
TYPE Review

PUBLISHED 25 September 2023

DOI 10.3389/frai.2023.1225093

OPEN ACCESS

EDITED BY

David Tomás,

University of Alicante, Spain

REVIEWED BY

Zenun Kastrati,

Linnaeus University, Sweden

Banafsheh Rekabdar,

Portland State University, United States

*CORRESPONDENCE

Feras A. Batarseh

batarseh@vt.edu

RECEIVED 18 May 2023

ACCEPTED 04 September 2023

PUBLISHED 25 September 2023

CITATION

Gurrapu S, Kulkarni A, Huang L, Lourentzou I

and Batarseh FA (2023) Rationalization for

explainable NLP: a survey.

Front. Artif. Intell. 6:1225093.

doi: 10.3389/frai.2023.1225093

COPYRIGHT

© 2023 Gurrapu, Kulkarni, Huang, Lourentzou

and Batarseh. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Rationalization for explainable
NLP: a survey

Sai Gurrapu1, Ajay Kulkarni2, Lifu Huang1, Ismini Lourentzou1 and

Feras A. Batarseh2,3*

1Department of Computer Science, Virginia Tech, Blacksburg, VA, United States, 2Commonwealth Cyber

Initiative, Virginia Tech, Arlington, VA, United States, 3Department of Biological Systems Engineering,

Virginia Tech, Blacksburg, VA, United States

Recent advances in deep learning have improved the performance of many

Natural Language Processing (NLP) tasks such as translation, question-answering,

and text classification. However, this improvement comes at the expense of

model explainability. Black-boxmodelsmake it di�cult to understand the internals

of a system and the process it takes to arrive at an output. Numerical (LIME,

Shapley) and visualization (saliency heatmap) explainability techniques are helpful;

however, they are insu�cient because they require specialized knowledge.

These factors led rationalization to emerge as a more accessible explainable

technique in NLP. Rationalization justifies a model’s output by providing a

natural language explanation (rationale). Recent improvements in natural language

generation have made rationalization an attractive technique because it is

intuitive, human-comprehensible, and accessible to non-technical users. Since

rationalization is a relatively new field, it is disorganized. As the first survey,

rationalization literature in NLP from 2007 to 2022 is analyzed. This survey presents

availablemethods, explainable evaluations, code, and datasets used across various

NLP tasks that use rationalization. Further, a new subfield in Explainable AI

(XAI), namely, Rational AI (RAI), is introduced to advance the current state of

rationalization. A discussion on observed insights, challenges, and future directions

is provided to point to promising research opportunities.

KEYWORDS

rationalization, explainable NLP, rationales, abstractive rationale, extractive rationale,
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1. Introduction

The commercialization of NLP has grown significantly in the past decade. Text has a

ubiquitous nature which enables many practical NLP use cases and applications, including

but not limited to text classification, fact-checking, machine translation, text2speech, and

others, which significantly impact our society. Despite its diverse and practical applications,

NLP faces many challenges; an important one is explainability (Madsen et al., 2021).

In the past, NLP systems have traditionally relied on white-box techniques. These

techniques—rules, decision trees, hidden Markov models, and logistic regression—are

inherently explainable (Danilevsky et al., 2020). The recent developments in deep learning

have contributed to the emergence of black-box architectures that improve task performance

at the expense of model explainability. Such black-box predictions make understanding

how a model arrives at a decision challenging. This lack of explainability is a significant

cause of concern for critical applications. For example, directly applying natural language

generation methods to automatically generate radiology reports from chest X-ray images

only guarantees that the produced reports will look natural rather than contain correct

anatomically-aware information (Liu et al., 2019a).
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Similarly, Visual Question Answering (VQA) systems are

known to learn heavy language priors (Agrawal et al., 2016). Thus,

a lack of transparency can affect the decision-making process

and may lead to the erosion of trust between humans and

Artificial Intelligence (AI) systems. This can further jeopardize

users’ safety, ethics, and accountability if such a system is deployed

publicly (Madsen et al., 2021). Considering the utilization of

NLP in healthcare, finance, and law domains, all of which

can directly affect human lives, it can be dangerous to blindly

follow machine predictions without fully understanding them.

For instance, a physician following a medical recommendation

or an operation procedure for a patient without full knowledge

of the system can do more harm than good. In addition,

systems employing Machine Learning (ML), such as most current

NLP methods, are prone to adversarial attacks where small,

carefully crafted local perturbations can maximally alter model

predictions, essentially misguiding the model to predict incorrectly

but with high confidence (Finlayson et al., 2019). The bar

for the ethical standards and the accountability required to

maintain NLP systems continue to increase as these systems

become more opaque with increasingly complex networks

and algorithms.

There has been significant research focus on enabling models

to be more interpretable, i.e., allowing humans to understand

the internals of a model (Gilpin et al., 2018). However, due to

the lack of completeness, interpretability alone is not enough

for humans to trust black-box models. Completeness is the

ability to accurately describe the operations of a system that

allows humans to anticipate its behavior better. Gilpin et al.

(2018) argue that explainability improves on interpretability as

a technique to describe the model’s decision-making process

of arriving at a prediction and the ability to be verified and

audited. Therefore, models with explainability are interpretable

and complete. In this survey, the focus is on explainability and

mainly on the outcome explanation problem where Guidotti

et al. (2018) describe explainability as “the perspective of an

end-user whose goal is to understand how a model arrives at

its result”.

In NLP, there exist various explainable techniques such as

LIME (Local Interpretable Model-Agnostic Explanations) (Ribeiro

et al., 2016), Integrated Gradients (Sundararajan et al., 2017), and

SHAP (Shapley Additive Explanations) (Lundberg and Lee, 2017a).

Despite the availability of these methods, many require specialized

knowledge to understand their underlying processes, which makes

them indecipherable and inaccessible for the general users or

audience, which we refer to as the nonexperts, hence limiting

usability. In the following sections, we share how rationalization

addresses these problems and helps improve explainability for

nonexpert users.

The structure of this literature survey is as follows. In Section

2, we share the background and intuition for rationalization.

In Section 3, we explain our paper collection methodology. We

identify and describe the most commonly used rationalization

techniques and point to available papers adopting them in Section

4. In Section 5, we compare and contrast abstractive and extractive

rationalization techniques. We conclude with a discussion of the

open challenges and promising future directions in Section 6.

FIGURE 1

Interpretability, explainability, and rationalization.

2. Background

One of the emerging explainable techniques for NLP

applications is rationalization (Atanasova et al., 2020).

Rationalization provides explanations in natural language to

justify a model’s prediction. These explanations are rationales,

which present the input features influencing themodel’s prediction.

The reasoning behind the prediction could be understood simply

by reading the explanation/rationale, thereby revealing the model’s

decision-making process. Rationalization can be an attractive

technique because it is human-comprehensible and allows

individuals without domain knowledge to understand how a

model arrived at a prediction. It essentially allows the model to

“talk for themselves” (Bastings et al., 2019; Luo et al., 2021). This

technique is a part of a subset of explainability because it enables

models to be interpretable and complete, as shown in Figure 1.

Specifically, rationalization provides a local explanation since each

prediction has a unique explanation rather than one for the entire

model. Local explanations can be categorized into two groups:

local post-hoc and local self-explaining. Danilevsky et al. (2020)

present local post-hoc methods as explaining a single prediction

after the model predicts and local self-explaining methods as

simultaneously explaining and predicting.

Rationalization in NLP was first introduced in 2007 (Zaidan

et al., 2007). As described in Section 4.6, the objective was

to use annotator rationales to improve task performance for

text categorization. Interestingly, explainability was not the core

objective. However, explainability is an advantage of rationalization

because it makes the model inherently explainable even if used in

the context of task improvement (Gurrapu et al., 2022).

Our literature review found that rationalization can be further

divided into two major groups: abstractive and extractive (El-

Kassas et al., 2021). In extractive rationalization, important

features or sentences from the input data are extracted as

rationales to support the prediction. In contrast, abstractive

rationalization is a generative task in which novel sentences are
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FIGURE 2

Rationalization types. (A) An example of the Extractive

Rationalization approch (Lei et al., 2016). (B) An example of the

Abstractive Rationalization approach (Rajani et al., 2019).

generated using new words or paraphrasing existing sentences.

This is typically accomplished through the use of a language

model such as BERT (Bidirectional Encoder Representations from

Transformers) (Devlin et al., 2019), T5 (Raffel et al., 2020), or GPT

(Generative Pre-trained Transformer) (Radford and Narasimhan,

2018). Figure 2 demonstrate the usage of the two explanation types

with examples.

Recent advances in explainable NLP have led to a significant

increase in rationalization research. Further, at present, the field

of rationalization is disorganized. Thus, the motivations for this

survey are—(a) formally define rationalization, (b) present and

categorize the well-cited techniques based on NLP tasks, and (c)

discuss current trends and future insights on the field. Thus, our

primary goal is to provide future researchers with a comprehensive

understanding of the previously scattered state of rationalization.

The key contributions of this paper are as follows.

1. First literature to survey the field of rationalization in NLP.

2. Introduction of a new subfield called Rational AI (RAI) within

Explainable AI (XAI).

3. A comprehensive list of details on available rationalization

models, XAI evaluations, datasets, and code are provided to

guide future researchers.

4. Presents NLP Assurance as an important method for developing

more trustworthy and reliable NLP systems.

2.1. Related surveys

Table 1 indicates the related survey papers published in recent

years. Danilevsky et al. (2020) note that previous surveys in XAI

are broadly focused on AI without a specific narrow domain focus.

Their work primarily focuses on surrogate-based explainability

methods. NLP publications in recent years further demonstrate that

this distinction is less relevant and valuable in the NLP domain

because “the same neural network can be used not only to make

predictions but also to derive explanations.” Therefore, surveying

the field of Explainable AI (XAI) in NLP requires NLP-specific

methods that are different from the standard XAI methods that are

widely known.

Thayaparan et al. (2020) survey the use of explanations

specifically in Machine Reading Comprehension (MRC). The

authors describe MRC papers that support explanations and

provide a detailed overview of available benchmarks. Further,

Madsen et al. (2021) briefly discuss rationalization and natural

language explanations using a question and answer approach,

CAGE (Commonsense Auto-Generated Explanations) (Rajani

et al., 2019) as an example. Thus, this raises the question - how

can rationalization be generalized and applied to other tasks in the

NLP domain? However, until now, no comprehensive literature

review on rationalization has been available for the prominent

NLP tasks. Thus, through this survey paper, we attempt to address

this need.

2.2. Definitions

To provide clarity and distinguish terms that are typically

used interchangeably in published literature, a list of definitions

is provided in Table 2. These terms are used throughout

the paper.

3. Methodology

The following are the inclusion-exclusion criteria for our

publications collection methodology. The first known use of

rationalization in NLP was in the year 2007. Our survey focuses

on the domain of NLP from 2007 to early 2022. We have

included peer-reviewed publications within this range that include

a significant rationalization component as a method to provide

explainability. We defined significance as rationalization being the

main component of their research methodology and approach.

We have eliminated a number of publications that are either

not entirely in the NLP domain or do not contain a significant

rationalization component.

For identifying and selecting articles, the range of keywords

and topics was limited to the following in the NLP domain:

rationalization, explanation, justification, and explainable NLP.

Thus, this survey includes reviews of the articles from journals,

books, industry research, dissertations, and conference proceedings

from commonplace AI/NLP venues such as ACL, EMNLP, NAACL,

AAAI, NeurIPS, and others. Finally, these articles are categorized

by important NLP tasks, as shown in Table 3. In recent years, there

has been an increase in focus on explainability in NLP after a rise

in deep learning techniques (Danilevsky et al., 2020). Due to this, a

majority of the papers collected were from recent years (2016 and

onwards), as illustrated in Figure 3.

The availability of relevant articles was limited. After following

the above approach, 33 articles were downselected to be the

primary focus of this paper’s discussion. Instead of providing

a broad yet surface-level understanding of the work, we focus

on demonstrating in-depth the most important approaches and
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TABLE 1 Three related survey papers on explainability and interpretability in NLP.

No. Survey title Year Papers reviewed

1 A Survey on the state of Explainable AI for Natural Language Processing (Danilevsky et al., 2020) 2020 50

2 A survey on explainability in machine reading comprehension (Thayaparan et al., 2020) 2020 69

3 Post-hoc interpretability for neural NLP: a survey (Madsen et al., 2021) 2021 27

TABLE 2 List of common terms that are used interchangeably in

published literature.

Term Definition

Black-box Model A “machine-learning obscure model, whose [architecture]

internals are either unknown to the observer, or they are

known but uninterpretable by humans” (Guidotti et al.,

2018).

Interpretability Interpretability “aims at developing tools to understand and

investigate the behavior of an AI system” (Thayaparan et al.,

2020). Doshi-Velez and Kim (2017) augments this definition

by adding that interpretability tools allow us to “explain or to

present in understandable terms to a human” what the AI

system is performing.

Explainability There is no consensus on the nature of explanations since

they are entirely task-dependent, and AI embraces a wide

variety of tasks (Miller, 2019a). We treat explainability as a

specialization of interpretability where the aim of

explainability is to design inherently interpretable models

capable of performing transparent inference through the

generation of an explanation for the final prediction

(Thayaparan et al., 2020). In this survey, we focus on

black-box explainability, specifically as the outcome

explanation problem.

Rationalization The term rationalization is interchangeable with explanation

or justification. Rationalization has rarely been formally

defined in the context of NLP. Therefore, we propose the

following definition: Rationalization justifies a model’s

output by providing a natural language explanation. This is

accomplished by either extracting text fragments from the

input (extractive rationalization) or by generating a novel

explanation (abstractive rationalization).

NLP Assurance A process that is applied at all stages of the NLP

development lifecycle to ensure that all outcomes are valid,

verified, trustworthy, and explainable to a non-expert, ethical

in the context of its deployment, unbiased in its learning,

and fair to its users. This definition is adopted from Batarseh

et al. (2021) and modified to fit the scope of the NLP domain.

progress made in each NLP task. Overall, we selected six articles in

multiple NLP domains, five on Machine Reading Comprehension

and Sentiment Analysis, four on Text Classification, Fact-

Checking and Commonsense Reasoning, and three on Natural

Languages Inference, and two articles on Neural Machine

Translation (NMT).

4. Rationalization techniques

In this section, we discuss relevant papers and their

rationalization techniques categorized by the NLP tasks listed in

Table 3. Tables with important information on the papers for each

subsection are presented at the beginning.

TABLE 3 Details on seven NLP tasks and their definitions which are

surveyed in this paper.

NLP task Definition

Machine Reading

Comprehension (MRC)

Enabling a model to answer questions regarding a

given context (Baradaran et al., 2022).

Commonsense

Reasoning

Going beyond pattern recognition to make

inferences using world knowledge (Apperly, 2011;

Sap et al., 2020).

Natural Language

Inference

Determining if a hypothesis entails or contradicts

a premise (MacCartney, 2009).

Fact Checking Classifying if a claim is either true or false based on

evidence (Vargo et al., 2018; Gurrapu et al., 2022).

Sentiment Analysis Quantifying whether the textual data has a

positive, negative, or neutral emotion (Zhang

et al., 2018).

Text Classification Categorizing textual data by automatically

assigning labels (Minaee et al., 2021).

Neural Machine

Translation

Translating languages using deep neural

networks (Sutskever et al., 2014).

4.1. Machine reading comprehension

MRC enables a model to answer questions regarding a given

context (Baradaran et al., 2022). For this reason, it also frequently

referred to as Question Answering (QA) Systems. As shown in

Table 4, for MRC applications, we found five recent articles from

which three articles provide novel datasets (Ling et al., 2017;

Mihaylov et al., 2018; Xie et al., 2020) and the remaining articles

Sharp et al. (2017) and Lakhotia et al. (2021) each propose a new

MRC framework.

The first article, published in 2018, presented a new question-

answering dataset based on the open book exam environment

for elementary-level science—OpenBookQA (Mihaylov et al.,

2018). This dataset consists of two components—(i) Questions

(Q): a set of 5,958 multiple choice questions and (ii) Facts

(F): a set of 1,326 diverse facts about elementary level science.

This dataset was further tested for evaluating the performance

of existing QA systems and then compared with the human

performance. The results indicated that human performance

was close to 92%, but many existing QA systems showed poor

performance close to the random guessing baseline of 25%.

Additionally, the authors found that simple neural networks

achieved an accuracy of about 50%, but it is still not close to

the human performance, about 92%. Recently an extension of

the WorldTree project (Jansen, 2018), i.e., WorldTree V2 (Xie

et al., 2020), is presented. The main goal of this project is to

generate a science domain explanation with a supporting semi-

structured knowledge base. The WorldTree project is a part of
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FIGURE 3

Total collected papers per year.

TABLE 4 Selected Machine Reading Comprehension papers.

References Name Year Explanation Models XAI Metric Dataset Code

Sharp et al. (2017) - 2017 Extractive TF-IDF, FFNN - AI2 science, Aristo Mini -

Ling et al. (2017) - 2017 Extractive LSTM, Seq2Seq - AQuA X

Mihaylov et al. (2018) OpenBookQA 2018 Abstractive BiLSTMMax-out - OpenBookQA, X

Xie et al. (2020) WorldTree V2 2018 Abstractive TF-IDF, BERT - WorldTree V2 X

Lakhotia et al. (2021) FiD-Ex 2021 Extractive T5, BERT-to-BERT - Natural Questions -

explainable question answering tasks that provide answers to

natural language questions and their human-readable explanations

for why the answers are correct. Xie et al. (2020) notes

that most multi-hop inference models could not demonstrate

combining more than two or three facts to perform inference.

However, here the authors merge, on average, six facts from

a semi-structured knowledge base of 9216 facts. Thus, this

resulted in the WorldTree V2 corpus for standardized science

questions. This corpus consists of 5100 detailed explanations to

support training and instrumenting multi-hop inference question

answering systems.

Lakhotia et al. (2021) demonstrates a new MRC framework

called FiD-Ex (Extractive Fusion-in-Decoder). It has been noted

that seq2seq (Sequence to Sequence) models work well at

generating explanations and predictions together. However,

these models require a large-labeled dataset for training and

bring a host of challenges such as fabricating explanations for

incorrect predictions, the difficulty of adapting to long input

documents, etc. Thus, to tackle these challenges, the Fid-Ex

framework includes sentence markers to encourage extractive

explanations and intermediate fine-tuning for improving few-

shot performance on open-domain QA datasets. This new

framework is tested on ERASER (Evaluating Rationales And

Simple English Reasoning) datasets and their benchmarks for

evaluations (DeYoung et al., 2020). This experiment concludes

that FiD-Ex significantly improves upon prior work on the

explanation metrics and task accuracy on supervised and

few-shot settings.

Sharp et al. (2017) proposes a new neural network architecture

that re-ranks answer justifications as an intermediate step in

answer selection. This new approach alternates between a max

pooling layer and a shallow neural network (with ten nodes, glorot

uniform initializations, tanh activation, and L2 regularization of

0.1) for providing a justification. This approach contains three

components: 1) retrieval component, which retrieves a pool

of candidates’ answer justification, 2) extractor, which extracts

the features and 3) scores, which perform the scoring of the

answer candidate based on the pool of justifications. The authors

used 8th-grade science questions provided by Allen Institute

for Artificial Intelligence (AI2) for evaluations. The training set

includes 2,500 questions with four options, and the test set consists

of 800 publicly released questions. Further, a pool of candidate

justifications corpora containing 700k sentences from StudyStack

and 25k sentences from Quizlet is used. The top 50 sentences

were retrieved as a set of candidate justification. For model tuning,

the authors used five-fold cross-validation, and during testing, the

model architecture and hyperparameters were frozen. The authors

compared results using two baselines: IR baseline and IR++.

They concluded that this new approach showed better accuracy

and justification quality while maintaining near state-of-the-art

performance for the answer selection task.

Ling et al. (2017) presented a dataset and an approach that

provides answer rationales, sequences of natural language, and

human-readable mathematical expressions for solving algebraic

word problems. The authors proposed a sequence-to-sequence

model which generates a sequence of instructions and provides
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the rationales after selecting the answer. For this purpose, a two-

layer LSTM (Long Short-Term Memory) with a hidden size of

200 and word embedding with a size of 200 is utilized. Further,

the authors also built a dataset containing 100,000 problems in

which each question is decomposed into four parts - two inputs

and two outputs. This new dataset is used for generating rationales

for math problems and for understanding the quality of rationales

as well as the ability to obtain a correct answer. Further, the

authors used an attention-based sequence to sequence model as

a baseline and compared results based on average sentence level

perplexity and BLEU-4 (Bilingual Evaluation Understudy). The

authors noted that this new approach could outperform the existing

neural models in the ability to solve problems and the fluency of the

generated rationales.

4.2. Commonsense reasoning

Commonsense knowledge helps humans navigate everyday

situations. Similarly, commonsense reasoning in NLP is the ability

for a model to go beyond pattern recognition and use world

knowledge to make inferences (Apperly, 2011; Sap et al., 2020).

As shown in Table 5 on commonsense reasoning, we found four

articles, and all of them provide unique solutions that contribute to

the development of commonsense reasoning frameworks.

Sap et al. (2020) demonstrates a solution for commonsense

reasoning using LSTM encoder and decoder. The main goal was to

convert the actions of an autonomous agent into natural language

using neural machine translation. For this purpose, the authors

built a corpus of thoughts of people as they complete tasks in

the Frogger game which are then stored as states and actions. In

the next step, LSTM encoder and decoder are used to translate

actions as well as states into natural language. Lastly, the authors

used the BLEU score to calculate sentence similarity and assessed

the accuracy for selecting the best rationale. The authors also

conducted a survey to evaluate the rationales based on human

satisfaction. The Frogger experiment is concluded with Encoder-

Decoder framework outperforming the baselines and demonstrates

that the use of game theory approaches for generating rationales is

a promising technique (Chang et al., 2019, 2020; Yu et al., 2019; Li

et al., 2022).

Further, it is noted that deep learning model performance is

poor when used in tasks that require commonsense reasoning

due to limitations with available datasets. To tackle this problem,

Rajani et al. (2019) developed the Commonsense Auto-Generated

Explanations (CAGE) framework for generating explanations for

Commonsense Question Answering (CQA). The authors also

created a new dataset—Common Sense Explanations (CoS-E)—

by collecting human explanations for commonsense reasoning and

highlighting annotations. From this paper, the authors concluded

that CAGE could be effectively used with pre-trained language

models to increase commonsense reasoning performance.

Recently, Majumder et al. (2021) and Tang et al. (2021)

presented novel solutions for commonsense reasoning. Majumder

et al. (2021) focused on the Natural Language Expiations (NLEs),

which are more detailed than Extractive rationales but fall short

in terms of commonsense knowledge. In this solution, the

authors proposed a self-rationalizing framework RExC (Rationales,

Explanations, and Commonsense). RExC first extracts rationales

that act as features for the prediction then expands the extractive

rationales using commonsense resources. In the last step, RExC

selects the best suitable commonsense knowledge for generating

NLEs and a final prediction. The authors tested RExC on five tasks -

three natural language understanding tasks and two vision language

understanding tasks. Overall, the results indicated improvement in

the quality of extractive rationales and NLEs that bridges the gap

between task performance and explainability. On the other hand,

Tang et al. (2021) focused on Visual Commonsense Reasoning

(VCR). They focused on a problem when a question with a

corresponding input image is given to the system, and it attempts

to predict an answer with a rationale statement as the justification.

To explore this, author presented a multi-model approach by

combining Computer Vision (CV) and NLP. Their approach

leverages BERT and ResNet50 (Residual neural network) as the

feature representation layer and BiLSTM (Bidirectional LSTM) and

Attention for the multimodal feature fusion layer. These layers are

then concatenated into an LSTM network for the encoder layer

before passing into the classifier for the prediction layer. This was

tested on the benchmark VCR dataset and it indicated significant

improvements over existing methods and it also provided a more

interpretable intuition into visual commonsense reasoning.

4.3. Natural Language Inference

Natural Language Inference (NLI) task helps with identifying

a natural language hypothesis from a natural language premise

(MacCartney, 2009). For this application, as shown in Table 6, we

found three articles. The first article presents a new dataset—e-SNL

(explanation-augmented Stanford Natural Language Inference)

(Camburu et al., 2018)—and the other two articles discuss

approaches that can improve NLI.

Camburu et al. (2018) extended the Stanford NLI (SNLI)

(Bowman et al., 2015a) dataset by providing human-annotated

explanations for the entailment relations. This new dataset—e-

SNLI—is used in a series of classification experiments involving

LSTM-based networks for understanding its usefulness for

providing human-interpretable full-sentence explanations. The

authors also evaluated these explanations as an additional

training signal for improving sentence representation and transfer

capabilities of out-of-domain NLI datasets. Thus, from these

experiments, the authors conclude that e-SNLI can be used for

various goals mentioned above and also be utilized for improving

models as well as asserting their trust.

Another issue with NLI is the faithfulness of the generated

explanations, tackled by Kumar and Talukdar (2020) andWiegreffe

et al. (2021). Kumar and Talukdar (2020) mentioned that

existing methods do not provide a solution for understanding

correlations of the explanations with the model’s decision-making

and this can affect the faithfulness of the generated explanations.

Considering this problem, the authors proposed and presented a

new framework - NILE (Natural language Inference over Label-

specific Explanations). The NILE framework can generate natural

language explanations for each possible decision and process these
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TABLE 5 Selected commonsense reasoning papers.

References Name Year Explanation Models XAI metric Dataset Code

Ehsan et al. (2018) - 2018 Extractive LSTM, Seq2Seq - - -

Rajani et al. (2019) CAGE 2019 Abstractive GPT, BERT - CoS-E, CommonsenseQA X

Majumder et al. (2021) RExC 2021 Extractive Transformer - ComVE, e-SNLI, COSe, e-SNLI-VE, VCR -

Tang et al. (2021) DMVCR 2021 Extractive LSTM, BERT - VCR X

TABLE 6 Selected Natural Language Inference papers.

References Name Year Explanation Models XAI metric Dataset Code

Camburu et al. (2018) e-SNLI 2018 Abstractive BiLSTM, Seq2Seq - e-SNLI X

Kumar and Talukdar (2020) NILE 2020 Abstractive GPT-2, RoBERTa - e-SNLI X

Wiegreffe et al. (2021) - 2020 Abstractive T5 - CoS-E, SNLI X

explanations to produce a final decision for the classification

problems. To test this approach, the authors used two datasets -

SNLI and e-SNLI - and compared NILE with baseline and other

existing approaches based on explanation accuracy, in-domain

evolution sets (SNLI), and on out-of-domain examples (train

on SNLI and test on MNLI) (Williams et al., 2018). Based on

the first 100 SNLI test samples, the results indicated that NILE

variants are comparable with the ETPA (Explain Then Predict

Attention) baseline, and NILE explanations generalize significantly

better on out-of-domain examples. For out-of-domain examples

(MNLI), results showed that the percentage of correct explanations

in the subset of correct label predictions was significantly better

for all the NILE variants. Thus, the authors concluded that

NILE is an effective approach for accurately providing both

labels and explanations. Further, Kumar and Talukdar (2020) also

focused on the need for faithfulness for denoting the model’s

decision-making process by investigating abstractive rationales.

The author proposed two measurements - robustness equivalence

and feature importance agreement - to investigate the association

of the labels and predicted rationales, which are required for

a faithful explanation. This investigation was performed on

CommonsenseQA (Talmor et al., 2019) and SNLI dataset using T5-

based models (Narang et al., 2020). The results indicated that state-

of-the-art T5-based join models demonstrate desirable properties

and potential for producing faithful abstractive rationales.

4.4. Fact-checking

Fact-checking has become a popular application of NLP in

recent years given its impact on assisting withmisinformation and a

majority of the work has been with claim verification (Vargo et al.,

2018; Gurrapu et al., 2022). Based on a paper published in 2016,

there are 113 active fact-checking groups and 90 of which were

established after 2010 (Graves and Cherubini, 2016). This indicates

the growth of the fact-checking application. Considering the scope

of this literature review, as shown in Table 7, we found four

articles on fact-checking. Two of the studies in this section present

novel datasets, and the remaining two provide new techniques to

improve fact-checking.

In 2017, a large dataset for the fact-checking community called

LIAR (Wang, 2017) was introduced, including POLITIFACT data.

Most works on this data were focused on using the claim and its

speaker-related metadata to classify whether a verdict is true or

false. The evidence—an integral part of any fact-checking process—

was not part of the LIAR and was overlooked. Thus, in Alhindi

et al. (2018) extended the LIAR dataset to LIAR-plus by including

the evidence/justification. The authors treated the justification as a

rationale for supporting and explaining the verdict. Further, they

used Feature-based Machine Learning models (Logistic Regression

and Support Vector Machine) and deep learning models (Bi-

Directional Long Short-term Memory (BiLSTM) and Parallel-

BiLSTM) for binary classification tasks to test the data. The results

demonstrated a significant performance improvement in using

the justification in conjunction with the claims and metadata.

Further, Hanselowski et al. (2019) introduced a new corpus for

training machine learning models for automated fact-checking.

This new corpus is based on different sources (blogs, social media,

news, etc.) and includes two granularity levels—the sources of the

evidence and the stance of the evidence toward the claim—for claim

identification. Authors then used this corpus to perform stance

detection, evidence extraction and claim validation experiments.

In these experiments, a combination of LSTMs, baseline NN, pre-

trained models have been used, and their results are compared

based on precision, recall, and F1 macro. The results indicated that

fact-checking using heterogeneous data is challenging to classify

claims correctly. Further, the author claims that the fact-checking

problem defined by this new corpus is more difficult compared

to other datasets and needs more elaborate approaches to achieve

higher performance.

It has been noted that the fact-checking systems need

appropriate explainability for the verdicts they predict. The

justifications that are human-written can help to support and

provide context for the verdicts, but they are tedious, unscalable,

and expensive to produce (Atanasova et al., 2020). Considering

this issue, Atanasova et al. (2020) proposed that the creation

of the justifications needs to be automated to utilize them in a

large-scale fact-checking system. The authors presented a novel

method that automatically generates the justification from the

claim’s context and jointly models with veracity prediction. Further,
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TABLE 7 Selected fact-checking papers.

References Name Year Explanation Models XAI metric Dataset Code

Alhindi et al. (2018) LIAR-PLUS 2018 Extractive SVM, BiLSTM - LIAR-PLUS X

Hanselowski et al. (2019) - 2019 Extractive BERT - FEVER X

Atanasova et al. (2020) - 2020 Extractive DistilBERT - LIAR-PLUS -

Rana et al. (2022) RERRFACT 2022 Extractive RoBERTa, BioBERT - SCIFACT -

this new method is then tested on the LIAR dataset (Wang,

2017) for generating veracity explanations. The results indicated

that this new method could combine predictions with veracity

explanations, and manual evaluations reflected the improvement

in the coverage and quality of the explanations. Another important

domain in which fact-checking is useful is Science. Researching

and providing substantial evidence to support or refute a scientific

claim is not a straightforward task. It has been seen that scientific

claim verification requires in-depth domain expertise along with

tedious manual labor from experts to evaluate the credibility

of a scientific claim. Considering this problem, Rana et al.

(2022) proposed a new framework called RERRFACT (Reduced

Evidence Retrieval Stage Representation) for classifying scientific

claims by retrieving relevant abstracts and training a rationale-

selection model. RERRFACT includes a two-step stance prediction

that differentiates non-relevant rationales then identifies a claim’s

supporting and refuting rationales. This framework was tested

on the SCI-FACT dataset (Wadden et al., 2020) and performed

competitively against other language model benchmarks on the

dataset leaderboard.

4.5. Sentiment analysis

Sentiment Analysis is a subset of the text classification field

(Minaee et al., 2021). It focuses specifically on the "computational

study of people’s opinions, sentiments, emotions, appraisals, and

attitudes toward entities such as products, services, organizations,

individuals, issues, events, topics and their attributes” (Zhang et al.,

2018). The use of rationales to support sentiment analysis models

in NLP is widely used compared to other NLP tasks. For this task,

as shown in Table 8, we identified five papers in this field.

In 2016, Lei et al. (2016) pioneered rationalization in

sentiment analysis by proposing a problem: “prediction without

justification has limited applicability”. To make NLP outcomes

more transparent, the authors propose an approach to extract input

text which serves as justifications or rationales for a prediction.

These are fragments from the input text which themselves are

sufficient to make the same prediction. Their implementation

approach includes a generator and an encoder architecture. The

generator determines which can be potential candidates for a

rationale from the input text. Those candidates are fed into the

encoder to determine the prediction and the rationales are not

provided during training. They employ an RCNN (Region-based

Convolutional Neural Network) and an LSTM architecture and

when compared with each other the RCNN performed better.

The experiment was conducted on the BeerAdvocate dataset. The

paper’s approach outperforms attention-based baseline models.

They also demonstrate their approach on a Q&A retrieval task

indicating that leveraging rationales for sentiment analysis tasks is

very beneficial.

Similarly, Du et al. (2019) claim that explainability alone is

not sufficient for a DNN (Deep Neural Network) to be viewed

as credible unless the explanations align with established domain

knowledge. In essence, only the correct evidences are to be used by

the networks to justify predictions. In this paper, the authors define

credible DNNs as models that provide explanations consistent with

established knowledge. Their strategy is to use domain knowledge

to improve DNNs credibility. The authors explore a specific type of

domain knowledge called a rationale which are the salient features

of the data. They propose an approach called CREX (Credible

Explanation), which regularizes DNNs to use the appropriate

evidence when making a decision for improved credibility and

generalization capability. During training, instances are coupled

with expert rationales and the DNN model is required to generate

local explanations that conform to the rationales. They demonstrate

it on three types of DNNs (CNN, LSTM, and self-attention model)

and various datasets for testing. Results show that the CREX

approach allows DNNs to look at the correct evidences rather than

the specific bias in training dataset. Interestingly, they point that

incorporating human knowledge does not always improve neural

network performance unless the knowledge is very high quality.

Many papers published in the rationalization field indicate

that a machine learning system learning with human provided

explanations or “rationales” can improve its predictive accuracy

(Zaidan et al., 2007). Strout et al. (2019) claim that this work

hasn’t been connected to the XAI field where machines attempt to

explain their reasoning to humans. The authors attempt to show

in their paper that rationales can improve machine explanations

as evaluated by human judges. Although automated evaluation

works, Strout et al. (2019) believe that since the explanations

are for users, therefore humans should directly evaluate them.

The experiment is done by using the movie reviews dataset and

by having a supervised and an unsupervised CNN model for a

text classification task. They use attention mechanism and treat

the rationales as supervision in one of the CNN models. Results

indicate that a supervised model trained on human rationales

outperforms the unsupervised on predictions. The unsupervised

is the model where the rationales/explanations are learned without

any human annotations.

The selective rationalization mechanism is commonly used

in complex neural networks which consist of two components—

rationale generator and a predictor. This approach has a problem

of model interlocking which arises when the predictor overfits

to the features selected by the generator. To tackle this problem

this paper proposes a new framework A2R which introduces
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TABLE 8 Selected sentiment analysis papers.

References Name Year Explanation Models XAI metric Dataset Code

Lei et al. (2016) - 2016 Extractive LSTM, RCNN - BeerAdvocate, AskUbuntu X

Du et al. (2019) CREX 2019 Extractive CNN, LSTM - BeerAdvocate, MovieReview -

Strout et al. (2019) - 2019 Extractive RA-CNN, AT-CNN - MovieReview -

Yu et al. (2021) A2R 2021 Extractive BiGRU - BeerAdvocate, MovieReview X

Antognini and Faltings (2021) ConRAT 2021 Extractive CNN, BiGRU - AmazonReviews, BeerAdvocate -

a third component for soft attention into the architecture

(Yu et al., 2021). The authors have used BeerAdvocate and

MovieReview for understanding the effectiveness of the framework.

The authors compared results from A2R with the original

rationalization technique RNP (Rationalizing Neural Predictions)

along with 3PLAYER, HARD-KUMA and BERT-RNP. For

implementation authors have used bidirectional Gated Recurrent

Units (GRU) in the generators and the predictors. Furthermore,

they performed two synthetic experiments using BeerAdvocate

dataset by deliberately inducing interlocking dynamics and

then they performed experiments in real-world setting with

BeerAdvocate and MovieReview. From the results they made two

conclusions—(1) A2R showed consistent performance compared

to other baselines on both the experiments, (2) A2R helps to

promote trust and interpretable AI. In the future, the authors would

like to improve A2R framework for generating casually corrected

rationales to overcome the lack of inherent interpretability in the

rationalization models.

Existing methods in rationalization compute an overall

selection of input features without any specificity and this does

not provide a complete explanation to support a prediction.

Antognini and Faltings (2021) introduce ConRAT (Concept-

based RATionalizer), a self-interpretable model which is

inspired by human decision-making where key concepts

are focused using the attention mechanism. The authors

use the BeerReviews dataset to not only predict the review

sentiment but also predict the rationales for key concepts

in the review such as Mouthfeel, Aroma, Appearance, Taste,

and Overall. ConRAT is divided into three subodels, a

Concept Generator which finds the concepts in the review, a

Concept Selector that determines the presence or absence of a

concept, and a Predictor for final review predictions. ConRAT

outperforms state-of-the-art methods while using only the

overall sentiment label. However, Antognini et al. (2021) have

further demonstrated that attention mechanism usage can

contribute to a tradeoff between noisy rationales and a decrease in

prediction accuracy.

4.6. Text classification

Text classification, also commonly known as text

categorization, is the process of assigning labels or tags to

textual data such as sentences, queries, paragraphs, and documents

(Minaee et al., 2021). Classifying text and extracting insights

can lead to a richer understanding of the data but due to their

unstructured nature, it is challenging and tedious. NLP techniques

in text classification enable automatic annotation and labeling of

data to make it easier to obtain those deeper insights of the data.

For this task, as shown in Table 9, we identified four papers in

this sfield.

Traditionally, rationales provide well-defined kinds of data to

nudge the model on why a prediction is the way it is given the

data. Moreover, they require little additional effort for annotators

and yield a better predictive model. When classifying documents,

it is beneficial to obtain sentence-level supervision in addition

to document-level supervision when training new classifications

systems (Zhang et al., 2016). Previous work relied on linear models

such as SVMs (Support Vector Machines), therefore, Zhang et al.

(2016) propose a novel CNN model for text classification that

exploit associated rationales of documents. Their work claims

to be the “first to incorporate rationales into neural models for

text classification”. The authors propose a sentence-level CNN to

estimate the probability that a sentence in a given document can

be a rationale. They demonstrate that their technique outperforms

baselines and CNN variants on five classification datasets. Their

experimentation task uses Movie Reviews and the Risk of Bias

(RoB) datasets. On the movie review dataset, their technique

performs with a 90.43% accuracy with the RA-CNN (Recurrent

Attention Convolutional Neural Network) model and similar

strong results are also indicated on the RoB datasets.

It seems intuitive that more data or information can lead

to better decision-making by the neural networks. Zaidan et al.

(2007) propose a new framework to improve performance for

supervised machine learning by using richer “kinds” of data. Their

approach is called the “annotator rationales” technique and it is to

leverage a training dataset with annotated rationales. The rationales

highlight the evidence supporting the prediction. Zaidan et al.

(2007) test their approach on text categorization tasks, specifically,

sentiment classification of movie reviews and they claim that these

rationales enable the machine to learn why the prediction is the

way it is. Rationales help the model learn the signal from the

noise. ML algorithms face the “credit-assigment problem” which

means that many features in the data (X) could have affected the

predicted result (Y). Rationales provide a “shortcut” to simplifying

this problem since they provide hints on which features of X

were important. Zaidan et al. (2007) used a discriminative SVM

for experimentation and the results indicate that this technique

significantly improves results for the sentiment classification and

they hypothesize that leveraging rationales might be more useful

than providing more training examples.

Recently, rationales have been a popular method in NLP to

provide interpretability in the form of extracted subsets of texts. It

is common to have spurious patterns and co-varying aspects in the
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TABLE 9 Selected text classification papers.

References Name Year Explanation Models XAI Metric Dataset Code

Zaidan et al. (2007) - 2007 Extractive SVM - MovieReview -

Zhang et al. (2016) - 2016 Extractive SVM, RA-CNN - Risk of Bias -

Liu et al. (2019b) GEF 2019 Extractive CNN, LSTM - PCMag Reviews, Skytrax User Reviews X

Plyler et al. (2022) CDA 2021 Extractive RL, RNN - TripAdvisor Reviews, RateBeer X

dataset due to which rationale selectors do not capture the desired

relationship between input text and target labels. Considering

this problem this paper proposes CDA (Counterfactual Data

Augmentation) framework to aid rational models trained with

Maximum Mutual Information (MMI) criteria (Plyler et al., 2022).

CDA consists of transforms—for rational and classifications—

because of their effectiveness over RNNs in NLP. The authors

used TripAdvisor.com and RateBeer datasets for testing CDA with

three baselines - MMI, FDA (Factual Data Augmentation), and

ANT (simple substitution using antonyms). The results of the

rational models were compared using precision and the accuracy

of the classifier is reported based on the development set. From

the results, authors concluded that the models trained using the

CDA framework learn higher quality rationales and it doesn’t need

human intervention. In the future, the authors would like to explore

more on counterfactual predictors and on CDA framework that

could connect with other rationalization strategies. Similarly, Liu

et al. (2019b) proposed a novel Generative Explanation Framework

(GEF) for classification problems that can generate fine-grained

explanations. The motivation behind this explanation framework

is to provide human-readable explanations without ignoring fine-

grained information such as textual explanations for the label. For

understanding the accuracy of explanations, the authors conducted

experiments on two datasets—PCMag and Skytrax User Reviews—

which were processed by the Stanford Tokenizer. Further, the

authors used Encoder-Predictor architecture in which they used

Conditional Variational Autoencoder (CVAR) as a base model

for text explanations and Long Short-Term Memory (LSTM)

for numerical explanations. The experimental results indicated

that after combining base models with GEF the performance

of the base model was enhanced along with improving the

quality of explanations. Further, the authors also used human

evaluation for evaluating the explainability of the generated text

explanations. The authors noted that for 57.62% of the tested items

GEF provided better or equal explanations compared with the

basic model.

4.7. Neural machine translation

With the advent of deep learning, Neural Machine Translation

(NMT) became the successor to traditional translation methods

such as Rule-based or Phrase-Based Statistical Machine Translation

(PBSMT) (Yang et al., 2020). NMT models leverage Deep Neural

Networks architecture to train the model end-to-end to improve

translation quality and only require a fraction of the storage

memory needed by PBSMT models (Sutskever et al., 2014). The

use of explanations to support NMTmodel’s prediction is relatively

new, however, there has been some pioneering work to provide

more explainability. For this task, as shown in Table 10, we

identified two relevant papers in this area.

Quality Estimation (QE) models perform well at analyzing

the overall quality of translated sentences. However, determining

translation errors is still a difficult task such as identifying which

words are incorrect due to the limited amounts available training

data. The authors explore the idea that since QE models depend

on translation errors to predict the quality, using explanations or

rationales extracted from these models can be used to better detect

translation errors (Fomicheva et al., 2021). They propose a novel

semi-supervised technique for word-level QE and demonstrate the

QE task as a new benchmark for evaluating feature attribution

(the interpretability of model explanations to humans). Instead

of natural language explanations, their technique employs various

feature attribution methods such as LIME, Integrated Gradients,

Information Bottleneck, causal, and Attention. It was shown that

explanations are useful and help improve model performance and

provide better explainability.

Deep learning models are black-boxes because they involve

a large number of parameters and complex architectures which

makes them uninterpretable. Considering this problem and to

bring interpretability in deep learning models (Alvarez-Melis and

Jaakkola, 2017) propose a model-agnostic method for providing

explanations. The explanations provided by this method consist of

sets of inputs and output tokens that are causally related in the

black-box model. Further, these causal relations are inferred by

performing perturbations on the inputs from the black-boxmodels,

generating a graph of tokens, and then solving a partitioning

problem to select the most relevant components. To test the

method authors used a symmetric encoder-decoders consisting

of recurrent neural networks with an intermediate variational

layer. This method was tested for three applications - simple

mappings, machine translation, and a dialogue system. For simple

mapping, the authors used the CMU (Carnegie Mellon University)

Dictionary of word pronunciations and evaluated inferred

dependencies by randomly selecting 100 key-value pairs. For

Machine Translation the authors used three black-boxes - Azure’s

Machine Translation system, Neural MY model, and human - for

translating English to German. Finally, for the dialogue system, the

authors used OpenSubtitle. From the results, the authors concluded

that this model-agnostic method can produce reasonable, coherent,

and often insightful expatiations. Additionally in future work, the

authors noted that for Machine Translation and dialogue system

applications potential improvements are needed for questioning

seemingly correct predictions and explaining those that are not.
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TABLE 10 Selected neural machine translation papers.

References Name Year Explanation Models XAI metric Dataset Code

Alvarez-Melis and Jaakkola

(2017)

SOCRAT 2017 Extractive RNN Attention Score WMT14 X

Fomicheva et al. (2021) - 2021 Extractive Transformer LIME, Integrated Gradients MLQE-PE -

TABLE 11 Selected multiple domain papers.

References Name Year Explanation Models XAI metric Dataset Code

Ribeiro et al. (2016) LIME 2016 Extractive SP-LIME, Parzen - Product Reviews X

Lakhotia et al. (2021) ERASER 2020 Extractive LSTM, BERT-to-BERT Sufficiency Movie Reviews, e-SNLI X

Das and Chernova (2020) RGA 2020 Extractive Utility Function - Stockfish -

Sharma et al. (2020) EPITOME 2020 Extractive RoBERTa, Attention - Redddit, TalkLife X

Chan et al. (2021) UNIREX 2021 Extractive BigBird-Base Comprehensiveness SST, Movie Reviews, CoS-E -

Zhang et al. (2021) ExPred 2021 Extractive MLP, GRU, BERT - FEVER, Movie Reviews X

4.8. Multiple domains

To demonstrate the effectiveness and generalizability of

rationalization,many papers have attempted to demonstrate the use

of rationales in multiple NLP tasks (DeYoung et al., 2020; Sharma

et al., 2020) or in conjunction with other disciplines such as Sharma

et al. (2020). In this section, as shown in Table 11, we present six

papers with work in more than one NLP task or if the work was in

another discipline but leveraged rationalization.

Currently in NLP many state-of-the-art tasks use deep neural

networks and DeYoung et al. (2020) claim they are opaque in

terms of their interpretability, or the way they make predictions.

Lots of work has been conducted in this area, however, there is

no standardization. The work has been with different datasets,

NLP techniques and tasks which all have different aims and

success metrics and this creates a challenge in this field of

research in terms of tracking progress. To mitigate this, the

authors propose a new benchmark called Evaluating Rationales

And Simple English Reasoning (ERASER). There are multiple

datasets (seven total) for various NLP tasks included in the

benchmark. Datasets include human annotations of rationales

which are the supporting evidence for a task’s prediction. This

is an extractive rationalization technique. For example, ERASER

includes the Movie Reviews dataset for sentiment classification and

each review has a rationale or an annotated sentence that supports

the prediction for that review. In addition, metrics are also provided

as a baseline benchmark to evaluate the extract rationales quality.

The authors believe that this benchmark will facilitate in creating

better interpretable NLP architectures.

It is important to understand the reasons behind the

predictions for assessing trust which is important for making

decision or deploying a new model. Considering this problem,

Ribeiro et al. (2016) have proposed a novel model-agnostic

approach LIME for providing explanations from any classifier

about a local prediction and SP-LIME for providing global

view of the model. For understanding the effectiveness of these

methods simulated user experiment and evaluations with human

subjects are performed. In the simulated user experiment two

sentiment analysis datasets (books and DVDs) were used and

different classifiers such as - decision trees, logistic regression (L2

regularization), nearest neighbors, and SVM with RBF (Radial

Basis Function) kernel were also used. To explain individual

predictions authors compared LIME with parzen, greedy and

random procedures. Further, evaluation with human subjects is

performed using Amazon Mechanical Turk to estimate the real-

world performance by creating a new religion dataset. Based on the

results the authors concluded that LIME explanations are faithful

to the models and helps in assessing trust in individual predictions.

Further, SP-selected LIME explanations are good indicators of

generalization which is validated via evaluations with human

subjects. In future authors would like to explore how to perform a

pick step for images and would like to explore different applications

in speech, video, and medical domains. Additionally, they also

would like to explore theoretical properties and computational

optimizations for providing accurate, real-time explanations which

are needed in any human-in-the-loop systems.

Rational extractions should be faithful, plausible, data-efficient,

and fast with maintaining good performance but existing

rational extractors are ignoring one or more of these aspects.

Considering this challenge (Chan et al., 2021) propose UNIREX

(Unified Learning Framework for Rationale Extraction) an end-

to-end rational extractor that accounts for all these mentioned

aspects. For understating UNIREX’s effectiveness three text

classification detests—SST (Stanford Sentiment Treebank), CoS-E

(Commonsense Explanations), Movies—were used and compared

with several baselines such as Vanilla, SGT (Sequence Graph

Transform), SGT+P, FRESH etc. The authors used BigBird-base

model in all their experiments which was pre-trained from the

Hugging Face Transformers library. For training the authors used a

learning rate of 2e-5 and batch size of 32 with maximum 10 epochs.

For evaluating faithfulness, the authors used comprehensiveness

(Comp) and sufficiency (Suff) for K = [1, 5, 10, 20, 50] which

combined into a single metric Comp-Suff-Difference (CSD). For

plausibility authors measured similarity to gold rationales using

AUPRC (Area Under the Precision-Recall Curve), AP (Average

Precision) and TF1 (Token F1). For data efficiency measurement

how, performance varies with the percentage of train instances with

gold rationale supervision is used. For speed authors compared
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methods via runtime complexity analysis with respect to the

number of LM (Linear Model) forward/backward passes. Finally

for performance standard dataset-specific metrics accuracy (for

SST and CoS-E) and macro-averaged F1 (for Movies) are used.

The results indicated that UNIREX allows effective trade-off

between performance, faithfulness, and plausibility to identify

better rationale extractions. Further, authors alsomentionUNIREX

trained rationale extractors can generalize to unseen datasets

and tasks.

With many ML systems demonstrating performance beyond

that of human across many applications, the field of XAI is

advancing techniques to improve transparency and interpretability.

Das and Chernova (2020) explores XAI in the context of a

question previously unexplored in ML and XAI communities:

“Given a computational system whose performance exceeds that

of its human user, can explainable AI capabilities be leveraged to

improve the performance of the human?”. The authors investigate

this question through the game of Chess where computational

game engines performance surpass the average player. They present

an automated technique for generating rationales for utility-

based computational methods called the Rationale-Generating

Algorithm. They evaluate this with a user study against two

baselines and their findings show that the machine generated

rationales can lead to significant improvement in human task

performance. They demonstrate that rationales can not only be

used to explain the system’s actions but also instruct the user to

improve their performance.

Sharma et al. (2020) explores an application of rationalization

in the mental health support field and understanding empathy.

Empathy is important for mental health support and with

the rise of text-based internet platforms, it becomes crucial

to understanding empathy in only communication. The paper

presents a computational approach to understanding empathy by

developing a corpus of 10,000 pairs of posts and responses with

supporting rationales as evidence. They use a multi-task RoBERTa-

based bi-encoder model to identify empathy in conversations and

extract rationales for predictions. Their results demonstrate that

their approach can effectively identify empathic conversations.

To improve interpretability for NLP tasks, recent

rationalization techniques include Explain-then-Predict models.

In this technique, an extractive explanation from the input text

is generated and then a prediction is generated. However, these

models do not use the rationales appropriately and consider the

task input as simply a signal to learn and extract rationales. Zhang

et al. (2021) propose a novel technique to prevent this problem

with their approach called ExPred where they leverage mult-task

learning on the explanation phase and embed a prediction network

on the extracted explanations to improve task performance. They

experiment with three datasets [Movie Reviews, FEVER (Fact

Extraction and VERification), MultiRC] and conclude that their

model significantly outperforms existing methods.

5. Extractive and abstractive methods

This section compares extractive and abstractive rationalization

techniques. It can be observed from Figure 4 that there is

more interest and focus on extractive rationalization techniques

compared to abstractive. There are multiple reasons for this, and

the progress in the Automatic Text Summarization (ATS) domain

can help explain.

5.1. Extractive

In most extractive rationalization approaches, generating a

rationale is similar to text summarization. These rationales contain

the salient features of the input text, which users need to understand

as the most influenced features of the model’s prediction.

Next, two steps are implemented while performing the task—(i)

irrelevant information is ignored, and (ii) most crucial information

is selected based on a scoring algorithm. This approach is a

common foundation of summarization techniques. In extractive

summarization, meaningful sentences are extracted to form a

summary of the original text while still retaining the overall

subject matter (El-Kassas et al., 2021). The critical difference

with rationalization is that it is able to justify a neural network’s

prediction with evidence. In a way, extractive rationalization uses

extractive summarization’s fundamentals and takes it further. It

frames the task as can we rationalize the output prediction where

rationalize means to understand the prediction process and reason

with supporting evidence. This introduces an interdependent

relationship between the rationale and the prediction. This process

is close to how humans rationalize with a sequence of reasons to

justify a decision. This can be implemented in the NLP process to

make models more explainable.

As interest in ATS systems grew in the past few decades,

researchers have mainly focused on extractive summarization

due to its simplicity, and reliability (El-Kassas et al., 2021).

The abstractive summarization needed reliable natural language

generation; thus, it was in its infancy from the 2000s to the

early 2010s. Therefore, an increasing body of knowledge on

extractive techniques is available, which researchers interested

in rationalization could leverage and build on. This intuition

behind extractive summarization paves the way for extractive

rationalization. The stark difference between extractive and

abstractive in Figure 3 is expected and reasonable, and the fields of

summarization and rationalization follow similar paths. However,

summarization approaches should purely be used for inspiration

- following the identical methods for rationalization would be

insufficient, and it does not provide reliable model explainability.

Chan et al. (2021) notes that for appropriate explainability, the

desiderata for the rationale is that—(i) it must reflect the model’s

reasoning process (faithfulness), (ii) be convincing to the nonexpert

(plausibility), and (iii) the rationale extraction should not hurt task

performance. Thus, there is more work than simply extracting

sentences as rationales. Moreover, extractive rationalization is

insufficient because extracted sentences themselves are insufficient

to provide full explainability. Humans do not fully understand

without context and a coherent and logical explanation.

5.2. Abstractive

The extensive research in extractive summarization reached

its maturity, has peaked in terms of performance, and now the

progress is stagnated (Gupta and Gupta, 2019). Recent advances
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FIGURE 4

Total paper count for extractive and abstractive methods.

in deep learning and the advent of the Transformer architecture

in 2017 have led to more reliable and influential language

models (Vaswani et al., 2017; Devlin et al., 2019). In 2019,

Liu and Lapata (2019) demonstrated a BERT-based abstractive

summarization model that outperforms most non-Transformer-

based models. Their model achieved state-of-the-art (SOTA)

in automatic and human-based evaluations for summarization.

Abstractive techniques allowed novel words and phrases to be

generated instead of extracting spans from the input. Due to these

advances, the research focuses gradually shifted from extractive to

abstractive summarization. It is expected that rationalization will

follow a similar trend.

Abstractive rationalization is still relatively new, with limited

research available. However, there have been promising and

pioneering approaches such as Rajani et al. (2019) and Kumar

and Talukdar (2020). Almost every paper discussed with an

abstractive rationalization technique in Section 4 leveraged some

implementation of the Transformer architecture, such as BERT,

GPT-2 (Radford et al., 2019), and T5, amongst others. BERT

was the most frequently used language model. When BERT was

released in 2018, it achieved SOTA results on many NLP tasks and

surpassed human performance on tasks such as question answering

and commonsense reasoning (Devlin et al., 2019). It made a giant

leap in terms of performance compared to other language models

of its time. This led to wide adoption and variations of BERT

for the tasks where the Transformer-based model was required.

Recently introduced models such as BART (Lewis et al., 2020),

GPT-3 (Brown et al., 2020), and T5 demonstrate promising results

and surpass BERT in some tasks. This is due to language models

growing exponentially, and they continue to improve and perform

incredibly well at natural language generation (Sanh et al., 2019).

For example, in some cases, text produced by GPT-3 is almost

on par if not better, than human-written text. This enables more

opportunities for research in abstractive rationalization, which is

needed. By leveraging SOTA language models, explanations can

become more comprehensive and convincing when illustrating a

model’s decision-making process. As mentioned in Section 2, it is

almost as if the models are “talking for themselves”. We believe

that significant progress can be made in rationalization by focusing

more on improving abstractive techniques.

6. Discussions

In this section, we discuss insights from the literature reviewed,

challenges, and potential future directions to propel progress on

rationalization. Most importantly, we introduce a new XAI subfield

called Rational AI.

6.1. Introducing Rational AI

In Section 1, we have seen the need for explainability and

the available methods in NLP. The numerical methods, such as

SHAP values (Lundberg and Lee, 2017b) or Attention scores,

visualization methods, such as LIME (Ribeiro et al., 2016), and

saliency heatmaps, all require specialized domain knowledge to

understand. At the same time, with increasing interactions with

NLP-based systems, the nonexpert also deserves to know and

understand how these black-box systems work because it has some

degree of influence on their lives. This is formally called the right to

an explanation, a right to receive an explanation for an algorithm’s

output (Miller, 2019b). A classic example is a bank system with

an NLP model that automatically denies a loan application. In

this situation, providing the loan applicant with SHAP values

or saliency heatmaps to justify the bank’s algorithms is not very

meaningful. Thus, explainability methods are truly explainable and

helpful if the nonexpert can understand them (Mittelstadt et al.,

2019). We introduce Rational AI (RAI) as a potential solution.

6.1.1. Rational AI
Rationalization techniques come the closest to this goal because

they are built on natural language explanations (NLEs). NLEs
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FIGURE 5

Conceptual representation of Rational AI.

are intuitive and human comprehensible because they are simply

descriptive text. The textual information can be easily understood

and translated into other languages if needed. Across all of the NLP

tasks discussed in Section 4, we have seen the benefits of NLEs and

the accessibility it provides to the nonexpert. We believe there is

a critical need to focus on explainability techniques with NLEs.

Considering these factors, we propose a new subfield in Explainable

AI called Rational AI as shown in Figure 5. We define Rational AI

as follows.

Rational AI: A field of methods that enable a black-box

system to rationalize and produce a natural language explanation

(rationale) to justify its output.

Rationality is the process of applying RAI to make models more

explainable through an NLE. This is similar to the relationship

between explainability and XAI. Further, rationality should not

be confused or used interchangeably with the general AI term

of a rational agent Russell and Norvig (2002). These are distinct

topics with similar names. In this survey, RAI and rationality are

purely considered in the context of model explainability. We also

have not seen any usage or previous definitions of RAI within

this context.

We compare rationality to the other fields shown in Figure 5.

Models with interpretability are interpretable, while those with

explainability are interpretable and complete, as described in

Section 1. Models with rationality are interpretable and complete

and can rationalize their behavior through an NLE.

The explainability methods described earlier in this subsection

explain, but they do not justify in a way that is accessible

and comprehensible to the nonexpert. In recent years, language

models have become powerful and incredibly good at language

generation tasks, but we have yet to see their full potential. As they

continue to grow exponentially, we predict this is the beginning of

explainability techniques using NLEs. The intuition behind RAI is

that rationalization is one such technique, and many are yet to be

developed. This calls for a more organized field to improve research

focus and the need for RAI to exist.

6.1.2. Generalizing RAI
Although RAI arises from the need for better explainability

for NLP tasks, it is potentially applicable in general AI and other

fields in AI. Other fields, such as Computer Vision, Speech, and

Robotics, could leverage rationalization methods to improve their

model explainability. For example, rationalization in Computer

Vision can help explain through an NLE which visual features

contributed the most to an image classifier prediction in place of

complex explainable techniques (Sundararajan et al., 2017; Tjoa and

Guan, 2021). Many promising opportunities exist for researchers to

apply rationalization in other disciplines.

6.2. Challenges

We have seen that rationalization is a relatively new technique,

and with it, various challenges exist. In this subsection, we share

challenges and potential solutions to improve the current state.

6.2.1. Statistical evaluations
No standard statistical evaluations exist currently for

rationalization. There is a wide variety of metrics that are in use,

such as Mean Squared Error (Lei et al., 2016), Accuracy (Zaidan

et al., 2007; Du et al., 2019; Rajani et al., 2019), F1 Score (Alhindi

et al., 2018; Rana et al., 2022), ANOVA (Analysis of variance) (Das

and Chernova, 2020), and Precision (Plyler et al., 2022). We have

observed that the most preferred statistical metric is accuracy. It is

reasonable for evaluation metrics to be task-dependent and focused

on the prediction. However, those alone are insufficient because the

accuracy of the NLE also needs to be considered. For example, if

the task prediction had high accuracy, but the NLE was unclear and

incomprehensible, then it is not helpful. Metrics such as the BLEU

(BiLingual Evaluation Understudy) score by Papineni et al. (2002)

and the ROUGE-N (Recall-Oriented Understudy for Gisting

Evaluation) score by Lin (2004) exist for evaluating open-ended

machine-generated texts. However, we have seen limited use in

the literature review, such as Camburu et al. (2018). The scores

work by comparing the generated text with a set of ground-truth

reference texts, and often these are human-written references.

These scores are helpful, especially for abstractive rationalization,

where explanations can be open-ended; however, they come with

limitations since the evaluation is effectively token-level matching.

Since an NLE is the typical outcome of systems with rationalization,

adopting a standard evaluation metric can help improve research

progress. Consistent evaluations also make it easier to compare

different experiments and approaches.

6.2.2. Data
The availability and the need for more diversity of appropriate

datasets is also a problem hindering progress.

Availability: Data collection is an expensive and time-

consuming task. It is possible to repurpose existing datasets, but

modifying them requires manual human labor. Thus, researchers

often build their datasets for a specific task they are working on.

Camburu et al. (2018) developed the e-SNLI dataset by modifying

the SNLI dataset from Bowman et al. (2015b). Camburu et al.
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TABLE 12 Human-Centered Evaluations (HCE) are performed in 15 out of 33 papers surveyed in this review.

Year References Method name Venue NLP domain HCE performed?

2007 Zaidan et al. (2007) - NAACL Text Classification No

2016 Ribeiro et al. (2016) LIME NAACL Multiple Domain Yes

2016 Lei et al. (2016) - EMNLP Sentiment Analysis No

2016 Zhang et al. (2016) - EMNLP Text Classification No

2017 Sharp et al. (2017) - CoNLL Machine Reading Comprehension No

2017 Ling et al. (2017) - ACL Machine Reading Comprehension No

2017 Alvarez-Melis and Jaakkola (2017) SOCRAT EMNLP Neural Machine Translation Yes

2018 Ehsan et al. (2018) - AIES Commonsense Reasoning Yes

2018 Alhindi et al. (2018) LIAR-PLUS FEVER Fact-Checking No

2018 Mihaylov et al. (2018) OpenBookQA EMNLP Machine Reading Comprehension Yes

2018 Xie et al. (2020) WorldTree V2 LREC Machine Reading Comprehension Yes

2018 Camburu et al. (2018) e-SNLI NeurlPS Natural Language Inference No

2019 Rajani et al. (2019) CAGE ACL Commonsense Reasoning Yes

2019 Hanselowski et al. (2019) - CoNLL Fact-Checking No

2019 Du et al. (2019) CREX ICDM Sentiment Analysis No

2019 Strout et al. (2019) - BlackboxNLP Sentiment Analysis Yes

2019 Liu et al. (2019b) GEF ACL Text Classification Yes

2020 Atanasova et al. (2020) - ACL Fact-Checking Yes

2020 Lakhotia et al. (2021) ERASER ACL Multiple Domain Yes

2020 Das and Chernova (2020) RGA IUI Multiple Domain Yes

2020 Sharma et al. (2020) EPITOME EMNLP Multiple Domain No

2020 Kumar and Talukdar (2020) NILE ACL Natural Language Inference Yes

2020 Wiegreffe et al. (2021) - EMNLP Natural Language Inference No

2021 Majumder et al. (2021) RExC ICLR Commonsense Reasoning Yes

2021 Tang et al. (2021) DMVCR DaWaK Commonsense Reasoning No

2021 Tang et al. (2021) FiD-Ex EMNLP Machine Reading Comprehension No

2021 Chan et al. (2021) UNIREX ICML Multiple Domain No

2021 Zhang et al. (2021) EXPred WSDM Multiple Domain No

2021 Fomicheva et al. (2021) - ACL Neural Machine Translation No

2021 Yu et al. (2021) A2R NeurlPS Sentiment Analysis Yes

2021 Antognini and Faltings (2021) ConRAT ACL Sentiment Analysis Yes

2021 Plyler et al. (2022) CDA NeurlPS Text Classification No

2022 Atanasova et al. (2020) RERRFACT AAAI Fact-Checking No

(2018) achieved promising results on their task, demonstrating how

their dataset can enable a wide range of new research directions by

altering and repurposing existing datasets.

Diversity: Without enough datasets, new research in

rationalization will be limited. Researchers will be constrained

to the existing datasets to make new progress. This trend is

evident in the literature reviewed in MRC and Sentiment Analysis

compared to NMT. In MRC, the datasets are very diverse. In

sentiment analysis, most papers rely on either the BeerAdvocate

(McAuley et al., 2012) or MovieReviews (Maas et al., 2011) datasets

to perform their experiments. In both domains, we discovered

five publications each. For a domain such as NMT, progress

seems limited, and we found only two publications. The lack of

appropriate rationalization datasets for NMT tasks is a possible

reason for this.

As we observed in our literature review, there is a direct

relationship between dataset availability and the progress made.

More work in creating new datasets for rationalization can help

improve diversity and the progress of certain domains lagging

behind, such as NMT. New datasets across all domains, in general,
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FIGURE 6

Integration of HCE to enable NLP assurance.

will increase the interest and work in rationalization because

researchers will have more flexibility in designing new techniques

and experimenting with a wide variety of data. Stamper et al. (2010)

has organized the largest repository of learning science datasets

called DataShop, and it led to improvements in research progress.

Similarly, an organized central repository for rationalization

supporting datasets can be beneficial. Without a centralized

model evaluation and development system, reproducibility and

accessibility will remain low.

6.3. Human-centered evaluations and
assurance

NLP has direct applications in many disciplines. For example,

MRC and commonsense reasoning are helpful in the education

discipline. Our literature review indicates using Q&A tools and

commonsense injection to generate explanations for educational

needs (Mihaylov et al., 2018; Li et al., 2019). Further, NLP has

also been used to enhance human task performance, as we saw

in Das and Chernova (2020), and to provide support for mental

health (Sharma et al., 2020). Additionally, fact-checking is another

application, and it is crucial in social media, fake news detection,

and law (Alhindi et al., 2018). It has become common to interact

with these systems, and they may have a significant influence

on all aspects of our society. Due to this, the European Union

recently passed a regulation that requires algorithms to provide

explanations that can significantly affect users based on their user-

level predictions (Doshi-Velez and Kim, 2017).

6.3.1. Human-centered evaluations (HCE)
The explanations provided by the NLP systems must provide

enough information to the user to help them understand its

decision-making process (Putnam and Conati, 2019). Considering

these aspects, the human-machine partnership is essential for

evaluating and generating accurate explanations. This calls for

better methods to evaluate the explanations generated. The field

of HCE addresses this problem, and Sperrle et al. (2021) defines

it as a “field of research that considers humans and machines as

equally important actors in the design, training, and evaluation of

co-adaptive machine learning scenarios.”

In this literature survey, we found 15 out of 33 papers in

which HCE is performed, and a summary is provided in Table 12.

Sperrle et al. (2021) shares the increasing trend of HCE since 2017

compared to the previous years. While conducting this literature

survey, this trend was not observed in the rationalization domain.

Overall, we found that HEC is incorporated in most of the papers

on Machine Reading Comprehension (2 out of 5), Commonsense

Reasoning (3 out of 4), Fact-Checking (1 out of 4), Natural

Language Inference (2 out of 5), Neural Machine Translation (1

out of 2), Sentiment Analysis (3 out of 5) and Multiple Domain

(3 out 6). From our observations, researchers give more attention

to performance while evaluating AI algorithms and ignore human

factors such as usability, user intentions, and user experience. Thus,

along with the accuracy of AI algorithms, it is also essential to focus

on the interpretability and reliability of the explanations generated

by AI algorithms. The articles in which HCE is used are primarily

performed via crowdsourcing using AmazonMechanical Turk, and

the focus is on user-based evaluations or annotations. This pattern

necessitates conducting expert evaluations to understand users’

needs better because it can help improve trust in AI algorithms.

HCE is a subset of the Human-Computer Interaction (HCI)

field, which is integrated with the AI paradigm after the algorithmic

performance evaluations as shown in Figure 6. This integration

can be regarded as human-centered AI, and Riedl (2019) claims

this as an AI/ML perspective that intelligent systems are part of

a more extensive system that also includes human stakeholders.

The literature (Hwang and Salvendy, 2010) on usability, and user

experience testing demonstrated three widely used methods to

perform HCE - Think Aloud (TA), Heuristic Evaluation (HE),

and Cognitive Walkthrough (CW). The TA method is a standard

method and can be more effective considering the evaluations of

explanations in the NLP domain. In the TA method, evaluators are

asked to "think aloud" about their experience while an experimenter

observes them and listens to their thoughts (Fox, 2015). This

way, an HCE method can be used in the final step to understand

usability, user intentions, and user experience. This may lead to

a better understanding of the interpretability and reliability of the
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explanations generated by rationalization. Therefore, in addition to

statistical evaluation techniques, we strongly encourage researchers

to integrate HCE as part of their evaluations.

6.3.2. Assurance
It is critical to perform rigorous testing and validation of NLP

systems at all stages before their deployment. For example, it should

be ensured that the data is unbiased, models are interpretable, and

the process of arriving at the outcome is explainable to a nonexpert.

In the last step of this process, it would be beneficial to use

RAI techniques. Integrating rationalization with human-centered

evaluations and elements of NLP Assurance can invoke human-AI

trust and safety with the systems - with the recent rise of chatbots

such as ChatGPT, the need for more rigorous validation is more

important than any other time. This process may also transform

black-box systems into white-box systems and make NLP models

more comprehensible and accessible for nonexpert users.
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