 3.05 0.001 0.007

PTEN −0.6757 10.46 −2.974 0.002 0.008

NY-ESO-1 −0.6233 11.05 −2.921 0.002 0.009

Tim-3 0.6371 11.74 2.31 0.011 0.041

CD45RO −0.5795 11.85 −2.299 0.011 0.041

HLA-DR 0.7142 14.63 2.299 0.011 0.041

GGF CD45 −1.028 15 −4.526 3.66E−06 1.06E−04

CD44 −1.72 13.18 −4.503 4.07E−06 1.06E−04

VISTA −0.9085 13.41 −3.497 2.53E−04 4.39E−04

ARG1 −0.8961 11.72 −3.369 4.03E−04 0.005

CD11c 0.8062 13.4 2.643 0.004 0.041

B7-H3 0.6522 11.8 2.603 0.005 0.041
aAs this analysis used predesigned panels, it included markers that are not known to be expressed in the BM, such as MART1, Her2, and NY-ESO-1. These markers were included in the statistical
analysis but were not considered further for the dissection of tissue pathology.
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use of ARG1 KO donors in mouse BMT models, when combined

with high fat-induced inflammatory conditions (i.e., a Western diet),

leads to a decrease in circulating B cells and spleen size (34),

suggesting that a reduction in ARG1 expression in GGF patients

may prime them for the development of PGF upon a further

subsequent injury to the BM such as infection or GVHD. Further

reduction in ARG1 in AA and PGF patients is likely the result of

ongoing neutropenia and may also contribute to the dysregulated T-

cell activation in these conditions.

While this study was primarily designed to examine the

immune microenvironment of the BM in these conditions,

changes in components of the wider BM microenvironment were

detected with increased expression of markers for mesenchymal

stromal cells and Schwann cells, suggesting changes to the BM niche

and possible effects on HSC quiescence (30). In addition, the T-cell

costimulatory protein B7-H3 was upregulated across all patient

groups, with the highest expression in PGF patients. Expressed by a
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wide range of cells, including activated T cells, NK cells, dendritic

cells, and macrophages (35–37), along with non-hematopoietic

cells, including fibroblasts, synoviocytes, osteoblasts, and epithelial

cells (38–40), with both immunostimulatory (41, 42) and inhibitory

(43, 44) roles described. Its role in osteoblast differentiation and

bone mineralisation (39) suggests that B7-H3 may also be involved

in the recovery of the BM post-injury, whether that be

chemotherapy-induced or inflammatory-mediated BM aplasia.

Downregulation of both VISTA and STING across patients

with AA and PGF is a likely major contributor to immune

dysregulation, with VISTA being highly expressed in

immunosuppressive MDSCs (45) and a critical regulator of naïve

T-cell maintenance (27). In addition, BM-derived macrophages

from VISTA KO mice express high levels of CCL3 and CCL5

(46), which have been shown to stimulate CCR5 production in

macrophages and IFN-g production in T cells in mouse models of

acquired BMFS (13). The end result is HSC depletion, either directly

by IFN-g increasing the sensitivity of HSCs to T-cell-mediated

apoptosis (12, 47) or indirectly by CCR5 increasing inflammatory

macrophage persistence and the depletion of CD41+ HSCs (13).

While STING classically regulates type 1 IFN responses to dsDNA

pathogens and is expressed in most haematopoietic lineages, IFN-

independent effects in T cells have been recently described, with

STING KO mice exhibiting reduced T-cell death in response to

STING agonists (48) and significant effects post-alloSCT, including

increased proportions of macrophages and activated dendritic cells

and increased CD8 T-cell proliferation and IFN-g production (49).

Additionally, analysis of mouse models of neutropenia has recently

demonstrated that IFN-g signalling in myeloid cells is associated

with the functional decline of haematopoiesis (50). Collectively, this

suggests that reduced VISTA and/or STING expression results in a

dysregulated BM immune microenvironment with reduced

immunosuppressive cell populations and increased T-cell

activation/proliferation resulting in increased IFN-g/TNF-a
production and HSC depletion. Future investigation of this

finding will require complex models that accurately reflect the

BM-specific downregulation of both STING and VISTA found in

this study to confirm their impact on acquired BMFS.

One intriguing aspect of this study is the dysregulated immunity

in patients with GGF post-alloSCT.While the degree of dysregulation

was lower than that of patients with PGF, it does suggest that recovery

of multilineage haematopoiesis to normal ranges does not necessarily

reflect normal immunity, and this dysregulation may impair BM

recovery following an inflammatory insult, resulting in PGF. CD44

was specifically downregulated in GGF patients, suggesting possible

defects in HSC homing (51) and function (52) and T-cell activation

(53, 54) and trafficking to the thymus and lymph nodes (55). In

addition, CD44+ CD8 T cells have been shown to mediate anti-

tumour responses without inducing GVHD (56), suggesting that

downregulation in GGF patients may diminish graft vs. tumour

responses. STING has also been examined for its impact on GVHD

in both MHC-matched and mismatched mouse models,

demonstrating that STING agonists may reduce or prevent GVHD

(49, 57, 58). Our analysis is the first to our knowledge to examine

STING expression in patient PB and BM samples, demonstrating an

increased frequency of STING-positive cells across multiple PB
A

B

C

FIGURE 3

Multivariate analysis of protein expression across AA_DX, AA_PROG,
PGF, and GGF. MAplots from multivariate analysis for aplastic
anaemia at diagnosis (AA_DX) vs. aplastic anaemia at progression
(AA_PROG) (A), poor graft function (PGF) vs. good graft function
(GGF) (B) and AA_DX vs. PGF (C).
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lymphocyte subsets in patients post-alloSCT with STING

downregulation in the BM of patients with PGF. Further

longitudinal analysis of STING expression in patient samples across

the BM, PB, and gastrointestinal tract should be undertaken to
Frontiers in Immunology 10
understand the dynamics of expression post-alloSCT prior to the

application of STING agonists in the clinic.

Our study is the first to describe a common inflammatory

immunopathology across AA and PGF in primary patient samples,
TABLE 2 Multivariate analysis of significant changes in protein expression across AA_DX, AA_PROG, PGF, and GGF.

Comparison Proteina Log fold change Average expression t p-value adj p-value

AA_DX vs. AA_PROG STING −2.088 14.3 −5.452 4.98E−08 2.59E−06

VISTA −1.197 13.49 −5.003 4.64E−07 1.21E−05

CD66b −1.785 13.18 −3.329 4.92E−04 0.009

CD34 −0.8491 12.46 −3.198 7.62E−04 0.010

S100B 1.054 12.81 3.028 0.001 0.014

PR 0.7754 9.935 2.726 0.003 0.029

PGF vs. GGF CD66b −2.355 13.11 −5.139 1.90E−07 9.89E−06

CD163 1.172 11.54 3.395 3.68E−04 0.007

CD44 1.328 13.18 3.372 3.99E−04 0.007

AA_DX vs. PGF STING −2.033 14.5 −5.413 4.58E−08 2.38E−06

CD3 1.132 12.88 3.814 7.58E−05 0.001

VISTA −0.9908 13.41 −3.8 8.02E−05 0.001

Her2 0.8201 10.19 3.214 6.91E−04 0.009

Ki-67 −1.107 12.96 −3.021 0.001 0.012

PR 0.835 9.977 3.002 0.001 0.012

MART1 0.7998 9.886 2.73 0.003 0.024

CD27 0.6077 10.77 2.642 0.004 0.026

Beta-2-microglobulin −0.5392 12.24 −2.616 0.005 0.026

CD66b −1.43 13.11 −2.592 0.005 0.026
aAs this analysis used predesigned panels, it included markers that are not known to be expressed in the BM, such as MART1, Her2, and NY-ESO-1. These markers were included in the statistical
analysis but were not considered further for the dissection of tissue pathology.
A B

FIGURE 4

STING is significantly downregulated in the BM of patients with AA_DX and PGF. (A) Expression of STING in spatial proteomics multivariate analysis.
Refer to Tables 1 , 2 for statistical analysis. (B) Immunohistochemistry of STING expression demonstrating reduced expression in aplastic anaemia at
diagnosis (AA_DX) and poor graft function (PGF) (blue = DAPI, white = STING).
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indicating an environment of reduced immunoregulation and

immunosurveillance. There was no difference in the immune

microenvironment of AA patients at diagnosis vs. progression to
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myeloid malignancy, supporting the conclusion by others that

secondary MDS/AML is a result of HSC clonal evolution (19, 59,

60) that evades the impaired, yet stable, immune marrow
A

B

D

E

C

FIGURE 5

Expression of STING and VISTA in PB immune subsets is significantly different between AA and PGF patients. Flow cytometry analysis of STING and VISTA
expression in PB samples from patients with aplastic anaemia (AA) (n = 5; median age = 32.5 (range = 27–70); 60% male patients, 40% female patients),
poor graft function (PGF) (n = 17; median age = 59.0 (range = 40–71); 65% male patients, 35% female patients), good graft function (GGF) (n = 13; median
age = 59.0 (range = 20–66); 84% male patients, 16% female patients) and normal controls (n = 14; median age = 57.0 (range = 25–71); 57% male patients,
43% female patients) across (A) B cells, (B) NK cells, (C) CD8 T cells, (D) CD4 T cells, and (E) monocytes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1213560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Koldej et al. 10.3389/fimmu.2023.1213560
microenvironment. Our results suggest that AA and PGF exist on a

spectrum, with AA showing a greater degree of dysregulation. The

close monitoring and use of immunosuppression post-alloSCT

likely allows for prompt intervention in PGF patients, preventing

the degree of dysregulation seen in AA patients, who are only

diagnosed when they present with significant persistent cytopenias.

The inflammatory trigger for the development of acquired BMFS is

unknown, and we are unable to draw any conclusions about this

based on our analysis. However, the finding of common

immunopathology provides the opportunity to analyse the clinical

records of patients with PGF to understand the risk factors for and

mechanisms of pathogenesis across acquired BMFS. Furthermore, it

will allow for the design of preclinical and clinical studies that

include both patient populations, accelerating our understanding of

the biology and the development of new treatment strategies.

Recently, TPOmimetics such as eltrombopag have emerged as a

new treatment option in AA (61, 62) and post-alloSCT

thrombocytopenia (63) with response rates of 44% and 36%,

respectively, in prospective studies. TPO mimetics can prevent

the induced blockade of endogenous TPO to activate TPO

signalling on HSCs and promote HSC survival (64). However,

this therapeutic intervention does not interrupt the IFN-g/TNF-a
feedback loop, and its effect on patient immunity is largely

unknown. The Janus Kinase 1/2 inhibitor ruxolitinib has recently

been shown to reduce T-cell cytokine production in mouse models

of immune bone marrow failure (65), and it is soon to be tested in

clinical trials, which may provide additional immune-directed

therapy for these patients.

This analysis of primary patient BM samples has identified that

rather than a single master regulator of immune dysregulation,

acquired BMFS presents with multiple mechanisms of immune

dysregulation upstream of IFN-g and TFN-a, all of which likely

contribute to the inflammatory BM immunopathology. These

require further study and validation in primary patient BM

samples and translational mouse models, both in isolation and

combination, to determine their relative contribution to acquired

BMFS. New therapies for acquired BMFS should be investigated

that specifically target the underlying immune dysregulation to

reset and recover patient immunity, prevent HSC apoptosis, and

lead to improved haematopoietic output and ultimately potential

cure of the disease.
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