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Introduction: Epidemiological modeling is widely used to offer insights into the 
COVID-19 pandemic situation in Asia. We  reviewed published computational 
(mathematical/simulation) models conducted in Asia that assessed impacts of 
pharmacological and non-pharmacological interventions against COVID-19 and 
their implications for vaccination strategy.

Methods: A search of the PubMed database for peer-reviewed, published, 
and accessible articles in English was performed up to November 2022 to 
capture studies in Asian populations based on computational modeling of 
outcomes in the COVID-19 pandemic. Extracted data included model type 
(mechanistic compartmental/agent-based, statistical, both), intervention type 
(pharmacological, non-pharmacological), and procedures for parameterizing 
age. Findings are summarized with descriptive statistics and discussed in terms of 
the evolving COVID-19 situation.

Results: The literature search identified 378 results, of which 59 met criteria for 
data extraction. China, Japan, and South Korea accounted for approximately 
half of studies, with fewer from South and South-East Asia. Mechanistic models 
were most common, either compartmental (61.0%), agent-based (1.7%), or 
combination (18.6%) models. Statistical modeling was applied less frequently 
(11.9%). Pharmacological interventions were examined in 59.3% of studies, 
and most considered vaccination, except one study of an antiviral treatment. 
Non-pharmacological interventions were also considered in 84.7% of studies. 
Infection, hospitalization, and mortality were outcomes in 91.5%, 30.5%, and 
30.5% of studies, respectively. Approximately a third of studies accounted for 
age, including 10 that also examined mortality. Four of these studies emphasized 
benefits in terms of mortality from prioritizing older adults for vaccination under 
conditions of a limited supply; however, one study noted potential benefits 
to infection rates from early vaccination of younger adults. Few studies (5.1%) 
considered the impact of vaccination among children.

Conclusion: Early in the COVID-19 pandemic, non-pharmacological interventions 
helped to mitigate the health burden of COVID-19; however, modeling indicates 
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that high population coverage of effective vaccines will complement and reduce 
reliance on such interventions. Thus, increasing and maintaining immunity levels 
in populations through regular booster shots, particularly among at-risk and 
vulnerable groups, including older adults, might help to protect public health. 
Future modeling efforts should consider new vaccines and alternative therapies 
alongside an evolving virus in populations with varied vaccination histories.
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COVID-19, vaccination, epidemiological modeling, Asia, intervention

1. Introduction

The SARS-CoV-2, which causes COVID-19, rapidly spread from 
the first reported symptoms in Wuhan, China, in December 2019 
through to the declaration of an International Public Health 
Emergency by the World Health Organization in January 2020 (1, 2). 
The nature of the virus has since changed through its evolution into 
new variants of concern, with differing potentials for infection, severe 
disease course, and negation of immunity from vaccination or prior 
infection (3, 4). The human response to the pandemic has also 
developed from the implementation of non-pharmacological 
countermeasures through to pharmacological and vaccination 
strategies, which have mitigated the impact of the pandemic with 
varying degrees of effectiveness (5, 6).

In the early pandemic, non-pharmacological interventions were 
implemented across many regions to ease the immediate disease 
burden of COVID-19 and prevent the overwhelming of public health 
systems. Although lockdowns and school/workplace closures were 
effective in reducing transmission and patient healthcare costs, the 
economic disruption, declining mental health, and social discontent 
caused by these interventions raised concerns (7–9). The development 
and wider rollout of effective vaccines has further changed the 
dynamics of the situation (10–13). In the context of limited vaccine 
supply, the WHO recommended administration strategies that aimed 
to reduce mortality from COVID-19 infection (14). Individuals at risk 
of infection and/or severe disease were targeted, namely, front-line 
healthcare workers and older adults, the latter group being at 
particular risk of morbidity and mortality from COVID-19, compared 
with younger age groups (6, 15, 16). As supplies have stabilized, 
campaigns to vaccinate the wider public have faced challenges in the 
form of hesitancy among certain populations to receive initial doses 
of the vaccine and/or subsequent boosters (17, 18). Additionally, from 
2022, the progression from a prevalent Delta to Omicron variant has 
shifted the burden of disease to younger people, including pediatric 
patients in Asia (19–21).

Ongoing high infection rates, an evolving virus, vaccine fatigue, 
and the relaxation of pandemic countermeasures suggest that 
COVID-19 will pose ongoing challenges to public health with 
potential differential effects across age groups (22, 23). Owing to large 
and diverse populations with different cultural practices and 
healthcare systems, the development of the COVID-19 situation in 
Asian settings is likely to pose unique questions for healthcare 
professionals and policymakers in the region. The dynamics of 
vaccination against SARS-CoV-2 are complicated by age-dependent 
factors, type of vaccines used and population vaccine coverage, 

changing levels of infection and the prevailing strains of concern, and 
the relaxation of non-pharmaceutical interventions, hence, 
necessitating the use of mathematical modeling studies in Asia.

Throughout the crisis, epidemiological models have been widely 
developed and used by policymakers to estimate the impact of 
interventions on projected disease burden and demands on public 
healthcare systems (24, 25). Mitigation strategies, including the 
mandating of mask-wearing, social distancing, restrictions on 
movement and gatherings, through to pharmaceutical and vaccination 
strategies, have been implemented to control the spread of virus with 
varying degrees of effectiveness (5, 6). Although models cannot 
exactly predict key factors such as the basic reproduction number (R0), 
these tools have been applied both globally and in Asia to guide 
potential care needs in terms of stratifying risk, directing limited 
resources, and planning for future outbreaks (26, 27). Models of 
increasing complexity have also been developed to account for the 
dynamics of transmission among different age groups in the context 
of different vaccination statuses and waning vaccine effectiveness over 
time or against emerging variants (28).

Mechanistic models are formulated to mimic the nature of 
spreading diseases, allowing the simulation of the complex dynamics 
and nonlinear feedback of COVID-19 transmission within a 
population (29). An example is the Susceptible-Infected-Exposed-
Removed (SEIR) compartmental model, which considers interactions 
among cohorts of a population, categorized according to disease 
status. Individuals within a compartment are not differentiated from 
one another but can flow from one compartment to another at rates 
defined by parameter inputs. This approach can be  effective for 
examining disease dynamics at a macro level. As a type of mechanistic 
model, individual-level models treat members of a population as 
unique agents; this may better capture phenomena such as super-
spreader events. Statistically derived models (for example, distribution 
fitting and regression-type analysis) can also be applied to accurately 
characterize data from a small number of parameters and are suitable 
for short-term forecasts that are accurate, repeatable, and sensitive to 
momentary changes in a system (30). These tools include regression 
using least-squares or Bayesian estimations. These features make 
statistical models valuable for producing up-to-date estimates of 
COVID-19’s underlying nature as a disease (e.g., the basic 
reproduction rate) and the demographic patterns of the population 
(e.g., how long people self-isolate). Although statistical models can 
be highly accurate, they treat the situation as a black box and do not 
mimic the underlying nature of the disease or its consequences. Thus, 
these models are not well suited for long-term projections or for 
exploring hypothetical scenarios.

https://doi.org/10.3389/fpubh.2023.1252719
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Thakkar et al. 10.3389/fpubh.2023.1252719

Frontiers in Public Health 03 frontiersin.org

This review aims to examine published COVID-19 
epidemiological modeling studies conducted in Asian settings and 
assess the models used and their findings regarding the impact of 
vaccination and non-pharmacological measures on COVID-19 
infections, hospitalization, mortality, and policies. We  discuss the 
implications of modeling studies in Asia in the context of the latest 
data on COVID-19 vaccines, the emergence of SARS-CoV-2 variants, 
and regional vaccination policies.

2. Methods

2.1. Literature search

For the purposes of this study, eligible reports examined the 
infection, mortality, hospitalization, vaccination, and/or policy 
outcomes from computational models for COVID-19 set in Asia. 
We  followed the PRISMA guidelines in conducting systematic 
elements of this review. A literature search in the PubMed database for 
peer-reviewed, published, and accessible articles in English, available 
from the start of the COVID-19 pandemic, was conducted on 9 
November 2022. Search terms focused on keywords identified from 
PICO (populations, intervention, comparison, outcome) elements and 
included terms common among modeling studies (e.g., Susceptible-
Infected-Recovered, simulation, agent-based), types of outcomes (e.g., 
hospitalization, infection, and mortality) and the target interventions 
(e.g., vaccination) (See Supplementary Table S1 for full search terms). 
The search was filtered for articles that had available full text, and the 
results were exported to Microsoft Excel for initial screening based on 
the titles and abstracts. Articles that did not include an epidemiological 
model (e.g., laboratory and clinical studies) and/or were not concerned 
with COVID-19 (e.g., other diseases examined within a COVID-19 
setting) were excluded.

Screened articles were further categorized based on the abstract 
and display items to identify a smaller set of articles that fulfilled 
any of the following conditions: (i) the article mentions 
collaborations with, or recommendations to, policy-makers; or (ii) 
the article considers the effects size of pharmacological and/or 
non-pharmacological interventions on any of the outcomes of 
interest (infection, mortality, hospitalization, and/or vaccination).

2.2. Data extraction

One research assistant performed data extraction for model 
classification, location, time, and scale, interventions applied, 
consideration of age groups, and impacts of interventions on rates of 
infection, hospitalization/severe disease, mortality, and/or policy. 
Another research assistant confirmed the extracted data.

Non-pharmacological interventions were categorized as “reducing 
contact” (measures that reduce transmission from infected individuals, 
such as lockdowns, school/workplace closure, and social distancing), 
“border control” (preventing infected individuals from entering the 
population; for instance, airport quarantine and border closure), 
“contact tracing” (testing/quarantining of people having close contact 
with infected individuals), “hygiene” (e.g., hand washing, ventilation), 
“PPE” (e.g., wearing of masks, gloves), and “other.” In categorizing 
models employed in reports, we differentiated between “mechanistic” 

(i.e., any model that applied a priori mathematical equations 
describing physical systems, with or without stochastic elements) and 
“statistical models” (e.g., models based on regression or Bayesian 
analysis, or machine learning of data sets), and classified combinations 
as “both.” We  further categorized mechanistic models as 
compartmental (cohort), agent-based (individual) or combination 
models (combining elements from both types).

3. Results

3.1. Study settings

The literature search returned 378 results, which, after exclusions 
for irrelevance (n = 127) and ineligibility (n = 192), resulted in a set of 
59 reports selected for data extraction (Figure 1; Table 1). Most reports 
were from East Asia (China, 21/59 [3 of which were set in Hong 
Kong], 35.6%; Japan, 7/59, 11.9%; South Korea 6/59, 10.2%), followed 
by South Asia (India, 5/59, 8.5%; Bangladesh, 3/59, 5.1%; Sri Lanka, 
1/59, 1.7%) and South-East Asia (Malaysia, 3/59, 5.1%; the Philippines, 
2/59, 3.4%; Thailand, 1/59, 1.7%; Vietnam; 1/59, 1.7%). Multiple 
countries were considered in 6.8% (4/59) of reports, and 5.1% (3/59) 
presented modeling results that examined specific Asian regions as 
part of a global setting. The majority of reports (59.3%, 35/59) applied 
a modeling start date in 2020, with fewer studies starting in 2021 
(33.9%, 20/59) and 2022 (3.4%, 2/59).

3.2. Modeling approaches

Mechanistic models dominated the reports (79.7.0%, 47/59), with 
fewer statistical (11.9%, 7/59), and combinations of both approaches 
(8.5%, 5/59) (Table 1). Among the mechanistic models, the majority 
were based on a compartmental model (61.0%, 36/59). For example, 
Jung et al. (34) used a susceptible-infected-recovered (SIR) model with 
time-dependent parameters determined by machine learning. Only 
one study (1.7%) focused on an agent-based model constructed from 
statistical data on buildings and the local population to model 
individual interactions (45); however, a number of studies integrated 
combination analysis models (18.6%, 11/59), including a study by 
Shen et al. which compared results from separate SEIR and agent-
based models (74).

These proportions were generally similar across the geographic 
regions (Figure 2A). More than a third of reports accounted for the 
effects of age in their modeling (37.3%, 22/59), either as an analytical 
parameter or by separation of specific age groups. For example, 
Sunohara et al. (89) applied a SEIR model, stratifying the population 
into three age groups: young (15–49 years), middle (50–64 years), and 
old (>64 years), ignoring children (0–14 years). A large proportion of 
studies were prospective (44.1%, 26/59) or included a component of 
prospective analysis (28.8%, 17/59); completely retrospective studies 
were less common (27.1%, 16/59).

3.3. Interventions

Pharmacological and non-pharmacological interventions were 
considered in 59.3% (35/59) and 84.7% (50/59) of reports, respectively 
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(not mutually exclusive). Vaccination was the most common 
pharmacological intervention, considered in 57.6% (34/59) of studies. 
Notably, vaccination was a factor considered in more than half of the 
reports from East Asian settings (China, 13/21, 61.9%; Japan, 6/7, 
85.7%; South Korea, 4/6, 66.7%), as well as India (3/5, 60.0%) and 
Thailand (1/1, 100%) (Figure 2B). However, models that incorporated 
vaccination were either absent or less common than models that 
incorporated non-pharmacological interventions in many regions of 
South Asia (Bangladesh, 0/3, 0%; Sri Lanka, 0/1, 0%) and South-East 
Asia (Malaysia, 0/3, 0%; the Philippines, 1/2, 50.0%; Vietnam; 0/1, 
0%). Among studies concerning vaccination, 25.4% (15/59) also 
considered the influence of age in their models; however, vaccination 
was explicitly extended to pediatric patients (≥3 years old) in only 
three studies (32, 38, 55) and adolescents in one study (≥15 years old) 
(89). In other studies, vaccines were considered to be administered 
only to the adult population (typically ≥20 years old).

The type of vaccine was generally unspecified or maintained as a 
‘hypothetical’ vaccine within the model with effectiveness as a variable. 
Where vaccine effectiveness was an input parameter in models, a wide 
range of values for effectiveness in reducing infection were typically 
used. Several models also parameterized the effectiveness of 
vaccination for reducing infectiousness and risk of mortality, as well 
as vaccination type, number of doses, and time from vaccination. Two 
studies from China specified the use of vaccines based on the 
inactivated virus, and two studies from Japan specified the use of 
mRNA vaccines. A study from South Korea compared a variety of 
different mRNA vaccines and a viral vector vaccine. Traditional 
Chinese medicine was also considered in one report and antiviral 
medication in two reports.

A large proportion of the reports that considered 
non-pharmacological interventions examined the effects of reducing 
contact (76.3%, 45/59). These kinds of interventions ranged from 
strict lockdowns on individual movement in regions that report 
infections (32) to studies that parameterized changes in individual 
mobility at public transport facilities and spaces (62). Contact tracing 
(20.3%, 12/59); border control (16.9%, 10/59); and the use of PPE 
(13.6%, 8/59), i.e., masks and face shields, were also relatively common 

targets. The effects of hygiene (3.4%, 2/59) and education (3.4%, 2/59) 
were less commonly measured. For several lower-income regions (i.e., 
Vietnam, Malaysia, Sri Lanka, Bangladesh), modeling targeted only 
non-pharmacological interventions (Figure 2B).

3.4. Outcomes

3.4.1. Infection
Symptomatic infection was a target outcome of almost all models 

(91.5%, 54/59) (Table  1; Figure  3). Among the 57.6% (34/59) of 
reports that considered the influence of vaccination, almost all (97.1%, 
33/34) examined infection as an outcome. Of the 85.2% (46/54) of 
reports concerning non-pharmacological impacts on infection 
(Figure 3), those categorized as reducing contact were most common 
(93.5%, 43/46), followed by contact tracing (23.9%, 11/46), border 
control (21.7%, 10/46), and PPE (15.2%, 7/46). Fewer reports 
considered the effects of hygiene (4.3%, 2/46) or education (4.3%, 
2/46) on infection.

Among models that considered infection, 35.2% (19/54) of 
reports accounted for the influence of age as a factor in their models, 
including 14 reports of vaccinated populations. With respect to 
recommendations for prioritizing vaccines to different age groups 
during the acute stage of the pandemic, only one study in Japan noted 
potential benefits to infection rates by vaccinating younger people first 
(89), and two South Korean reports specifically recommended 
prioritizing older adults first (49, 50). Other reports from China 
proposed targets for overall population coverage necessary to flatten 
case numbers. Two studies highlighted the importance of expanding 
vaccination programs to include young people (32, 55).

3.4.2. Hospitalization and severe disease
Incidences of severe cases of COVID-19 that required medical 

intervention and/or hospitalization were considered in 30.5% (18/59) 
of studies (Table 1; Figure 3). Vaccination was considered in 61.1% 
(11/18) of these studies. A third of reports (33.3%, 6/18) stratified this 
outcome by age, in which two studies noted that targeted vaccination 

FIGURE 1

Literature search flow diagram.
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of older adults or children would decrease hospitalization (32, 38). 
Additionally, 77.8% (14/18) of reports considered non- 
pharmacological countermeasures, including reducing contact 
(66.7%, 12/18), contact tracing (22.2%, 4/18), and border control 
(11.1%, 2/18).

3.4.3. Mortality
Among the included reports, 30.5% (18/59) considered mortality 

as a modeling outcome (Table 1; Figure 3); of these, 72.2% (13/18) 
examined vaccination. Age was a factor in 55.6% (10/18) of reports, 
and 22.2% (4/18) explicitly noted that vaccination schedules 
prioritizing older adults during the acute phase of the pandemic 
would likely reduce overall mortality most effectively (46, 49, 50, 55). 
One Japanese report suggested that a vaccination strategy that 
prioritized younger generations might offer benefits in terms of overall 
mortality (89). However, the stringency of and compliance with 
non-pharmacological countermeasures was acknowledged to 
modulate the effectiveness of age-based strategies. Models that 
incorporated non-pharmacological countermeasures were a focus of 
77.8% (14/18) of reports; these countermeasures included contact 
reduction (72.2%, 13/18), contact tracing (11.1%, 2/18), and border 
control (11.1%, 2/18).

4. Discussion

We examined modeling studies applied to the COVID-19 
pandemic in Asia to identify patterns that might guide decision-
making on appropriate and timely countermeasures for the ongoing 
endemic situation and management of future potential SARS-CoV-2 
variants of interest. Although, global studies have raised concerns that 
modeling studies may not give accurate long-term forecasts of 
numbers of COVID-19 patients, hospitalizations, and deaths, the 
scenarios generated by such models are still useful for guiding 
decision-making and resource prioritization (90–92). Across many 
regions, modeling studies have also played roles in messaging to the 
public in order to explain and justify otherwise undesirable 
interventions (93). Our review showed that data-driven modeling 
studies play a critical role in the understanding of disease and various 
preventive policies in Asia.

We identified more reports from East Asian nations, particularly 
dominated by reports from China. However, the strong tendency to 
use mechanistic modeling was generally reflected across all regions. 
Despite the considerable differences in public health infrastructure 
and substantial variations in population densities, income levels, and 
sociocultural aspects (82), the common use of mechanistic cohort 
models across regions suggests that this approach is universally 
attractive for understanding general disease dynamics and the 
effectiveness of different interventions (94). This choice may also 
reflect the intuitive nature of this type of model and the ability to easily 
develop tools suitable for use by policymakers. Other key advantages 
of mechanistic models include the insights into the disease that might 
be gained, particularly from validation of the modeling against real-
world evidence. Hence, mechanistic disease-spread models are often 
used as a basis for cost-effectiveness analyses (95). Additionally, the 
broad range of symptoms that manifest in COVID-19 introduces 
considerable uncertainty into national reporting of disease statistics; 

thus, more sophisticated models (i.e., agent-based models) may not 
offer particular benefits in accuracy based on available input data.

Particularly early in the pandemic, prior to the wider availability 
of vaccines, models examined the influence of non-pharmacological 
interventions on disease-related outcomes. Models set in South and 
South-East Asian regions were particularly focused on 
non-pharmacological interventions rather than vaccination, which 
may reflect the timing of this literature search and the slower vaccine 
approval, acquisition, and administration in these regions. The 
majority of models examined here looked at reducing contact through 
restrictions of movement and gatherings. This focus may reflect the 
economic disruption caused by these interventions. Although such 
measures are acknowledged to be  effective in reducing disease 
transmission, their impact is difficult to assess in terms of financial 
burden and sustainability and compliance; thus, it remains challenging 
to gauge the accuracy of modeling applied to these measures (96). Few 
studies here included explicit cost-effectiveness assessments for 
managing COVID-19 with non-pharmacological interventions or 
vaccination strategies (47, 88, 89). Whereas vaccination is considered 
to be  cost-effective in terms of treatment costs, strictly enforced 
countermeasures can pose considerable socio-economic and mental 
health burdens on populations, which are not fully considered in any 
of the models identified here (97, 98).

Following the introduction of vaccines from late 2020, reports 
more often incorporated the effects of vaccination into models. 
Although information on the specific vaccines used was often limited, 
actual administration patterns may be inferred from local approval 
schedules and government procurement policies. Whereas China has 
almost exclusively used inactivated vaccines (e.g., CoronaVac, Sinovac 
Biotech), Japan and South Korea granted early approval for mRNA 
vaccines (e.g., Comirnaty, Pfizer–BioNTech, Pfizer Inc.; Spikevax, 
Moderna Inc), which have been widely administered. In India, a viral 
vector vaccine (Vaxzevria, Oxford-AstraZeneca) was used extensively; 
and across other South and South-East Asian countries, a variety of 
vaccine types have been deployed due to varying availability 
and access.

Early recommendations on vaccination strategies were broadly 
similar, regardless of the vaccination type and local situation, 
emphasizing the need for rapid distribution and high overall 
population coverage. Models examining vaccination identified here 
underline the importance of rapidly achieving 67–83% population 
coverage with effective vaccines to reduce infection, hospitalization, 
and/or mortality rates (99). Direct comparisons of modeling results 
with actual real-world data are complicated by various factors. The 
methods of diagnosing infection have developed from polymerase 
chain reaction (PCR) testing initially, through to antigen rapid testing 
later in the pandemic. Additionally, the implementation of home-
based recovery programs in some regions may have underestimated 
the actual number of infections and hospital admissions (100). 
Nevertheless, predictions of vaccination outcomes from Asian models 
have been widely confirmed by lower rates of infection and 
hospitalization among vaccinated individuals and higher excess 
mortality among unvaccinated adults across these regions (101, 102).

Reports diverged in terms of specific recommendations for 
prioritizing vaccination of different age groups. In China and South 
Korea, where strict social measures were implemented alongside 
widespread use of inactivated virus or mRNA vaccines, respectively, 
the majority of models recommended priority vaccination of older 
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TABLE 1 Key characteristics of included reports (N  =  59 studies).

Author Year 
(citation)

Locality Intervention Model type Age 
groups

Outcomes

Nonpharmacological Pharmacological Vaccination 
efficacy 

parametersa

Infection Hospitalization 
and severe 

disease

Mortality

Baniasad 2021 (31) Iran, Turkey, 

Saudi Arabia, 

United Arab Emirates, 

India, Russia, 

Philippines, South 

Korea

Contact tracing, reducing 

contact

Vaccination (unspecified) Unspecified Both Combination N/A X X X

Cai 2022 (32) China Reducing contact Vaccination (Sinovac/

CoronaVac)

51.8%, as a 

variable

Mechanistic Compartmental 14 age 

groups

X X X

Ferguson 2022 (33) Bangladesh Reducing contact, PPE N/A N/A Mechanistic Compartmental N/A X X X

Jung 2020 (34) North Korea Reducing contact Vaccination (unspecified) 50–80% in 

reducing 

susceptibility

80–95% reducing 

hospitalization

Mechanistic Compartmental N/A X X

Leung 2021 (35) Global, Hong Kong, 

China

Border control Vaccination (unspecified) Weighted average 

of available 

vaccines

Mechanistic Compartmental Age as 

variable

X X X

Qian 2022 (36) China Contact tracing, reducing 

contact

Vaccination (unspecified) Unspecified Mechanistic Compartmental N/A X X X

Suphanchaimat 

2021 (37)

Thailand N/A Vaccination (unspecified) 50% against 

infection

Mechanistic Compartmental N/A X X X

Cai 2022 (38) China N/A Vaccination (unspecified) Variable Mechanistic Compartmental 16 age 

groups

X X

Ediriweera 2020 

(39)

Sri Lanka Reducing contact N/A Weighted average 

of available 

vaccines

Mechanistic Compartmental N/A X X

Kong 2022 (40) Japan, China Contact tracing, border control, 

reducing contact

Vaccination (unspecified) Unspecified Mechanistic Compartmental N/A X X

Rajput 2021 (41) India Contact tracing, reducing 

contact

Vaccination (unspecified) 80%, variable Mechanistic Compartmental N/A X X

Shah 2022 (42) India Reducing contact N/A N/A Mechanistic Combination N/A X X

(Continued)
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TABLE 1 (Continued)

Author Year 
(citation)

Locality Intervention Model type Age 
groups

Outcomes

Nonpharmacological Pharmacological Vaccination 
efficacy 

parametersa

Infection Hospitalization 
and severe 

disease

Mortality

Shankaranarayanan 

2022 (43)

India Reducing contact Vaccination (unspecified) Statistical N/A N/A X X

De Lara-Tuprio 

2022 (44)

The Philippines Contact tracing, reducing 

contact, hygiene, PPE

N/A N/A Mechanistic Compartmental N/A X

Dong 2022 (45) China Reducing contact N/A N/A Mechanistic Agent-based Age as 

variable

X

Foy 2021 (46) India Reducing contact Vaccination (unspecified) 0–100% Mechanistic Compartmental 7 age 

groups

X X

Fu 2022 (47) China N/A Vaccination (CoronaVac/

BBIBP-CorV)

Unspecified Statistical N/A 3 age 

groups

X X

Gaudou 2020 (48) Vietnam Reducing contact, PPE N/A N/A Mechanistic Combination Age as 

variable

X X

Ko 2021 (49) South Korea Border control, reducing 

contact

Vaccination (unspecified) Variable Mechanistic Compartmental 4 age 

groups

X X

Ko 2021 (50) South Korea Reducing contact Vaccination (unspecified) 84% Both Compartmental 5 age 

groups

X X

Lin 2021 (51) China N/A Antivirals N/A Mechanistic Compartmental 4 age 

groups

X X

Omae 2021 (52) Japan N/A BNT162b2 Decreased 

infection by 60 

and 92% for 1st 

and 2nd doses

Mechanistic Compartmental N/A X X

Yufeng 2022 (53) China Reducing contact N/A N/A Mechanistic Compartmental N/A X X

Zhang 2022 (54) Pakistan, Bangladesh Reducing contact Vaccination (unspecified) Unspecified Mechanistic Compartmental N/A X X

Zhao 2021 (55) China N/A Vaccination (unspecified) Unspecified Mechanistic Compartmental 4 age 

groups

X X

Akamatsu 2021 

(56)

Japan Reducing contact N/A N/A Mechanistic Compartmental Age as 

variable

X X

Alsayed (57) Malaysia Reducing contact N/A N/A Mechanistic Combination N/A X

Chen 2021 (58) China, Singapore Border control N/A N/A Mechanistic Compartmental N/A X

(Continued)
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Author Year 
(citation)

Locality Intervention Model type Age 
groups

Outcomes

Nonpharmacological Pharmacological Vaccination 
efficacy 

parametersa

Infection Hospitalization 
and severe 

disease

Mortality

Estadilla 2021 (59) The Philippines Contact tracing, reducing 

contact

Vaccination (unspecified) Weighted average 

of available 

vaccines

Mechanistic Compartmental N/A X

Hassan 2020 (60) Bangladesh Reducing contact N/A N/A Mechanistic Combination N/A X

Herng 2022 (61) Malaysia Reducing contact N/A N/A Both Combination X

Hirata 2022 (62) Japan Reducing contact Vaccination (Pfizer/

BioNTech)

Statistical N/A N/A X

Islam 2021 (63) Bangladesh Border control, reducing 

contact

N/A N/A Statistical N/A N/A X

Kobayashi 2022 

(64)

Japan Reducing contact Vaccination (unspecified) Estimated at 

population level

Mechanistic Compartmental Age as 

variable

X

Kong 2021 (65) Global Border control, reducing 

contact

N/A N/A Mechanistic Compartmental N/A X

Libotte 2020 (66) China N/A Vaccination (unspecified) Variable Mechanistic Compartmental N/A X

Liu 2022 (67) China Contact tracing, border control, 

reducing contact, hygiene, PPE

N/A N/A Both Compartmental N/A X

Liu 2022 (68) China Reducing contact, PPE Vaccination (unspecified) Parameterized for 

susceptibility and 

infectiousness

Mechanistic Compartmental N/A X

Lym 2022 (69) South Korea Reducing contact N/A N/A Statistical N/A 2 age 

groups

X

Mandal 2020 (70) India Border control, reducing 

contact

N/A N/A Mechanistic Compartmental N/A X

Min 2021 (71) South Korea Reducing contact AstraZeneca, Moderna, 

Janssen, Pfizer, COVAX 

facility

52–94% Mechanistic Compartmental 3 age 

groups

X

Salman 2021 (72) Malaysia Reducing contact, education N/A N/A Mechanistic Combination N/A X

Seok 2022 (73) South Korea Contact tracing, reducing 

contact, Other

Vaccination (unspecified) 48.1–96.1% Mechanistic Compartmental 9 age 

groups

X

Shen 2022 (74) China Reducing contact Vaccination (unspecified) Unspecified Mechanistic Combination 3 age 

groups

X

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

Author Year 
(citation)

Locality Intervention Model type Age 
groups

Outcomes

Nonpharmacological Pharmacological Vaccination 
efficacy 

parametersa

Infection Hospitalization 
and severe 

disease

Mortality

Wu 2022 (75) China Reducing contact Vaccination (unspecified) 30% Mechanistic Statistical N/A X

Xing 2021 (76) Global Reducing contact N/A N/A Statistical N/A N/A X

Yasuda 2022 (77) Japan N/A Vaccination (unspecified) Mechanistic Compartmental 2 age 

groups

X

Yin 2021 (78) China Contact tracing, PPE N/A N/A Mechanistic Combination Age as a 

variable

X

Yu 2021 (79) China, Hong Kong Contact tracing, reducing 

contact

Vaccination (unspecified) 30, 50, 70% Mechanistic Compartmental N/A X

Zhang 2021 (80) China, Hong Kong Border control, contact tracing, 

reducing contact

Vaccination (unspecified) 0–80% Mechanistic Combination 4 age 

groups

X

Zhao 2021 (81) China Education Vaccination (unspecified) 100% Mechanistic Compartmental N/A X

Zhao 2021 (82) South East Asia Contact tracing, reducing 

contact, PPE

Vaccination (unspecified) 70% Mechanistic Compartmental N/A X

Zhou 2020 (83) China Reducing contact N/A N/A Mechanistic Compartmental N/A X

Zhu 2021 (84) Japan Border control, reducing 

contact

Vaccination (unspecified) 78.1% Both Compartmental N/A X

Zou 2022 (85) China Reducing contact Vaccination (unspecified) 50–90% Mechanistic Compartmental N/A X

Hou 2021 (86) China Other N/A N/A Mechanistic Combination N/A X

Jung 2022 (87) South Korea Reducing contact, PPE N/A N/A Mechanistic Compartmental N/A X X

Li 2020 (88) China N/A N/A N/A Statistical N/A Age as 

variable

X

Sunohara 2021 (89) Japan Reducing contact Vaccination (unspecified) 100% against 

transmission

Mechanistic Compartmental 3 age 

groups

X

aReferring to infection unless otherwise specified.
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adults, a groups that has being prioritized for vaccination since the 
beginning of the pandemic (103). This is consistent with results from 
early global modeling studies that also prioritized older adults (90, 
104, 105).

In Japan, which implemented voluntary social distancing and 
predominantly administered mRNA vaccines, one study noted a 
potential for benefits in terms of indirectly reducing mortality by 
targeting younger age groups to reduce overall transmission, 
depending on the strength of the lockdown (89). The actual 

vaccination strategy implemented in Japan, however, prioritized 
older adults, which may have helped reduce the hospital burden but 
could have been suboptimal in reducing transmission, particularly in 
the context of weakly enforced social measures. However, attitudes 
towards COVID-19 suggested remarkable concern among the 
Japanese public, which contributed to good compliance with 
government advice to wear face masks, social distance, and accept 
vaccination/boosters (106). Globally, the attitudes of populations 
towards the disease, trust in policy makers, and enforcement of 

FIGURE 2

Geographical distribution of reports by (A) use of statistical and mechanistic model; (B) intervention category.

FIGURE 3

Outcome categories explored in models targeting specific interventions.
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interventions are factors that may need to be  accounted for in 
modeling studies (107).

The evolution of new viral strains may also influence vaccination 
strategies. The main variants of SARS-CoV-2 circulating in different 
regions have changed, from the original strain prevalent in 2020, to 
four main variants of concern – the Alpha, Beta, and Delta strains, 
common across Asia in 2021 – through to the Omicron variants from 
2022 (3, 4, 108). Notably, the changes from the original variant to the 
Delta variant and then later to the Omicron variant were accompanied 
by increases in R0 values, from 2.79 to 5.08 to 8.20, respectively (109, 
110). The recently emerged Omicron subvariants, such as XBB and 
XBF, appear to be key drivers of infection waves, although they appear 
to pose lower risks of mortality (111). The emergence of new variants 
presents challenges for modeling in terms of shifting profiles for 
infectiousness, severe disease and mortality, and breakthrough 
infection against different vaccines and vaccination statuses (i.e., 
number/type of vaccination and time since last booster) (112). For 
example, individuals with hybrid immunity (developed through both 
infection and vaccination) might experience greater and more 
sustained protection, which might allow for longer intervals between 
boosters (113).

The outcomes of many models have anticipated that sufficiently 
high vaccination coverage in a population might ‘break’ transmission, 
allowing for the relaxation of non-pharmacological interventions (71, 
114). In reality, vaccinated populations in Asia have continued to fall 
short of the high proportions predicted to be necessary to confer ‘herd 
immunity’ despite large numbers having received initial vaccinations 
and boosters (115). The waning effectiveness of mRNA vaccination/
booster shots over time (after approximately 20 weeks) – particularly 
among older adults, who typically have weakened immune systems – 
may increase rates of infection (116). The potential impact of immune 
imprinting also motivates further studies to understand the effects and 
limitations of boosters (117). Reduced effectiveness of vaccines against 
Omicron strains might also shift initial targets for vaccination coverage 
in a population upwards, obstructing the relaxation of 
non-pharmacological interventions (118). Ongoing viral transmission 
from viral shedding from convalescent individuals, in addition to 
cessation of mask usage, may contribute to future surges of the disease.

There is also a need to deeply understand the importance of using 
vaccines that confer broad protection in the Omicron era, such as 
bivalent vaccines (119). Recent real-world evidence on bivalent 
vaccines points to additional protection, primarily against 
hospitalization, among older adults with monovalent vaccines; 
however, there may also be  some additional benefits against 
symptomatic disease in other age groups during Omicron subvariant 
circulation (120). The high-priority populations are defined as older 
adults, adults with significant comorbidities, children or adults with 
immunocompromising conditions, pregnant women, and frontline 
health workers.

We noted that few studies (32, 38, 55) examined here modeled the 
vaccination of pediatric populations in Asia. Modeling of the impact 
of vaccinating children (5–11 years) in Europe has been proposed as 
a route to the relaxation of restrictions in schools (121). Modeling 
studies have also suggested that extending vaccination to children may 
reduce hospitalization and mortality across all age groups in 
developing countries (122). The latest update from the WHO’s 
Strategic Advisory Group of Experts on Immunization (SAGE) on 
COVID-19 vaccination continues to prioritize the populations at 

greatest risk of mortality or severe disease to safeguard healthcare 
systems. As a low priority group, children are not routinely 
recommended for vaccination and boosters, but are instead 
determined by individual countries’ evaluation of the burden, cost, 
and effectiveness (123). Although data on the impact of COVID-19 
among children are lacking overall, there appears to be greater risk of 
mortality and hospitalization in low and middle-income countries 
(124). Thus, there is a need for further studies focused on the local 
burden of COVID-19 disease among younger populations in Asia, 
where future modeling studies might also guide decision-making on 
the impact of vaccinations (121, 122, 125).

Moving into a period where more vaccines are approved and 
made accessible, the hesitancy of uptake is likely to pose an 
ongoing barrier to booster strategies and sustainable protection 
(126). Among children and their caregivers, common reasons for 
fear and hesitancy to receive a vaccine include assumptions that 
the vaccine has side effects and may not be safe (18). Adults may 
also be  complacent that the COVID-19 situation is no longer 
severe, and/or a negative perception of the vaccine, government, 
and/or pharmaceutical company may discourage them from 
receiving initial vaccination and/or boosters (17, 18). General 
fatigue over the topics of COVID-19 and vaccines and a wider 
circulation of misinformation on vaccines may contribute to these 
attitudes (127). Some reports examined here accounted for 
vaccine hesitancy, but this factor will likely be more important in 
future COVID-19 models, where the majority of a population 
have been vaccinated but coverage falls short of requirements for 
herd immunity. Modeling may also need to account for the 
impacts of educational interventions to address gaps in knowledge 
and attitudes among hesitant groups. Therefore, from a public 
health perspective, it is crucial to understand the drivers of 
vaccine uptake and vaccine hesitancy; this might help to identify 
groups that might have lower than average uptake and plan 
accordingly. Such pockets of immunity gaps and high susceptibility 
in the population could result in small-scale outbreaks that reduce 
the effect of population immunity. We predict that relaxation of 
control measures might be associated with new waves of infection 
and associated deaths; however, these outcomes will be reduced 
by increased levels of vaccine-derived immunity as well as hybrid 
immunity from infections in vaccinated individuals in 
the population.

The evolving nature of the COVID-19 situation especially 
motivates a dynamic vaccine-development pipeline to deliver more 
effective options against new strains of SARS-CoV-2 (128, 129). 
Furthermore, in an endemic scenario, non-vaccine pharmacological 
interventions are likely to become important for the treatment of 
severe disease. Here, two studies were identified that considered the 
impact of antiviral treatments, which may reflect the regional timeline 
for approval of such medicines. The introduction of monoclonal 
antibodies may help to manage cases of severe COVID-19 and 
improve these outcomes (10).

There are several limitations to this study. First, the scope of the 
literature search, particularly the focus on journal articles published in 
the English language, may have omitted more recent pre-print and 
local-language documents. The specific search terms may also have 
introduced bias into the types of modeling studies captured here. 
Furthermore, the large diversity of regional situations, model designs, 
interventions, and outcome targets limit the ability to systematically 
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extract relevant quantitative data from these reports. Additionally, few 
studies examined the influence of pharmacological interventions other 
than vaccines. As common limitations of all modeling studies, there is 
considerable uncertainty in many parameters such as population 
immunity, infectious rate, and contact and the level of health-related 
behaviors in study populations (130). Thus, modeling studies are subject 
to unreliable predictions on the impact on outcomes of interest.

5. Conclusion

Computational modeling is an important tool to address a 
limited understanding of SARS-CoV-2 epidemiology, and the 
quantitative estimates of the duration of protection from infection 
and vaccinations. Whereas non-pharmacological interventions have 
had an early role in managing health outcomes of the COVID-19 
pandemic, modeling studies underline the importance of vaccines. 
High population coverage and vaccine effectiveness are key to 
mitigating the outcomes of the disease and supporting the 
relaxation of disruptive restrictions on movement. Compartmental 
mechanistic modeling offers an adequate approach to projecting 
disease outcomes across large populations; however, future models 
may need to account for complications from evolving variants and 
vaccination statuses/inclinations within populations, age group 
stratification, especially including pediatric populations. Deeper 
consideration of the socioeconomic burdens associated with strict 
non-pharmacological interventions may also be  useful for 
policymakers and further underscore the cost-effectiveness and 
social benefits of vaccination programs. In the near future, 
increasing vaccine coverage, particularly among at-risk populations 
and through outreach to vaccine-adverse groups, may help to ease 
infection and severe disease. The rapidly evolving nature of the 
virus also motivates the development of new vaccines and 
alternative therapies. Future administration strategies may also 
be nuanced by competing needs to reduce overall transmissibility 
or severe disease burden in high-risk groups.
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