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Introduction: Diagnosing Alzheimer’s disease (AD) lesions via visual examination

of Electroencephalography (EEG) signals poses a considerable challenge. This has

prompted the exploration of deep learning techniques, such as Convolutional

Neural Networks (CNNs) and Visual Transformers (ViTs), for AD prediction.

However, the classification performance of CNN-based methods has often been

deemed inadequate. This is primarily attributed to CNNs struggling with extracting

meaningful lesion signals from the complex and noisy EEG data.

Methods: In contrast, ViTs have demonstrated proficiency in capturing global

signal patterns. In light of these observations, we propose a novel approach

to enhance AD risk assessment. Our proposition involves a hybrid architecture,

merging the strengths of CNNs and ViTs to compensate for their respective

feature extraction limitations. Our proposed Dual-Branch Feature Fusion Network

(DBN) leverages both CNN and ViT components to acquire texture features and

global semantic information from EEG signals. These elements are pivotal in

capturing dynamic electrical signal changes in the cerebral cortex. Additionally,

we introduce Spatial Attention (SA) and Channel Attention (CA) blocks within the

network architecture. These attention mechanisms bolster the model’s capacity

to discern abnormal EEG signal patterns from the amalgamated features. To make

well-informed predictions, we employ a two-factor decision-making mechanism.

Specifically, we conduct correlation analysis on predicted EEG signals from the

same subject to establish consistency.

Results: This is then combined with results from the Clinical Neuropsychological

Scale (MMSE) assessment to comprehensively evaluate the subject’s susceptibility

to AD. Our experimental validation on the publicly available OpenNeuro database

underscores the e�cacy of our approach. Notably, our proposed method attains

an impressive 80.23% classification accuracy in distinguishing between AD,

Frontotemporal dementia (FTD), and Normal Control (NC) subjects.

Discussion: This outcomeoutperforms prevailing state-of-the-artmethodologies

in EEG-based AD prediction. Furthermore, our methodology enables the

visualization of salient regions within pathological images, providing invaluable

insights for interpreting and analyzing AD predictions.

KEYWORDS

Alzheimer’s disease (AD), electroencephalography (EEG) signal, dual-branch feature

fusion, multiattention mechanism, two-factor diagnosis
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1. Introduction

Alzheimer’s disease (AD) casts a haunting shadow over the

lives of those affected, being a neurodegenerative disorder

that can eventually lead to dementia (Hecht et al., 2018;

Kumar et al., 2018). The diagnostic process for AD involves

a plethora of techniques aimed at unraveling the complex

structure and function of the nervous system (Taly et al.,

2009). In this realm of exploration, electroencephalography

(EEG) emerges as a captivating tool, offering profound insights

into the enigmatic brain wave signaling abnormalities in AD

patients (Wang et al., 2018). By deciphering the cerebral cortex

signaling changes, EEG becomes a beacon of hope for early

detection and intervention before the onset of distressing

symptoms, providing crucial time for AD patients’ delay

and rehabilitation.

Resting-state EEG signals become the portal through which

AD’s secrets are unveiled. Clinical studies have uncovered distinct

frequency bands in EEG signals that differentiate AD disease

progression. The haunting delta and theta waves surge, while the

mesmerizing alpha power gracefully diminishes in EEG signals

from individuals at different disease stages. However, acquiring

reliable EEG signals is challenging, as they may be influenced by

human factors and environmental noise, concealing the celestial

truth (Gouw et al., 2011). The complex and nonlinear nature of

EEG signals demands efficient feature extraction and screening

methods to reveal the elusive critical AD lesion signals.

In this quest, two factions emerge: powerful machine learning

methods and enigmatic deep learning methods. The former,

utilizing decision trees, multilayer perceptrons, nearest neighbors,

and the indomitable support vector machines (SVMs), identify

various disorders, including AD, schizophrenia, and epilepsy.

Among them, Trambaiolli et al. (2011) harnessed SVM to discern

AD patients with unprecedented speed and accuracy. The latter

faction, steeped in mystery, leverages the magic of deep learning

to foretell the future of disease prediction. Yu et al. (2019)

extracted topological features of functional brain networks and

prophesied AD diseases using a mystical supervised network. Li

et al. (2021) ventured into latent factors using a variational self-

encoder, elevating the accuracy of AD prediction.

The Transformer stands as an illustrious champion in the

arcane realm of deep learning models. It gracefully combats

the interference of high-dimensional data noise on EEG signals,

revealing the elusive secrets within the brain. Yet, variations like

ViTs (Wang et al., 2021), which unveil global representations,

stumble in capturing the essence of local details essential

for unearthing the critical AD lesion signals in the mystical

frequencies (Wu et al., 2021). The grand union of ViTs and CNNs

harmonizes their strengths and dissipates their weaknesses, yielding

unprecedented power in AD prediction through medical signal

image classification.

Fouladi et al. (2022) introduced two distinct deep learning

architectures—Convolutional Neural Networks (CNN) and

convolutional autoencoder neural networks—for the classification

of subjects into AD, Mild Cognitive Impairment (MCI), and NC

categories using scalp EEG recordings. Notably, the modified

convolutional network demonstrated an average accuracy of 92%,

while the convolutional autoencoder network achieved 89%.

In a separate contribution, Miltiadous et al. (2023a) presented

an innovative approach to AD EEG classification utilizing a

Dual-Input Convolution Encoder Network (DICE-net). Their

methodology involved denoising EEG data, extracting Band Power

and Coherence features, and inputting them into the DICE-net

architecture, comprising Convolutional, Transformer Encoder,

and Feed-Forward layers. Impressively, DICE-net exhibited

promising outcomes, achieving an accuracy of 83.28% in the

AD-CN problem using Leave-One-Subject-Out validation. This

performance surpassed several baseline models, highlighting the

method’s efficacy and notable generalization capability. In the

domain of EEG emotion recognition, Guo et al. (2022) presented

a Transformer-based methodology for classifying EEG data based

on emotional states. Their approach achieved an accuracy of

83.03% in a three-class problem, outperforming the majority of

published methods within the same database. Such investigations

underscore the Transformer encoder’s efficacy within EEG tasks

and underline the imperative to explore its application in the realm

of neurodegenerative EEG classification, including AD and other

forms of dementia.

Nevertheless, deep learning methods, while magnificent in

extracting EEG signals’ AD lesion features, remain fragments of the

comprehensive analysis required for evaluating the subject’s risk of

AD. To complete this mystical puzzle, clinical neuropsychological

assessments, such as the renowned MMSE (Chapman et al., 2016),

interweave their threads. In this fusion, AD prediction results from

EEG signals intertwine with clinical neuropsychological assessment

results, yielding an all-encompassing prophecy of the subject’s risk

of disease.

In conclusion, the quest to predict AD through EEG signals

reveals gaps in understanding. Deep learning networks, while

superior to traditional methods, struggle to capture both global

signal features over time bands and local texture signal features over

frequency bands. Noise veils the true essence of EEG feature signals,

necessitating screening to elevate the mystical lesion information.

To fully realize the prophecy of AD, one must combine EEG

signal prediction with clinical psychology scale assessment results,

embracing the full spectrum of the subject’s destiny and unlocking

timely intervention and care for those touched by this mysterious

malady. Our contributions in this study are highlighted as follows:

Contribution 1: We introduce a novel feature level fusion

strategy that combines local textural features (EEG signals

generated by 19 channels) extracted by CNN and global features

(EEG signals in different frequency bands) extracted by ViT. This

fusion approach enhances the discriminative power of the features,

resulting in superior overall classification accuracy for EEG signals

compared to the state-of-the-art (SOTA) methods.

Contribution 2: We construct an EEG signal feature attention

module, comprising spatial attention and channel attention blocks,

which performs feature screening of the fused features. This

attention mechanism expands the EEG signal feature information

relevant to AD pathogenesis while effectively suppressing noise

information. Our ablation experiments demonstrate that the

feature attention module significantly improves the network’s

ability to capture AD-related feature information, leading to

enhanced classification accuracy.
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Contribution 3: We propose a more rational two-factor

assessment mechanism for clinical AD risk, integrating Factor

1 (prediction results of our proposed AD prediction method

based on EEG signals) and Factor 2 (results of the Clinical

Neuropsychological Assessment Scale scores, i.e., MMSE scores).

Utilizing correlation analysis, we assess the reasonability of Factor

1 by analyzing the correlation between predicted results of different

signal segments from the subject’s EEG signals. We then combine

the results of Factor 1 with the MMSE scores to predict the

subject’s risk of AD. Our two-factor AD diagnosis achieves a

remarkable 80.23% classification accuracy in the AD vs. FTD

vs. NC classification task, effectively reducing the unreliability of

diagnostic results associated with single-method predictions.

The structure of the paper is organized as follows: In Section

2, we present a comprehensive review of related works in AD

diagnosis using EEG signals. Section 3 elaborates on our proposed

method, encompassing feature fusion, multi-attention module, and

the two-factor decision-making mechanism. The dataset used in

our experiments is detailed in Section 4, along with the presentation

of experimental results. In Section 5, we thoroughly evaluate the

effectiveness of our proposed method and provide an insightful

discussion of the obtained results. Finally, Section 6 concludes the

paper by summarizing the contributions and findings of this study.

2. Related work

Over the past few decades, numerous AD prediction methods

based on EEG signals have been proposed. In the literature, several

comprehensive review papers have covered this topic, such as Roy

et al. (2019) and Merlin Praveena et al. (2022). In this section, our

focus will be on reviewing representative studies from three distinct

approaches: (1) traditional machine learning-based AD prediction

methods utilizing EEG signals; (2) state-of-the-art deep learning-

based AD prediction methods employing EEG signals; and (3) AD

prediction methods leveraging multimodal data.

2.1. Traditional AD prediction methods

Traditional machine learning methods have been widely

employed for disease prediction using EEG signals, particularly

for Alzheimer’s disease (AD). In one study by Neto et al. (2016),

frequency and time domain features of AD and normal control

(NC) classes were extracted from EEG data using SVM. The trained

model demonstrated an accuracy of 67% in classifying AD.

Another investigation by Trambaiolli et al. (2017) focused on

identifying the frequency waves most sensitive to AD disease,

aiming to filter the most effective frequency bands for model

training. Their experimental findings revealed that alpha and theta

waves were most relevant to AD onset. Upon inputting these

waves into an SVM model for iterative training, the accuracy in

distinguishing between AD and NC classes improved significantly,

reaching 71.18%. This observation highlights the importance of

selecting appropriate frequency bands to enhance the predictive

classification performance of the classifiers.

Furthermore, Kashefpoor et al. (2016) explored the pathogenic

relationship betweenNC and FTDusing EEG signals. They adopted

a correlation analysis algorithm to extract the electrode channel

signal with the highest correlation. Subsequently, this signal was

utilized as input for a Neuro-Fuzzy k-Nearest Neighbor Classifier

(NF-KNN) during iterative training. As a result, the FTD prediction

accuracy on the test set reached 58.89%.

Despite the successes in extracting AD onset signals from

EEG data through machine learning techniques, it is essential to

acknowledge the reliance on cumbersome pre-processing methods.

This aspect poses a significant challenge for early clinical AD

screening, where accuracy and environmental adaptability are

critical factors to consider.

2.2. Deep learning for prediction methods

Deep learning has gained widespread recognition for its ability

to extract complex information from various types of data. In

recent years, there has been an increasing focus on leveraging deep

learning techniques to process and analyze EEG signals related to

AD onset. It is believed that deep learning can effectively capture

AD onset signals present in EEG data.

One notable study conducted by Duan et al. (2020) utilized

the Fast Fourier Transform (FFT) algorithm to extract spectral

power information from EEG signals. This unpreprocessed spectral

information was then directly input into a CNN for iterative

training, resulting in an impressive 79% accuracy in differentiating

between AD and NC subjects.

Similarly, Rad et al. (2021) performed EEG experiments on

63 AD subjects, 63 subjects with MCI, and 63 NC subjects. They

innovatively transformed the EEG signals into two-dimensional

grayscale images, incorporating AD lesion features. These grayscale

images were then used as inputs for a CNN model to predict

and classify AD subjects, achieving an accuracy of 73.33%. In

another study, Amini et al. (2018) focused on the classification

task of AD and NC classes. They extracted both time-domain and

frequency-domain information from EEG signals, which were then

fed into a CNN with pre-trained weights. The final classification

accuracy on the test set was an encouraging 82.30%. Notably,

these deep learning algorithms demonstrated higher accuracy

and simpler preprocessing steps compared to traditional machine

learning approaches.

Despite the promising results achieved by these advanced

algorithms, it is essential to acknowledge the limitations of EEG

signals. EEG signals only provide insights into the changes in

electrical brain activity and may carry the risk of misdiagnosis in

clinical assessments of AD. Therefore, while deep learning methods

have shown remarkable potential, further research and integration

of complementary diagnostic information are crucial to enhance

the accuracy and reliability of AD prediction in clinical settings.

2.3. Multimodal fusion schemes for
prediction methods

In the realm of AD prediction, relying solely on a single

piece of information, such as EEG signals, may not offer sufficient

reliability for clinical assessments. As a result, Chen et al. (2022)
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and Sharma et al. (2022) researcher have increasingly turned to

multimodal fusion strategies to enhance predictive accuracy.

For instance, You et al. (2020) proposed a cascade neural

network approach that incorporates both EEG signals and human

gait characteristics for classifying AD, MCI, and NC subjects.

Theirmodel incorporated a spatial attentionmechanism, effectively

extracting spatial features from the EEG signals and gait data. This

model achieved a classification accuracy of 79.70% on the test set.

Similarly, Ullah et al. (2018) presented a bimodal AD

predictionmodel that integrated time-frequency features fromEEG

signals and PET image features related to AD lesions. The EEG

signals underwent wavelet Fourier transform for time-frequency

feature extraction, while the PET features were obtained through

dimensionality reduction processing. An improved CNN was

iteratively trained using these bimodal features, resulting in a

77.10% accuracy on the test set, with model stability improved by

employing five-fold cross-validation.

Another approach was taken by Rad et al. (2021), who

augmented the data with three distinct modal features: frequency

features, zero-domain signal features, and triggering event signal

features. These three features were then input into a multi-channel

deep convolutional neural network, achieving a noteworthy 75.50%

accuracy in AD classification.

The success of these methods can be attributed to their ability

to leverage multiple information sources for AD prediction. In this

study, we draw inspiration from these approaches and propose a

bimodal joint AD prediction model aimed at assessing the risk

of AD prevalence. Our model analyzes the consistency between

the predicted results of EEG signals from subjects and combines

them with the outcomes of Clinical Psychology Scale assessments

to arrive at a final prediction for the risk of developing AD in

the subjects.

By integrating information from multiple modalities, our

proposed model seeks to improve the accuracy and robustness

of AD risk prediction. Through this investigation, we aim to

contribute to the growing body of research that explores the

potential of multimodal fusion strategies for enhancing AD

prediction methods and, ultimately, advancing early detection and

intervention in AD-related conditions.

3. Methods

In this section, we present a comprehensive theoretical analysis

of our novel AD prediction pipeline, which is designed to

leverage EEG signals. The pipeline incorporates feature fusion

strategies derived from ViT and CNN architectures, facilitating

the capture of crucial signal information across diverse domains.

Specifically, we integrate feature-level fusion strategies, hybrid

attention modules, and two-factor decision mechanisms into our

proposed method. The visual representation of our approach

is depicted in Figure 1. Through this theoretical analysis, we

aim to elucidate the underlying principles and mechanisms that

underpin the effectiveness and innovation of our AD prediction

pipeline, thereby contributing to the advancement of AD diagnostic

methodologies based on EEG signals.

As depicted in Figure 1, our method’s AD feature extraction

phase involves the fusion of detailed features extracted by the

CNN from the frequency domain with the global features acquired

by the ViT from the time domain. This fusion process yields a

comprehensive representation of the EEG signals, capturing both

local and global signal characteristics. Subsequently, the fused

features are concatenated and directed into a feature filtering

module, where we leverage channel attention and spatial attention

modules to suppress redundant information and emphasize

the salient lesion-related signal features. This selective feature

screening enhances the discriminative power of our method for

AD prediction.

Following the feature filtering process, the filtered feature

information is input into a classifier to generate classification

results. These results are then forwarded to our proposed two-

factor decision-making mechanism, which forms the core of the

AD disease prediction stage. Specifically, a correlation analysis

is performed based on the classification results obtained from

the EEG signals. This correlation analysis aims to establish the

risk prediction outcomes pertaining to the subject’s health status,

namely, whether the individual is affected by AD or not. The

comprehensive process for predicting AD disorders based on EEG

signals is concisely outlined in Algorithm 1.

Input Dp: training dataset; p is number of the training batch;

Feature map F
p
vit ∈ R

H×W×C with H ×W × C dimensions from

the ViT; Feature map F
p
cnn ∈ R

Hi×Wi×Ci with Hi ×Wi × Ci

dimensions from the CNN; i the final layer number.

Output Classifier(): predicted class for F
p

fuse
.

1: for p = 1 to n do do

2: Calculate global feature in EEG electrode

signal F
p
vit based on Equations (2), (3), and (4);

3: Capture the characteristics of the lesion in

the EEG frequency band signal F
p
cnn from CNN ;

4: Calculate F
p

fuse
normalized based on Equation (1);

5: Calculate F1 = Ms(Ff use) based on Equation (6);

6: Calculate F2 = Ms(F1) based on Equation (7);

7: end for

8: Return Classifer((F2) = FC(σ (FC(F2))).

Algorithm 1. The Pseudo-code for feature extraction process based on

EEG signals.

3.1. Feature level fusion strategy and loss
functions

In recent years, numerous AD predictionmethods have utilized

EEG signals, yielding favorable outcomes through feature fusion

strategies. Among these strategies, the most commonly employed

approach involves simple fusion based on elementary operations.

In this study, we propose a feature-level fusion strategy that

combines the strengths of ViT and CNN through straightforward

element-level connectivity.

Specifically, the ViT offers the capability to extract essential

features from a multitude of signal waves generated by various

electrodes in a subject. This is particularly significant as

these waves often encompass a substantial degree of noise,
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FIGURE 1

AD prediction pipeline based on the feature fusion strategy using EEG signals.

and the inherent feature information can prove elusive to

capture. ViT, however, adeptly captures the holistic feature

information of the signal wave, presenting a global semantic

understanding. In contrast, the CNN excels in extracting

local features from frequency signals across diverse frequency

bands, encapsulating texture features inherent in the waveforms.

A prominent example is the distinctive frequency waveform

variations observed in ADpatients, typified by reduced alpha power

and heightened theta power. The fusion of the complementary

attributes of ViT and CNN yields a more comprehensive

and discerning representation of EEG data. Notably, this

amalgamation facilitates the incorporation of both global and local

characteristics, enhancing the potential for discriminative insights.

Furthermore, the model’s training employs an iterative approach

with the cross-entropy loss function. This strategic utilization

enhances the model’s capacity to capture AD lesion-related

information, ultimately contributing to an overall improvement in

classification performance.

3.1.1. Feature level fusion strategy
The model follows the outlined structure. Initially, two

parallel blocks are established, each receiving input denoted as

Xi ∈ R
B×H×W×C, with B representing the batch size. The

dimensions of the features extracted by the CNN (19, 128)

and the ViT (19, 128) are aligned with these blocks. These

dimensions correspond to one block each for CNN and ViT.

The fusion of CNN and ViT features is executed employing

parameters (19, 256). Subsequently, a concatenation layer is

employed, followed by the application of a Feed-Forward Network

(FFN). This FFN is pivotal in determining the classification of the

input (19, 3).

Figure 1 shows that the feature fusion strategy is two different

networks learning characteristic feature information from the EEG

signal and fusing them at the channel scale to capture the AD lesion

information contained in both feature information. Specifically, the

source of the fused features is the last layer of the feature matrices

of ViT (Fvit ∈ R
Hi×Wi×Ci ) and CNN (Fcnn ∈ R

Hi×Wi×Ci ), and the

two matrix features are fused by matrix splicing. The fused feature

is Ffuse ∈ R
Hi×Wi×(Ci

vit+Ci
cnn).

Fiflf = Concat(Fivit , F
i
cnn) (1)

where Concat() is the concatenation operation.

3.1.2. Vision Transformer (ViT)
ViT is an extension of the Transformer architecture, comprising

a patch embedding, a set of computation blocks, and an encoder.

The patch embedding step involves dividing the input image

into smaller fixed-size patches. The encoder leverages these

computation blocks to process the patch embeddings, capturing

the global contextual information and enabling ViT to excel at

processing and understanding images on a holistic level.

Figure 2 shows that: the beginning of stage i, let us evenly divide

the input feature map Fi ∈ R
Hi×Wi×Ci into Hi×Wi

d2i
patches, and the

patch is flattened and projected to a Ci-dimensional embedding.

After the linear projection, the shape of the embedded patch is F

(i.e., Hi
di
×

Wi
di

×Ci), where the height and width are di times smaller

than the input, the patch size of the i-th stage as di.

Transformer encoder, which is composed of an multi-head

attention (MHA) layer and a feed-forward layer. Here, the MHA

receives a query q, a key k, and a value v as input. The formula can
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FIGURE 2

The Vision Transformer block.

be expressed as follows:

MHA(q, k, v) = Concat(head0, · · · , headNi )W
0 (2)

headj = Attention(QW
q
j ,KW

k
j ,VW

v
j ) (3)

where Concat() is the concatenation operation. W
q
j ,W

k
j ,W

v
j ∈

R
Ci×dhead , are linear projection parameters. Attention() is

calculated as:

Attention(q, k, v) = Softmax(
qkT

√

dhead
v) (4)

3.1.3. Loss functions
We employ the cross-entropy loss function for iterative model

optimization. Specifically, we utilize the CNN to capture fine-

grained AD onset frequency information in the frequency domain

and the ViT to extract brainwave signals in the time domain.

The model is optimized through iteratively updating the cross-

entropy loss with the corresponding labels, thus facilitating efficient

discrimination between AD, FTD, and NC subjects. Through this

iterative optimization process, our model is trained to accurately

predict AD diseases by effectively leveraging the distinctive features

captured from both the frequency and time domains of EEG

signals. The loss formula is expressed as follows:

LCE =











1
N

∑

i
−

[

ŷi · log(pi)+ (1− ŷi) · log(1− pi)
]

− 1
N

∑

i

M
∑

c=1
yic log(pic)

(5)

where N is the number of samples, M is the disease

classification, yi is the label of subject i, which is 1 if the prediction

is consistent with the label and 0 otherwise, pi is the probability that

subject i is predicted by the model to be consistent with the label,

yic is the sign function (0 or 1), and pic is the outcome of subject i

being predicted by the model.

3.2. Feature filtering module

Despite the feature extraction process using ViT and CNN,

the extracted EEG signal feature information may still contain

substantial noise and redundancy, which can adversely affect

the classification performance and operational efficiency of the

prediction model. To address this issue, this paper introduces

a feature screening module, enabling the network to focus

more selectively on significant features in the information while

suppressing noise and redundant elements, as illustrated in Figure 1

(Feature filter).

The constructed EEG signal feature screening attentionmodule

comprises a channel attention module and a spatial attention

module. Taking the fused EEG signal feature map Ff use as an

example (Figure 1), the feature Ff use undergoes maximum pooling,

and global pooling, resulting in two 1×1×64 channel vectors. These

vectors are then fed into a fully connected layer to obtain activated

weighting coefficients Ms. These coefficients are then multiplied

with the fused feature Ff use, generating a new feature F1.

Subsequently, F1 undergoes an average pooling layer and a

maximum pooling layer, producing two 40 × 48 × 1 feature

vectors. These vectors are concatenated and passed through a 7× 7

convolutional layer, generating new weighting coefficientsMs. The

resulting coefficients are then multiplied with F1, yielding the new

feature F2. The mathematical formula for this process is as follows:

Mc

(

Ff use
)

= σ

(

MLP(AvgPool(Ff use))+MLP(MaxPool(Ff use))
)

(6)

Ms (F1) = σ
(

f 7×7([AvgPool(Mc(F1)),MaxPool(Mc(F1))])
)

(7)

where MLP is the two-layer perception module, AvgPool is

the average pooling module, MaxPool is the maximum pooling

module, Ff use is the input fusion feature vector, and f is the

convolution module.

Through this feature screening attention mechanism, our

approach effectively enhances the model’s ability to focus on

informative features while attenuating noise and redundancy,

contributing to improved classification performance and overall

prediction model efficiency. The incorporation of the channel

and spatial attention modules further ensures the selection of

crucial features, promoting the accuracy and reliability of the AD

prediction model.
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TABLE 1 MMSE scoring metrics.

Methods AD FTD NC

MMSE 27 10–27 <10

MMSE_score 2 1 0

3.3. Two-factor decision-making
mechanism

In this study, we employ correlation analysis, an analytical

algorithm widely used to explore the relationships between

different variables. The correlation coefficient quantifies the

strength of the linear relationship between variables under

investigation. In our approach, the proposed network performs

EEG signal classification for prediction, where NC is 0, FTD is 1,

and AD is 2. To ensure the credibility of the EEG signal prediction

results, we compare them with the clinical assessment results

obtained from the MMSE. When the EEG signal prediction aligns

with the MMSE clinical assessment result, it is considered reliable;

otherwise, it is deemed less credible.

To quantitatively assess the correlation between the predicted

EEG signal results and the MMSE clinical psychology scale, we

utilize Pearson’s correlation coefficient, a statistical measure that

helps evaluate the degree of correlation between these variables.

This analysis provides valuable insights into the reliability of our

prediction model.

By integrating EEG signal predictions with clinical

neuropsychological assessments and incorporating correlation

analysis, our two-factor decision-making mechanism enhances the

accuracy and confidence of clinical AD diagnosis. This approach

represents a significant advancement toward a more robust and

comprehensive AD prediction methodology, enabling better

identification and management of individuals at risk of AD and

related conditions.

P =

∑

(y− ȳ)(ŷ− ȳ)
√

∑

(y− ȳ)2(ŷ− ȳ)2
(8)

where y is the predicted EEG signal for the subject in different

frequency bands and time periods. P represents the prediction

result of the EEG signal for the subject. When the value tends

toward 1, it indicates that the EEG signal prediction aligns with

the MMSE assessment result, validating the credibility of the EEG

prediction. Conversely, when the value is close to 0, the EEG

prediction is considered less credible, as it does not align well

with the MMSE assessment. This correlation analysis provides

a quantitative measure to assess the consistency between the

predicted EEG signal results and the MMSE, helping to ascertain

the reliability of our prediction model.

Based on the Pearson’s correlation coefficient, this paper

proposes the following formula, which combines the predicted

results of the EEG signal with the results of the MMSE scale

assessment to obtain the combined prediction.

ADscore = λ × avg(
∑y

i=1 EEG)+

(1− λ)× avg(MMSEscore)
(9)

TABLE 2 The AD dataset is divided into training and test sets.

Datasets Category
label

Case Year
(Mean ±

SD)

NPI-Q
(Mean ±

SD)

AD 8/16 70.3± 5.5 23.3± 2.0

Train (60) FTD 10/6 64.9± 6.6 27.3± 1.8

AD 13/7 65.8± 4.0 29.1± 1.0

AD 4/8 64.2± 6.0 23.2± 2.2

Test (28) FTD 4/3 61.7± 6.6 28.3± 1.6

NC 5/4 64.8± 5.8 26.6± 1.7

whereADscore represents the EEG signal prediction results and

the assessment results of the MMSE, as shown in Table 1. It is the

combined prediction result of EEG signal prediction result and the

MMSE assessment after correlation analysis.

In the above formula, EEG prediction results and MMSE

assessment results are controlled by parameters. The formulas are

as follows.

γ = P (10)

where γ is the Pearson correlation coefficient of the EEG signal

prediction result. At that time, the algorithm will only take EEG

signal prediction results. At that time, the algorithm will focus on

the MMSE scale assessment, subject to clinician assessment.

4. Experiments

In this section, we experimentally validate and evaluate the

performance of the proposed AD prediction approach.

4.1. Dataset acquisition and preprocessing

This study utilized a publicly available dataset containing

scalp EEG recordings of individuals with Alzheimer’s

disease, which can be accessed at the following link:

10.18112/openneuro.ds004504.v1.0.2. EEG signals were acquired

using 19 Ag/AgCl electrodes, following the standardized 10–20

international lead systems. The recordings were conducted at a

sampling rate of 250 Hz, with a resolution of 10 uV/mm.

The dataset consisted of a total of 88 subjects, divided into

three groups: 36 subjects in the AD group, 23 subjects in the

FTD group, and 29 subjects in the NC group. The cognitive and

neuropsychological status of the subjects was assessed using the

well-established MMSE. Ethical considerations were meticulously

followed, and the study received approval from the Scientific and

Ethical Committee of the Aristotle University of Thessaloniki and

AHEPA University Hospital, under protocol number 142/12-04-

2023. The availability of the dataset and adherence to ethical

guidelines underscore the credibility and reliability of the data used

in this study for predicting AD based on EEG signals.

This dataset has done the preprocessing work such as denoising

and removing artifacts after collecting the information of the
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FIGURE 3

The EEG signal is extracted in the time domain.

subjects, so the method in this paper directly uses the data in this

dataset without repeating the data preprocessing. The EEG data

extracted in this paper are divided into two groups, as follows: (1)

As shown in Figure 3, we extracted a total of 10 time segments (4s a

segment, the signal of one electrode channel in each segment); (2)

As shown in Figure 4, we extracted Delta wave (0.5–4 Hz), Theta

wave (4–8 Hz) for each subject, Alpha wave (8–13 Hz), Beta wave

(13–25 Hz) and Gamma wave (25–45 Hz) for each subject.

4.2. Experimental environment and training
strategy

The model was trained and tested on a Windows operating

system. The training learning rate was set to 0.0005, and the

maximum number of epochs was limited to 100. A batch size

of four was used during the training process. Additionally, ten-

fold cross-validation was employed to enhance the robustness and

generalization of the model’s performance.

4.3. Evaluation metrics

There is sensitivity (TP), which is the probability that the

subject will be diagnosed with the disease. Specificity TN), which is

the probability that the subject will be correctly diagnosed. And 1-

specificity is (FP), that is, the probability of misdiagnosis. Clinically,

we want TP as high as possible and FP as low as possible. Accuracy,

sensitivity, and specificity are calculated as follows:

Accuracy(in%) =
TP + TN

TP + TN + FP + FN
× 100 (11)

Sensitivity(in%) =
TP

TP + FN
× 100 (12)

1− Specificity(in%) = 1−
TN

TN + FP
× 100 (13)

In general, prediction models with high sensitivity and

specificity values will be more suitable for AD prediction. The ROC

(Receiver Operating Characteristics) curve can clearly show the

classification performance of different models. In addition, the area

composed of ROC curve and horizontal coordinate (AUC) is also

an important index to express the classification performance of the

model. The AUC formula is expressed as follows:

AUC =
1

2

n−1
∑

i=1

(xi−1 − xi)(yi + yi+1) (14)

where x represents the 1-specificity value, y represents the

sensitivity value

4.4. Experimental results and analysis

Figure 5 depicts the ROC curves for AD vs. NC, FTD vs. NC,

AD vs. FTD, and AD vs. FTD vs. NC tasks on the test set. The

results indicate that the joint prediction method proposed in this

study exhibits superior performance and achieves a higher AUC

value compared to the AD prediction method solely based on EEG

signals. This improvement can be attributed to the joint diagnosis

method’s alignment with the clinician’s diagnosis, rendering it more

effective in AD prediction.

However, it is worth noting that in Figure 5D, the ROC

curves of the joint prediction approach closely resemble those

of the unimodal model when the one-specificity is at 20% for

the AD vs. FTD and FTD vs. NC tasks. This similarity can be

attributed to the influence of the MMSE scale, which may be

impacted by the subjects’ educational backgrounds. Consequently,

this sensitivity to educational factors may somewhat restrict the

classification performance of the joint prediction method in these

specific scenarios.

Table 3 presents a comparison of the two methods proposed

in this study with state-of-the-art prediction methods in AD
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FIGURE 4

The EEG signal is extracted in the frequency domain.

FIGURE 5

The EEG signal is extracted in the frequency domain. (A) AD vs. MCI classification ROC curve. (B) MCI vs. NC classification ROC curve. (C) AD vs. NC

classification curve. (D) AD vs. MCI vs. NC classification ROC curve.

vs. FTD, FTD vs. NC, AD vs. NC, and AD vs. FTD vs. NC

classification tasks. These methods include machine learning-based

AD prediction methods using EEG signals, where the LightGBM

and Random Forests methods exhibit higher AD prediction

accuracy. The machine learning-based methods demonstrate good

AD prediction accuracy but have notable drawbacks. EEG signals

acquired clinically often contain substantial noisy information,

requiring complex data preprocessing, posing challenges in
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TABLE 3 Comparison of this paper’s method with other methods using EEG signals.

Method Subjects Data Classification results (%)

AD FTD NC Type Base SEN SPE ACC AUC

LightGBM 36 – 29 EEG OpenNeure 76.01 76.16 76.43 –

SVM 36 – 29 EEG OpenNeure 71.89 75.98 76.43 –

KNN 36 – 29 EEG OpenNeure 69.67 74.19 71.23 –

MLP 36 – 29 EEG OpenNeure 73.00 74.63 73.12 –

Random forests 36 – 29 EEG OpenNeure 78.32 80.94 77.01 –

EEG model 36 – 29 EEG OpenNeure 81.76 83.22 85.78 85.88

The joint method 36 – 29 EEG+MMSE OpenNeure 84.56 85.15 87.33 88.19

LightGBM – 23 29 EEG OpenNeure 61.13 80.74 72.43 –

SVM – 23 29 EEG OpenNeure 62.41 75.98 70.14 –

KNN – 23 29 EEG OpenNeure 59.67 76.13 67.34 –

MLP – 23 29 EEG OpenNeure 63.00 78.63 73.12 –

Random forests – 23 29 EEG OpenNeure 72.32 80.94 72.01 –

EEG model – 23 29 EEG OpenNeure 76.34 79.77 80.36 81.77

The joint method – 23 29 EEG+MMSE OpenNeure 81.66 82.55 82.98 83.41

EEG model 36 23 – EEG OpenNeure 77.47 80.12 79.03 81.05

The joint method 36 23 – EEG+MMSE OpenNeure 79.81 80.77 81.56 82.19

EEG model 36 23 29 EEG OpenNeure 73.20 75.45 76.01 76.37

The joint method 36 23 29 EEG+MMSE OpenNeure 77.09 78.30 79.12 80.23

Bold values signifies that the metrics reported in this paper exhibit higher values in comparison to those of alternative methods.

clinical research. Therefore, machine learning-based AD prediction

methods using EEG signals have limitations.

In contrast, deep learning methods outperform traditional

machine learning methods due to their lower data preprocessing

requirements and the ability to extract frequency pattern

information from EEG signals, facilitating higher accuracy in AD

prediction. The method proposed in this paper effectively predicts

the AD class and distinguishes the NC class, with ACC values in

the more challenging AD vs. FTD and FTD vs. NC categorizations

being over 3% higher than traditional machine learning methods.

This improvement is attributed to the deep learning method’s

capacity to extract information differences between classes.

In the context of addressing the AD vs. NC classification

problem, we conducted a comprehensive performance evaluation

by comparing our method with other contemporary ensemble

classifiers, namely Multilayer Perceptron (MLP), Random Forests,

and LightGBM. Our findings reveal a substantial superiority

of our method, notably surpassing the second-ranking Random

Forests by an impressive margin of 10.32% in terms of accuracy.

Furthermore, to provide a well-rounded assessment, we extended

our evaluation to the FTD vs. NC classification problem. By

applying the same algorithms, we established that our method

consistently outperformed the alternatives. Specifically, in terms

of accuracy, our approach outshone the second-ranking MLP by

9.86%. Finally, the complexity of AD vs. FTD vs. NC classification

was addressed, yielding accuracy, and AUC values of 79.12 and

80.23%, respectively. Nevertheless, it is important to acknowledge

that the classification performance in this scenario did not attain

remarkable levels. One plausible explanation for this diminished

performance could be attributed to the inherent challenge of

effectively capturing pertinent information within the data through

the proposed joint approach. This limitation, in turn, contributes to

the observed lower classification accuracy. It is worth considering

that the suboptimal performance might be mitigated with a more

substantial training dataset. As the size of the training dataset

expands, it is conceivable that the method presented in this

study may exhibit improved performance, thereby yielding more

promising results.

The proposed method in this paper integrates deep learning

algorithms, considering both global features extracted using

ViT to address noisy electrode signals in the time domain

and weak inter-class signal differences extracted using CNN in

the frequency domain. Additionally, a feature filtering module

is constructed after fusing global and local features, which

emphasizes essential feature signals and reduces redundant

information in the feature vector, facilitating the extraction of AD

lesion signals.

Furthermore, multimodal-based disease prediction methods

gain significant interest due to the need to combine multiple

approaches effectively for better clinical prediction results. Relying

on a single method may lead to misdiagnosis due to various factors,

including sampling data noise interference and physiological

heterogeneity among subjects. In this study, we found that

matching the MMSE assessment scale scoring values with the EEG

signal data of the subjects significantly contributes to the high

prediction accuracy.
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We also observe from Table 3 that in the FTD vs. NC case,

the joint diagnostic algorithm achieves an AUC value of 83.41%,

which is superior to the state-of-the-art technology in terms of AUC

value. However, it can be seen that a single EEG signal prediction

modeling algorithm is no worse than a combined diagnostic

algorithm in terms of sensitivity and specificity. This is because

the proposed method (joint) incorporates neuropsychological

diagnostic information such as MMSE. however, MMSE is

influenced by the level of education of the individual. For example,

FTD patients with a high level of education have similar scores on

the MMSE test as NC patients with a low level of education. In such

cases, it is difficult to distinguish between FTD and NC.

The results in Table 3 demonstrate that the AD prediction

model and the joint prediction algorithm proposed in this study

using only EEG signals achieve higher prediction accuracies

compared to other AD prediction methods. The AUC values of

the joint prediction in the more challenging AD vs. FTD and

FTD vs. NC categorizations reach 82.19 and 83.41%, respectively.

These findings highlight the ability of the AD prediction method

proposed in this paper to capture AD lesion signals and provide

reliable information for AD clinical risk assessment.

In the AD vs. FTD vs. NC triple classification task, the

combined prediction algorithm achieves an ACC value of 80.23%,

which is 3.86% higher than using only EEG signals (76.37%). This

indicates that the combination of EEG signal prediction results

with clinical psychology assessment results effectively differentiates

between AD, FTD, and NC categories, offering reliable auxiliary

diagnostic information for early AD screening.

5. The interpretation and visualization
of the model (EEG signal only)

5.1. The model classification performance
analysis

Figure 6 displays the classification performance visualization of

the AD prediction model based on EEG signals using the t-SNE

tool. In Figure 6A, the distribution of samples from 28 subjects in

the test set demonstrates a mixed state before model classification.

The samples from the three categories exhibit overlapping,

indicating that the classes are not clearly distinguishable initially.

In Figure 6B, the feature visualization reveals that the clustering

distance between FTD and NC is relatively close, yet the two

categories are mostly distinct. However, some mixed data points

can be observed on the graph, resulting from the small differences

between NC and FTD categories. Clinically, it is often challenging

to determine whether an NC subject has FTD or not, given the

relatively blurred boundaries between the two conditions.

For the AD vs. NC classification task (Figure 6C), almost

all AD and NC samples are located in their respective clusters,

indicating themodel’s high sensitivity to differentiating AD andNC

subjects. The model already possesses the capability to effectively

differentiate between these categories.

In Figure 6D, representing the AD vs. FTD vs. NC classification

task, FTD and NC samples form dense clusters, predominantly

distributed within their respective regions, which is acceptable.

However, a small number of AD misclassifications among NC

samples can be observed. This could be attributed to the

heterogeneous differences among subjects and noise contamination

during the data acquisition process, leading to some errors in the

EEG signal-based prediction.

Overall, the t-SNE tool provides valuable insights into the

model’s classification performance and the distinguishability of

different categories. The model’s high sensitivity to AD and

NC, along with the relatively clear clustering of FTD and NC,

demonstrates the effectiveness of the AD prediction model based

on EEG signals.

5.2. Visualization of the model

To investigate the electrodes that are highly relevant to the AD

prediction model based on EEG signals proposed in this study, we

extracted the weights associated with the 19 channels and mapped

them onto the brain topography map to gain insights into the

model’s prediction process.

As demonstrated in Figures 7A–D, which represent the

topographic maps of EEG electrode weights under the four

categorization tasks of AD vs. FTD, FTD vs. NC, AD vs. NC, and

AD vs. FTD vs. NC, respectively, we can observe the following:

For AD patients, the model primarily focuses on AD-related

features in the frontal lobe (Fp1 and Fp2 electrodes), parietal

lobe (P3, Pz, and P4 electrodes), and occipital lobe (O1 and O2

electrodes). These regions correspond to the frontal lobe, parietal

temporal region, hippocampus, internal olfactory cortex, posterior

cingulate sulcus, and occipital lobe, which is consistent with clinical

studies on AD diseases (Kim et al., 2020).

For FTD patients, the model shows greater sensitivity toward

the central region (C3, Cz, and C4 electrodes), the left temporal

lobe (T3 electrode), and the frontal lobe (Fp1, Fp2, F7, and F8

electrodes). This increased focus on the temporal lobe and central

region aligns with clinical neurological findings related to FTD

disorders (Ding et al., 2019).

For NC subjects, the model displays higher sensitivity toward

the occipital lobe (O1 and O2 electrodes), the temporal lobe (T3

and T5 electrodes), and the left and right parietal lobes (C3 and

C4 electrodes). These areas are known to be associated with lesion

occurrences (Amira et al., 2014).

Overall, the model’s electrode weight mappings reflect

its focus on specific brain regions corresponding to AD,

FTD, and NC conditions, and these findings are consistent

with established clinical studies. The visualization of

electrode weight distributions enhances our understanding

of the model’s prediction process and the important

features it utilizes for accurate AD classification and

risk assessment.

To investigate the electrodes used in different frequency bands

in the model, we conducted experiments on the AD vs. FTD vs. NC

classification task. We extracted five frequency bands for each EEG

signal and mapped the weights of the 19 electrode channels in each

frequency band onto a brain topographic map (Figure 8).

From Figure 8, we observed that Delta (0.5–4 Hz) waves

showed minimal differences between AD and FTD, suggesting that

Delta waves may not carry significant focal information in the
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FIGURE 6

Visualization of model prediction results using t-SNE based tool on test set. (A) Result without classification. (B) MCI vs. NC classification result with

t-SNE. (C) AD vs. NC classification result with t-SNE. (D) AD vs. MCI vs. NC classification result with t-SNE.

pathogenesis of AD. Conversely, Theta (4–8 Hz) and Alpha (8–13

Hz) waves exhibited more pronounced differences on topographic

maps of AD, FTD, and NC. The weight distributions reflected

deeper involvement of the occipital, temporal, and frontal lobes,

which are commonly implicated regions in the pathogenesis of

AD. Additionally, Beta (13–25 Hz) and Gamma (25–45 Hz) waves

also displayed substantial differences in AD and FTD cases, with

heavier weighting and predominant distribution in the occipital

and frontal regions, aligning with clinical findings (Miltiadous et al.,

2023b).

These results shed light on the distinctive contributions

of different frequency bands in the model’s classification task.

Theta and Alpha waves appear to play a crucial role in

distinguishing between AD, FTD, and NC subjects, as they

highlight significant differences in brain regions associated with

AD pathology. On the other hand, Delta waves seem less

discriminative, while Beta and Gamma waves also contribute to

differentiating AD and FTD cases, particularly in the occipital

and frontal regions. This analysis enhances our understanding

of the model’s utilization of frequency-specific information

for accurate classification and risk assessment of AD and

related conditions.

5.3. Ablation experiments

The accuracy of the joint prediction method proposed in this

study is contingent upon both the prediction accuracy of the EEG

signal and the accuracy of the MMSE evaluation. As the MMSE

score follows a standardized assessment, we conducted ablation

experiments on the EEG signal-based AD prediction model to

validate the state-of-the-art performance of the model proposed in

this paper. These ablation experiments were specifically carried out

on the AD vs. FTD vs. NC classification task, providing a rigorous

assessment of the model’s overall performance and its contribution

to the joint prediction approach.

5.3.1. Experiments on ablation of feature fusion
strategies for two-branch networks

To verify the advancement of the feature fusion strategy of the

two-branch network proposed in this paper. The results of this

ablation experiment are shown in Table 4.

We conducted ablation experiments on the network structure

while keeping other parameters unchanged and validated the

results on the test set.
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FIGURE 7

Topography of model visualization under di�erent prediction tasks. (A) AD vs. MCI. (B) MCI vs. NC. (C) AD vs. NC. (D) AD vs. MCI vs. NC.

In Table 4, we observed that the ACC and AUC values of

the dual-branch model proposed in this paper are the highest,

outperforming the dual-branch CNN model and the dual-branch

ViT model. This suggests that our proposed method efficiently

captures both the texture features and the overall information

distribution features in the EEG signal. The dual-branch structure

exhibits better feature extraction capabilities compared to the

single-branch structure, mainly due to its ability to mitigate feature

signal loss during the information acquisition process from the

EEG signal.

As shown in Figure 9, the ROC curve of the two-branch model

(CNN-ViT) proposed in this paper is smooth and maintains high

sensitivity while achieving high specificity. This indicates that our

method achieves a good balance between sensitivity and specificity

in AD prediction.

Overall, the ablation experiments and ROC curve analysis

further validate the effectiveness and superiority of the dual-

branch model proposed in this paper for AD prediction based on

EEG signals.

5.3.2. Feature screening module ablation
experiments

To validate the advancement of the feature screening module

proposed in this paper. The results of this ablation experiment are

shown in Table 5.

We trained the AD prediction model without the feature

screening module using EEG signals while keeping other

parameters unchanged. As shown in Table 5, the ACC value of

the model using the feature screening module is higher than

the ACC value of the model without the feature screening

module. This indicates that the feature screening module plays a

crucial role in learning AD lesion signal features and suppressing

noise information.

Figure 10 displays the ROC curves of the two groups of

prediction models. It can be observed that the ROC curves

of the models with feature screening are smoother than

those of the models without feature screening. Additionally,

the AUC values of the models with feature screening are

higher than those of the models without feature screening
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FIGURE 8

Visualization of topographic maps in di�erent frequency bands.

when the 1-specificity value is between 30 and 50%. This

finding suggests that the feature screening module exhibits

stronger sensitivity to FTD and AD feature signals. In clinical

neurological disease diagnosis, high sensitivity and low 1-

specificity are crucial criteria for evaluating the classification

performance of prediction networks. Hence, the feature screening

module significantly enhances the classification performance of

the model.

5.4. Discussion

This study introduces an innovative deep learning architecture

based on multi-feature fusion learning, tailored for the

discrimination of clinical dementia using EEG signals. Specifically,

the method is devised for the detection of AD, while also aiming to

evaluate its potential applicability to other forms of dementia. The

methodology comprises three distinct phases.
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In the initial phase, raw EEG signals, diligently collected from

the neurology department, undergo rigorous processing, resulting

in the segmentation of a 40 s time window into ∼10 segments.

The ensuing phase involves the transformation of EEG signals

into the time-frequency domain. To achieve this, the Welch

method, a frequency-domain transformation technique for EEG

signals, is employed. This method employs a sliding window

approach in conjunction with fast Fourier transform to derive

frequency-domain signals. In the final step, a deep neural network

is trained, which is comprised of two parallel CNNs alongside

a transformer network. The training process involves multiple

iterations, optimizing model performance through the utilization

of cross-entropy loss.

From a medical perspective, the proposition of a novel multi-

feature fusion learning architecture, leveraging ViT and CNNs,

for the classification of AD within EEG signals holds substantial

significance. Automated early AD detection with minimal medical

intervention is pivotal for timely treatment and management.

Notably, EEG signals have emerged as crucial tools in neurological

disorder diagnosis. Although positron emission tomography (PET)

and magnetic resonance imaging (MRI) are prevalent imaging

modalities for AD detection, EEG provides a swifter, cost-effective,

and portable alternative.

TABLE 4 Ablation experiments of the proposed feature fusion strategy for

two-branch networks.

Methods AD vs. FTD vs. NC (%)

SEN SPE ACC AUC

Single-branch model (CNN) 54.25 57.48 57.56 58.97

Single-branch model (ViT) 62.47 64.88 65.33 66.61

Double-branch model (CNN-CNN) 65.83 67.26 66.89 68.33

Double-branch model (ViT-ViT) 70.56 72.25 74.79 74.12

Ours(ViT-CNN) 73.20 75.45 76.01 76.37

Bold values signifies that the metrics reported in this paper exhibit higher values in

comparison to those of alternative methods.

The proposed architecture adeptly captures prominent EEG

changes associated with AD, including reduced alpha and beta

waves, diminished cortical activity, increased theta waves, and

decreased inter-brain region synchronization. The potential to

identify these changes in early-stage disease through a machine

learning framework positions EEG as a viable biomarker for AD.

However, it is noteworthy that the model exhibited limited capacity

to effectively discriminate between FTD and NC classes, aligning

with existing clinical research outcomes. Moreover, the training of

an efficient ViT weight for AD prediction necessitated a substantial

volume of data, revealing the dearth of extensive research in the

realm of AD prediction using EEG signals. As such, the findings of

this paper underscore the necessity for validation through extensive

clinical data to affirm the method’s applicability and potential in

the field.

6. Conclusion

The research paper introduces a novel and innovative

methodology that integrates EEG signals with clinical psychological

scale assessment to collectively predict AD. The pivotal

contribution of our work is the introduction of a two-branch

network architecture, comprising CNN and ViT. This strategic

amalgamation effectively harnesses the unique strengths of each

component, enabling the model to extract essential features from

EEG electrode signals and diverse frequency bands. The resulting

enriched feature representation facilitates the detection of focal

TABLE 5 Ablation experiments with di�erent loss functions.

Methods AD vs. FTD vs. NC (%)

SEN SPE ACC AUC

Not-feature filter 69.58 71.14 72.23 73.15

Feature filter 73.20 75.45 76.01 76.37

Bold values signifies that the metrics reported in this paper exhibit higher values in

comparison to those of alternative methods.

FIGURE 9

ROC curves for di�erent network structures in the AD vs. FTD vs. NC task.
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FIGURE 10

Feature screening module for ablation experiments.

features intricately associated with AD. Further enhancement

through a feature screening module empowers the model to

highlight pertinent AD-related signal features while suppressing

extraneous noise, thereby augmenting the predictive power of

the model. Empirical validation substantiates the superiority of

our proposed methodology over conventional AD prediction

techniques that solely rely on EEG signals. Notably, our approach

surpasses existing methods in terms of both Overall ACC

and the AUC, achieving notable ACC rates of 81.56 and 82.98%,

respectively. Moreover, the integration of visualization experiments

lends further credibility to our model’s feature extraction process.

In the context of forthcoming research endeavors, it is

advisable to give due consideration to augmenting the datasets

employed for both model training and testing. This augmentation

stands as a pivotal endeavor, as the expanded dataset serves a

dual role: enhancing the model’s robustness while concurrently

broadening its sphere of applicability. Simultaneously, it is

pertinent to note that the feature screening module, delineated

as the attention model in this study, necessitates heightened

computational resources. This module, designed to scrutinize fused

features and enhance lesion signal attributes while diminishing

noisy information, presents a computational complexity surpassing

that of conventional attention models. This disparity can lead to

challenges such as convergence difficulties and runtime errors,

especially when addressing substantial datasets with limited

computational resources. Furthermore, a noteworthy trajectory

for potential enhancement lies in extending the proposed

approach to encompass a comprehensive exploration of other

forms of dementia, including FTD and Lewy body dementia.

This strategic expansion to encompass distinct dementia types

harbors the capacity to furnish a comprehensive evaluation of the

diagnostic efficacy of the method within a broader spectrum of

neurodegenerative conditions.

In conclusion, the integration of EEG signals and clinical

psychological assessments within a unified prediction framework

holds substantial promise for advancing the early identification of

Alzheimer’s Disease. The method’s exceptional performance

across intricate differentiations underscores its potential

as a valuable tool in both clinical and research settings.

As the landscape of neurodegenerative disorders evolves,

we anticipate that our innovative approach will contribute

significantly to improved diagnostic accuracy and ultimately

to the development of more effective strategies for managing

AD. Nonetheless, we are committed to continual improvement

and envision a future where our approach aids healthcare

professionals in the precise prediction and management of AD,

unlocking the potential for early intervention and improved

patient outcomes.
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