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Introduction: Load Redistribution (LR) attacks, as a common form of false data
injection attack, have emerged as a significant cybersecurity threat to power
system operations by manipulating load buses’ measurements at substations.
Existing LR attack methods typically assume that any substation can be equally
attacked, contributing to the analysis of LR attacks in power systems. However, the
diversity of cyber vulnerabilities in substation communication links implies varying
costs associated with falsifying load buses’ measurements. Thus, quantitatively
evaluating these costs and analyzing the impact of LR attacks on power systems
within cost constraints holds practical significance.

Methods: In this paper, we employ a Bayesian attack graph model to characterize
the intrusion process through cyber vulnerabilities. The costs of falsifying load
buses’ measurements at substations are quantitatively evaluated using the mean
time-to-compromise model. Subsequently, from the attacker’s perspective, we
propose a bi-level optimization model for LR attacks, considering the mean time
to compromise in conjunction with limited attack resources and power flow
constraints.

Results: Simulations conducted on the IEEE 14-bus system illustrate the influence
of cyber vulnerabilities on LR attackswithin power systems. Furthermore, we verify
that the attack scenario of the existing LR attack model aligns with a case of the
proposed bi-level LR attack model when there is sufficient attack time to
compromise all communication links.

Discussion: The findings of this research demonstrate that the impact of cyber
vulnerabilities on LR attacks can be quantified by assessing the attack costs.
Effective management of LR attacks can be achieved under cost constraints
through optimization methods. These insights contribute to enhancing
network security strategies for power systems, mitigating potential threats
posed by LR attacks in power system operations.
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1 Introduction

The cyber-physical power system has become the main feature
of modern power systems and attracts countries to compete to
develop such a power system (Pliatsios et al., 2020; Liu et al., 2022).
The cyber system brings flexibility to the operation of power grids.
However, the complex cyber-enabled technologies and
communication networks will profoundly impact the physical
process of power systems, bringing more cyber security problems
to the power system (Xiang et al., 2016; Zhang and Yang, 2022).

In recent years, the militarization of global cyberspace has
accelerated, and cyberattacks targeting critical core infrastructure
have developed into real threats. Many information technologies
were deployed in the power system to defend against cyberattacks.
The state estimation has been widely used by energy management
systems (EMSs) to filter the measurement noise and detect gross
errors. Information encryption technology, network address
locking, and modifying defense equipment are used to enhance
the security of the power system. However, intruders can still launch
various malicious attacks to compromise the power data integrity by
exploiting the vulnerabilities and social engineering access to a target
network authority. Attackers can mislead the operator to conduct
uneconomical power system operations, obtain economic benefits,
and even disrupt the stability of the power system (Yuan et al., 2011;
Tan et al., 2016; Zhang and Yang, 2022).

Cyberattacks on power systems can be divided into man-in-the-
middle (MITM) attacks, replay attacks, and false data injection
(FDI) attacks (Deng et al., 2016). Among them, the FDI attack refers
to injecting falsified measurements, inducing uneconomic, non-
optimal, or even harmful decisions on power dispatch based on
security-constrained economic dispatch (SCED). Load
redistribution (LR) attacks are typical FDI attacks, which mislead
operators by injecting falsified load values (Liang et al., 2016).

In the LR attack model, extensive attention has been paid to
constructing a representative attack vector and investigating the
system response (Yuan et al., 2011; Liu et al., 2015; Gao et al., 2022).
LR attack against state estimation was first proposed by Liu et al.
((2011), which is a coordinated cyberattack against state estimation.
In the work of Liu and Li (2014) and Liu and Li (2016), the concept
of an attack zone is introduced, and the regional LR attack model is
proposed. In the work of Gao et al. (2022), an LR attack model was
built based on pre- and post-dispatch, which can lead the system to
an uneconomic and insecure operating state. In the work of Liu et al.
(2016), a simple approach was used to determine an effective attack
vector to change the load data sent to the control center.

The abovementioned works contributed to analyzing the impact
of LR attacks in power systems, given that load buses’measurements
of substations are equally attackable. However, cyber vulnerabilities
in communication links of substations are diverse, and therefore, the
feasibility of injecting falsified measurements of different load buses
has a significant difference, which will affect the impact of LR attacks
on power systems. Hence, assessing LR attacks with cyber
vulnerabilities has become non-negligible work.

In the literature, different vulnerability evaluation models have
been developed to address cyber security issues of power grids. The
Petri net was first proposed by Ten et al. (2008), which can assess the
cyber vulnerabilities in power systems and quantify the potential
harm cyberattacks may cause. In the work of Bahrami et al. (2020),

Petri nets are used to simulate possible intrusion scenarios into
substation networks, and a multi-state Markov model is proposed to
identify the consequences of cyberattacks on protective devices.
However, the abovementioned probabilistic model cannot estimate
the attack time that will impact the result of the LR attack. The mean
time-to-compromise (MTTC) model is a meaningful way to
quantitatively estimate the time intervals of successful attacks on
the target cyber components of the SCADA system (Zhang et al.,
2015). The MTTC model also was applied to assess the reliability of
the wind farm energy management systems (Zhang et al., 2017).

In the paper, the intruding process through cyber vulnerabilities is
modeled, and the costs to intrude communication links between
substations and the control center are quantitatively evaluated. Then,
a bi-level model of LR attack considering cyber vulnerabilities is
proposed. The main works of the paper are as follows:

1) This paper introduces a Bayesian attack graphmodel to simulate the
process of intruding communication links between substations and
the control center through cyber vulnerabilities. Subsequently, the
intruding time is quantitatively assessed through the MTTC model.

2) A bi-level LR attack model is proposed, considering the MTTC,
limited attack resources, and power flow constraints, to identify
the most damaging LR attack. The upper-level constructs an
attack vector to maximize the operation cost of the power system.
The lower-level employs the SCED to model the operator
response after the LR attack.

3) The IEEE 14-bus system is adopted to test the proposed LR attack
model. The MTTC of intruding communication links through
cyber vulnerabilities between the substations and the control
center is quantitatively evaluated. Then, the impact of the LR
attack on operation cost is analyzed with different available
attack resources and time.

4) Results show that cyber vulnerabilities will significantly impact
the LR attack on power systems. Furthermore, it can be found
that the most damaging scenario in the traditional LR attack may
not be achieved due to the limited attacking time unable to
intrude necessary communication links, and the scenario is just a
case in the proposed bi-level LR attack model with the sufficient
attack time to intrude all communication links between the
substations and the control center.

The remainder of this paper is organized as follows. The
evaluation of cyber vulnerabilities is introduced in Section 2. The
LR attack model considering cyber vulnerabilities is given in Section
3, Section 4 presents the quantitative analysis, and Section 5
concludes the paper.

2 Cost evaluation of LR attacks on
communication links through cyber
vulnerabilities

Cyberattacks weaken or destroy the secondary system operation
of power systems. Information is interrupted, delayed, or tampered
with if the secondary system suffers malicious attacks, such as
SCADA, WAMS, and AMI systems (Yang et al., 2022). The
control center may give wrong instructions, and the decision-
making units misoperate or quit the operation (Che et al., 2019).
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The measured power systems states, such as voltage amplitude,
bus load, line state, and transmission line power flow, are
transmitted through communication links between the
substations and the control center. Power system communication
links are easily intercepted and forged (Liang et al., 2016; Li et al.,
2022), and an attacker can inject falsified measurements to mislead
power system operators (Liu et al., 2016). Therefore, cyberattacks
oriented to communication links are more threatening and have
practical significance (Liu et al., 2016; Li et al., 2019).

Figure 1 shows LR attacks in cyber-physical systems. Based on
measurements through communication links, the power system
operator conducts unified scheduling of power generations and
consumers according to security-constrained economic dispatch

(SCED). Although countermeasures are deployed in power
systems, attackers can manipulate measurements by intruding
communication links through cyber vulnerabilities of known and
zero vulnerabilities in the cyber system of power systems. The
manipulated measurements, carefully calculated to avoid being
identified as malicious data, mislead SCED to bring the system
into an insecure and non-optimal operating condition.

2.1 Modeling intruding process on
communication links through cyber
vulnerabilities

Inspired by the work of Sommestad et al. (2009), a three-layer
structure is employed to model the cyber intrusion of communication
links between the targeted substation and the control center, as shown
in Figure 2. The right side consists of power system countermeasures.
The middle and left parts are the sub-goals and the goal of the LR
attack, respectively. Table 1 lists the countermeasures of substations
and sub-goals and goal of the LR attack.

To reach the second layer SGj, for (j ∈ J ), where J is the set of
the LR attack sub-goals, the intruder must first bypass one of the
countermeasures CMi, for CMi ∈ I (SGj), where I (SGj) means the
set of countermeasures related with SGj. When all sub-goals are
satisfied, the intruder can inject manipulated data into
communication links.

Attackers intrude communication links through cyber
vulnerabilities of known and zero vulnerabilities in
countermeasures. Without loss of generality, it is assumed that
the known and zero-day vulnerabilities are randomly distributed
in countermeasures (Zhang et al., 2017). The CVSS scores reflect
countermeasures’ known and zero-day vulnerabilities from 0 to 10.
The details of evaluating CVSS scores can be seen in the work of
Zieger et al. (2018).

FIGURE 1
LR attacks in cyber-physical systems.

FIGURE 2
Bayesian attack graph model of LR attacks on communication
links.
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According to Figure 2, the LR attack probability model can be
obtained by the following equations:

pd CMi( ) �
CVSSi
10

× U 0, 1( ), CMi with Known vulnerability

0.008 × U 0, 1( ), CMi with zero − day vulnerability

⎧⎪⎨⎪⎩ ,

(1)
pd CMi ∧ SGj( ) � pd CMi( ) × pd SGj | CMi( ),∀i ∈ I SGj( ), (2)

pd SGj( ) � ∑pd CMi ∧ SGj( ),∀i ∈ I SGj( ),∀j ∈ J , (3)
pd G( ) � ∏J

j�1pd SGj( ),∀j ∈ J . (4)

Equation (1) represents the probability of exploiting the known
and zero-day vulnerabilities, where CVSSi indicates the bass score
corresponding to known vulnerabilities in CMi and U (0,1) is the
uniform distribution corresponding with three preconditions of
service, connection, and privilege to complete vulnerability
exploitation. Equation (2) represents the probability of achieving
SGj through CMi, for i ∈> (SGj), where pd(SGj|CMi) is the
conditional probability following a uniform distribution U (0.8,
1) of substation d. Equation (3) is the overall probability of
reaching the sub-goal SGj, for j ∈ I . Equation (4) represents the
probability of reaching the goal G of injecting manipulated data. In
order to achieve G, SG1, SG2, and SG3 should be reached.

2.2 Quantitatively evaluating the LR attack
cost of intruding communication links

2.2.1 Compromise time model of vulnerabilities
The compromise time Td, i(vi) is a metric to estimate the mean

time to compromise vulnerabilities in the CMi of the communication
link of the substation at bus d, where vi is the number of known or
zero-day vulnerabilities inCMi. Td, i(vi) can be modeled as a stochastic
process consisting of the following three sub-processes depending on
the nature of the vulnerability and the attacker’s skill level.

Process 1 means at least a known vulnerability on CMi, which can
be exploited to launch an attack. Process 2 means that no vulnerability
can be exploited to launch an attack, though there is at least a known
vulnerability in CMi. Process 3 means that no known vulnerability can
be exploited. Furthermore, new vulnerabilities must be searched for or
developed. The {t1, t2, and t3} and {P1, P2, and P3} are the three sub-
processes’ mean times and probabilities, respectively.

We can see that processes 1 and 2 are mutually exclusive. Process
3 runs continuously and in parallel with processes 1 and 2. For the

calculation feasibility of Td,i, we assume that process 3 only occurs
when processes 1 and 2 are inactive (Lau et al., 2021).

The calculation of Td, i(vi) is as follows:

Td,i vi( ) � ∫1

0
t* vi, s, σ( )*Betaε,θ s( )ds, (5)

subject to

t* � t1P1 + t2P2 + t3P3, (6)
P1 � 1 − e−vi*

m s( )
σ

P2 � 1 − P1( ) 1 − u( )
P3 � 1 − P1 − P2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (7)

t1 � 1

t2 � 5.8E s, vi( )

t3 � 1
f s( ) − 0.5( )30.42 + 5.8,CMi with known vulnerability

t3 � 1
f s( ) − 0.5( )65 + 32,CMi with zero − day vulnerability

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(8)
m s( ) � 83*3.54s/2.7 − 82
f s( ) � 0.145*2.62s+0.07 − 0.1
u � 1 − f s( )( )vi
�f � f s( )*vi

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (9)

E s, vi( ) � E1 s, vi( ) + E2 s, vi( )
E1 s, vi( ) � ξ ⌊�f⌋, vi( )* ⌈�f⌉ − �f( )
E2 s, vi( ) � ξ ⌈�f⌉, vi( )* 1 − ⌈�f⌉ + �f( )
ξ b, vi( ) � b

vi
+ b vi − b( )!

vi!
�ξ

�ξ � ∑vi−b+1
t�2

t vi − t + 1( )!
vi − b − t + 1( )! vi − t + 1( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (10)

where Betaξ, θ(s) is a Beta distribution curve fitting the attacker’s skill
at different levels s, m is the number of exploitable vulnerabilities; s ∈
[0,1] is the skill level factor; E is the number of estimated attack
attempts; u and ξ are auxiliary variables; and ��f� and ��f� represent
the ceiling and floor of �f, respectively.

2.2.2 MTTC assessment considering network
vulnerability

The MTTC is used to estimate the average frequency of
cyberattacks on the components of power systems. It measures

TABLE 1 Countermeasures, sub-goals, and overall goals.

Node label Node usage Node label Node usage

CM1 Message encryption CM7 Remote password

CM2 Medium type SG1 Obtain network connection

CM3 Network address locking SG2 Interpret message structure

CM4 Physical link protection SG3 Generate valid data

CM5 Protocol non-public G Inject manipulated data

CM6 Signature cryptography
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the efforts (represented by time) an attacker spends for a successful
attack in a statistical form. The MTTC of the LR attack aiming at the
communication line can be divided into two parts: the MTTC of SGj

and G, which are modeled as follows:

MTTCd SGj( ) � ∑i∈I SGj( )Td,i CMi( ) · pd CMi ∧ SGj( )
pd SGj( ) , (11)

where Td,i(CMi) is the mean time to compromise of CMi and pd(SGj

∧CMi) is the probability of the intruder reaching SGj by invading
CMi, which can be calculated by (2). pd(SGj) is the overall probability
of SGj, calculated by (3).

According to the “AND” relationship between SGj, the MTTC of
G is denoted as follows:

MTTCd G( ) � ∑J
j�1
MTTCd SGj( ). (12)

The MTTC model quantitatively evaluates the cost of intruding
into communication links of substations through cyber vulnerabilities.
In practice, the intruder inevitably has limited attack time to intrude
into communication links to inject false data. Hence, from the
attacker’s perspective, it is necessary to model the LR attack model
considering the impact of cyber vulnerability.

3 Bi-level model of LR attack
considering cyber vulnerability

From the intruder’s perspective, LR attacks are classified into
immediate and delayed attacking goals. The immediate LR attack
aims to maximize the system’s operating cost. A two-layer model
representing the behavior of the attacker and operator in Figure 3 is
proposed to identify the attack scenario with maximum operating
cost, considering multiple restrictions of cyber vulnerability, attack
resources, and power flow constraints (Liu et al., 2016). The upper
layer represents the attacker, who constructs an attack vector that
maximizes the operation cost of the power system. The result of the
attack vector is delivery to the lower layer. The lower layer represents
the operator, who dispatches the generator output and load
shedding to mitigate the impact of the attack decision.

This paper makes the following assumptions about the
characteristics of attackers and operators, which are reasonable
(Liang et al., 2015):

1) Power system employees may leak power network configuration
due to financial interests and revenge behavior.

2) Load measurements are attackable. In power systems, loads are
constantly changing. The load measurement should not deviate far
from their actual values to prevent attacks from being detected.

3) The measurement of the generator output is not a feasible
attacking variable because the integrity of the generator
output can be easily verified by communication between the
system control center and the power plant.

4) The bus injection measurement of zero-injection buses cannot be
attacked. Zero-injection buses have neither generation nor load
connection, so LR attacks cannot be carried out through such buses.

3.1 The upper-level problem

The upper-level problem is constructed from the attacker’s
perspective, aiming to maximize the generation and load
shedding costs by the injected bus power.

Max
ΔD

∑Ng

g�1
cgP

*
g +∑Nd

d�1
csdS

*
d, (13)

s.t.δt,d � 15T − td ≥ 0∀d, (14)

∑Nd

d�1
ΔDd � 0, (15)

−τDdδt,d ≤ΔDd ≤ τDdδt,d∀d, (16)
ΔDd � 05δD,d � 0∀d, (17)

∑Nd

d�1
δD,d ≤R. (18)

Constraint (14) indicates whether intruders can successfully
invade the communication link, where T is the limited attacking
time of the intruder and td is the value ofMTTCd calculated based on
cyber vulnerabilities in the communication link between the
substation of load bus d and the control center. Constraints

FIGURE 3
Immediate LR attack model considering cyber vulnerability.
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(15)–(16) ensure that falsified load measurements can be injected
successfully. It is necessary to ensure that the sum of bus loads
remains unchanged before and after the attack and that the load
change is within a specific range. The integer variable δt,d binds
constraint condition (16). Constraint (17) models the logical
relationships of the attack vector. In addition, limited by attack
resources, the communication links that an attacker can invade
simultaneously should not exceed the limit, represented by (18).

3.2 Lower-level problem

P*, S*{ } � arg Min P,S ∑
Ng

g�1
cgPg +∑Nd

d�1
csdSd

⎧⎨⎩ ⎫⎬⎭, (19)

s.t.∑Ng

g�1
Pg � ∑Nd

d�1
Dd − Sd( ), (20)

PL � SF · KP · P − SF · KD · D + ΔD − S( ), (21)
−PLl

min ≤PLl ≤PLl
max ∀l, (22)

Pg
min ≤Pg ≤Pg

max ∀g, (23)
0≤ Sd ≤Dd + ΔDd ∀d. (24)

Lower-level model constraints (19)–(24) can represent the
SCED model, which responds according to the decision variables
ΔD determined by the upper-level model. Constraint (20) is the
power balance constraint of the system. Constraint (21) is the line
power flow constraint. Constraints (22)–(24) are the bounds of rated
line capacity, generator output, and load shedding, respectively.

In the upper-level problem, Eqs (14) and (17) can be
transformed into a mixed integer linearized form. For Eq. (14),
we linearize it using the big M method (Yuan et al., 2011; Che et al.,
2019), which is (25). Eq. (17) can be linearized in the same way.

T − td( )/M≤ δt,d ≤ 1 + T − td( )/M
0≤ T − td( )| | + T − td( )≤M · δt,d
0≤ T − td( )| | − T − td( )≤M · 1 − δt,d( )
δt,d ∈ 0, 1{ }

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∀d. (25)

Replacing the lower-level optimization problem with the
Karush–Kuhn–Tucker (KKT) optimal condition can transform
the bi-level model into an equivalent single-level mixed integer
programming model. The resulting single-level MILP problem can
be solved by commercial solvers, such as CPLEX and Gurobi.

4 Quantitative analysis

In order to reflect the impact of the LR attack on the operation
cost of the power system, the system parameters of the IEEE 14-bus
system are modified. PL1−2 max is set to 160MW, and PLmax of other
lines is set to 60 MW. Other configuration data settings are obtained
from MATPOWER 6.0 (Zimmerman and Murillo-Sánchez, 2016).
The cost of the unmet demand load is set as csd = 100 $/MWh.
Generator parameters are shown in Table 2. The fabricated
magnitude ratio of load measurement is limited at τ � 50%.

The IEEE 14-bus system is used to investigate the impact of LR
attacks. The data of substations corresponding with buses are

transmitted to the control center through communication links
between the substations and the control center. Therefore, the
system has 14 communication links, which can be utilized to
inject false data through different cyber vulnerabilities.

Figure 4 shows the power system and LR attack model. On the
left side of the figure is the topology of the IEEE 14-bus system, and
on the right is the attacker’s LR attack process on the corresponding
substation. The proposed LR attack includes five main steps. The
first step is to obtain the measurements of buses. Then, the cost
evaluation of intruding into communication links through cyber
vulnerabilities is implemented. The evaluation flow of
communication links of buses 4, 5, 7, and 8 is taken an example.
Later, considering the costs of intruding communication links, the
proposed LR attack model solves the attack vector, limited by attack
time and resources. Finally, by injecting the solved attack vector, the
misled non-optimal operation instruction of generator output and
load shedding is implemented by power systems through physical
control.

4.1 Cyber vulnerability evaluation of
communication links

Five known vulnerabilities, namely, file transfer protocol (ftp),
denial of service (dos), the anomaly of buffer overflow (bof), cross-
site scripting (xss), and execution code overflow (eco), may exist in
countermeasures of communication links (CVE Database, 2023). Due
to the uncertainties of zero-day vulnerabilities, for demonstration, it is
assumed that no more than five zero-day vulnerabilities may exist in
countermeasures of communication links.

4.1.1 Estimates of Td, i(vi) with different types and
numbers of vulnerabilities

According to Eq. (5), the skill level, s, of the attacker will
influence the compromise time, and s is represented by a Beta
distribution with (?, ?) = (1.5, 2.0). The total number of
vulnerabilities, ?, was fixed to 9,447, which can be updated based
on the available vulnerability database of power system networks
(Zieger et al., 2018). Table 3 shows the Td, i(vi) with 1–5 known and
zero-day vulnerabilities.

It can be seen from Table 3 that the time of exploiting zero-day
vulnerabilities is significantly longer than the time for known
vulnerabilities. With the increase in vulnerabilities, Td, i(vi)
gradually decreases. This is in line with the reality that as the
number of vulnerabilities increases, it gives the intruder more
opportunities to choose the attack path, which can reduce the
time needed to carry out a cyberattack successfully.

TABLE 2 Generator parameters.

Number 1 2 3 4 5

Gen. bus 1 2 3 6 8

Pmin(MW) 0 0 0 0 0

Pmax(MW) 300 50 30 50 20

c (/MWh) 20 30 40 50 35
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4.1.2 Estimation of the MTTC on each
communication link

For estimating the MTTC, the CVSS scores should be assigned
in advance, which can be evaluated based on the access vector, access
complexity, and authentications with different grades (Zhang et al.,
2015). The CVSS scores for cyber vulnerabilities in countermeasures
of communication links are listed in Table 4.

Intruders can find the vulnerability distribution in
countermeasures through source code or automation analysis
tools. For demonstration, in this paper, the number of these
vulnerabilities in countermeasures of communication links is set
to a random number of 1–5. According to the MTTC assessment

method in Section 2.2.2, the estimated MTTC of each
communication link can be obtained, as shown in Table 5.

As seen in Table 5, although the intruder has the same overall
goal among these communication links, the MTTC of each
communication link is different because the distribution of cyber
vulnerabilities in countermeasures of communication links is
dissimilar. The intrusion time of bus 14 is the shortest,
188.9 days, which means the intruder can easily tamper with the
load measurement in its communication link. The intrusion time of
bus 11 is the longest, 489.5 days, indicating that the LR attack
executed through fabricating the load measurement of bus 11 needs
the maximum attacking time.

4.2 Impact analysis of the LR attack model
considering cyber vulnerabilities

The LR attack impact can be obtained by solving the proposed
bi-level model of LR attack in Section 3. The most hazardous
scenario in the LR attack considering cyber vulnerabilities is
subject to the available attack time and resources. The intruder’s
available attack time decides the number of intruded
communication links. Meanwhile, the available attack resources
decide the number of simultaneously falsified measurements of
load buses.

4.2.1 LR attack with the different available attack
times

Table 6 shows the most damaging LR attack scenarios with the
limitation of the different available attack times, T, and the static
attack resource, R = 4. Although the intruder has the attack
resource to falsify four load-bus measurements simultaneously,
the attack time T = 200 limits the intruder from attacking
indispensable communication links. According to Table 5,
with T = 200, the intruder only has time to attack two

FIGURE 4
Proposed LR attack model for power systems.

TABLE 3 Td, i(vi) with known and zero-day vulnerabilities.

vi 1 2 3 4 5

Known vulnerability (days) 120.93 100.93 86.87 76.48 68.5

Zero-day vulnerability (days) 271.42 224.93 191.93 165.27 144.94

TABLE 4 CVSS scores of vulnerabilities.

Vulnerability Zero-day ftp dos bof xss eco

CVSS score 0.8 6.4 5.0 6.8 4.5 7.5

TABLE 5 MTTC to invade each communication link.

Bus 1 2 3 4 5 6 7

MTTC (days) 279.9 243.7 198.5 320.5 380.5 356.8 289.4

Bus 8 9 10 11 12 13 14

MTTC (days) 205.6 231.3 328.2 489.5 409.8 231.6 188.9
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communication links, i.e., communication links of substations
corresponding with buses 3 and 14. By falsifying load
measurements of buses 3 and 14, an increase of 4.1 $/h in the
operation cost and no load shedding occurs. The more attack
time the intruder has, the more communication links can be
attacked. When the attack time T ≥ 300 days, the intruder can
attack enough communication links to falsify four load-bus
measurements. However, due to the cyber vulnerability
distribution, the attack scenario causing the maximum
operation cost and load shedding of 7609.6 $/h and 19.12 $/h,
respectively, happens when the attack time T ≥ 400 days, for the
reason that the communication link that corresponds with bus
4 needs 320.5 days to invade.

Table 7 shows the fabricated quantities of measurements in
intruded communication links of substations corresponding with
load buses. It can be seen that the sum of fabricated load injections is
zero. Table 7 shows that when T = 300 days, the fabricated quantities
of load measurements of substations at buses 2, 9, and 14 reach the
ratio limitation of the fabricated magnitude. The falsified load
injection of bus 3 is the maximum, which tries to transfer the
load at buses 2, 9, and 14 to bus 3. Table 8 shows that when T =
500 days, the fabricated quantities of buses 2, 3, and 9 reach the
maximum ratio limitation. The falsified load injection of bus 3 is the
maximum, which tries to transfer the load on buses 2, 4, and 9 to
bus 3.

4.2.2 LR attack with different attack resource
limitations

Table 9 shows the most damaging LR attack scenarios with the
limitation of different available attack resources, R, and the static
attack time, T = 300. As seen from Table 5, when the attack time T =
300, the intruder has time to attack five substations’ communication
links corresponding with load buses 2, 3, 9, 13, and 14. The available
attack resources limit the number of simultaneously falsified load
measurements. The more available attack resources the intruder has,
the more the measurements of buses with load can be falsified
simultaneously. When the attack resource, R = 1, the LR attacks
cannot be implemented because the LR attack model’s constraints
cannot be satisfied. With the increase of attack resources from 2 to 5,
the operation cost increased from 6351.4 $/h to 7244.9 $/h, and the
load shedding increased from 0MW to 14.56 MW. Although the
intruder has more attack resources with R = 6, the intruder does not
have sufficient time to attack enough communication links due to the
attack time limitation. Therefore, the operation cost and load
shedding of R = 6 are the same as the results of R = 5.

4.3 Comparison of LR attack models

Table 10 compares the scheduling results and operating costs of
the SCED without attack and different LR attack models. As shown
in Table 10, it can be found that under the SCED without attack, the
total operation cost is 6205.6 $/h, and no load shedding occurs. The
attack scenario in the traditional LR attack causes an operation cost
of 7609.6 $/h and a load shedding of 19.12 MW. However, when
cyber vulnerabilities in communication links are considered, the
attack scenario in the traditional LR attack may not be achieved due
to the limitation of attacking time to occupy essential
communication links to launch an attack. Therefore, with a
limited attack time of 300 days, a more practical attack scenario
can be found by the LR attack model considering cyber
vulnerabilities, where the operation cost is 6828.3 $/h and a load
shedding of 9.35 MW occurs. With a limited attack time of 500 days,
the impacts of the LR attack considering cyber vulnerabilities and
the traditional LR attack are the same. The reason for the same
attack impact is that, based on Table 5, the attack time of 500 days
means that the attacker has enough time to intrude into
communication links of all buses with load to inject falsified
data, which is unified with the assumption in the traditional LR
attack that all buses with load can be intruded. Hence, the attack
scenario found by the traditional LR attack model is just a case in the
proposed bi-level LR attack model with sufficient attack time.

TABLE 6 LR attacks with different attack time limitations.

Attacking time T 0 (SCED) 200 300 400 500

Attacked bus -- 3 and 14 2, 3, 9, and 14 2, 3, 4, and 9 2, 3, 4, and 9

No. of attacked buses 0 2 4 4 4

Load shedding (MW) 0 0 9.35 19.12 19.12

Operation cost ($/h) 6205.6 6252.7 6828.3 7609.6 7609.6

TABLE 7 Fabricated quantities of LR attacks with T = 300 days.

Number of bus Measurement Fabricated quantity (MW)

2 P2
inj 10.85 (50%)

3 P3
inj −33.05 (35.1%)

9 P9
inj 14.75 (50%)

14 P14
inj 7.45 (50%)

TABLE 8 Fabricated quantities of LR attacks with T = 500 days.

Number of bus Measurement Fabricated quantity (MW)

2 P2
inj 10.85 (50%)

3 P3
inj −47.1 (50%)

4 P4
inj 21.5 (45%)

9 P9
inj 14.75 (50%)
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5 Conclusion

This paper studied the modeling and impacts of LR attacks by
considering cyber vulnerabilities in power systems. Unlike the
existing works about LR attacks in power systems, the costs of
falsifying load measurements through intruding into
communication links of substations are quantitatively evaluated
by the MTTC and considered in the proposed bi-level LR attack
model. The proposed model can find the practical attack scenario
because the intruder inevitably faces attack time limitations. Finally,
a quantitative analysis was conducted to evaluate cyber
vulnerabilities and LR attack impact on power systems. The
cyber vulnerabilities will impact the available attack vector.
Moreover, the attack scenario of the existing LR attack model is
verified as an attack vector found by the proposed bi-level LR attack
model with sufficient attack time to intrude into all communication
links of substations.
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TABLE 9 LR attacks with different attack resource limitations.

Attacking resources R 1 2 3 4 5 6

Attacked bus -- 2 and 9 2, 3, and 9 2, 3, 9, and 14 2, 3, 9, 13, and 14 2, 3, 9, 13, and 14

No. of attacked buses 0 2 3 4 5 5

Load shedding (MW) 0 0 2.43 9.35 14.56 14.56

Operation cost ($/h) 6205.6 6351.4 6449.5 6828.3 7244.9 7244.9

TABLE 10 Comparison of the scheduling results and operating costs of the SCED without attack and different LR attack models with R = 4.

LR attacks with T =
300 days

LR attacks with T =
500 days

Traditional LR
attacks

Original
SCED

Generation dispatch on gen.
bus (MW)

1 199.65 189.88 189.88 180.17

2 0 0 0 45.11

3 30 30 30 13.72

6 0 0 0 0

8 20 20 20 20

Total generation (MW) 249.65 239.88 239.88 259

Operation cost ($/h) 6828.3 7609.6 7609.6 6205.6
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Nomenclature

Indices and
sets

n Bus index

d Load bus index

l Transmission line index

g Generator index

CM Countermeasures in LR attack

SG Sub-goal in LR attack

G Goal in LR attack

I(SGj) Set of countermeasures CMi needed to defeat to achieve SGj

J Set of the LR attack sub-goals SGj

CVSS Common Vulnerability Scoring System

MTTC Mean time to compromise

Parameters

M Sufficiently large positive constant

ε Sufficiently small positive constant

τ Bound of ΔDd/Dd for each load d

cg Generation cost (/MWh) of generator g

csd Load shedding cost (/MWh) of load bus d

Dd Actual value of load bus d (in MW)

KD Bus–load incidence matrix

KP Bus–generator incidence matrix

Nn Number of buses

Nd Number of load buses

Ng Number of generators

Nl Number of transmission lines

Pg
max ,Pg

min Maximum and minimum generation outputs (in MW) of
generator g

PLl max Capacity (in MW) of the transmission line

R Attacking resources

T Limited attacking time of the intruder

SF Shifting factor matrix

σ Number of total vulnerabilities

Variables

Pd(CMi) Probability that CMi is reached for the communication link of
substation at bus d

Pd(SGj) Probability that SGj is reached for the communication link of
substation at bus d

Pd(G) Probability that G is reached for the communication link of
substation at bus d

Td,i(vi) Compromise time in CMi of the communication link of substation
at bus d

vi Number of known vulnerabilities of the component

s Skill factor of the intruder

ΔDd Attack on the measurement (in MW) of load d

ΔPg Output power change of generator g

PLl Power flow (in MW) of transmission line l

Pg Generation output (in MW) of generator g

Sd Load shedding (in MW) of load d

td Compromise time of load d

δD,d Binary variable 1, if load d is attacked

δt,d Binary variable 1, if load d could be attacked

t1, t2, t3 The mean time of three sub-processes

P1, P2, P3 The probabilities of three sub-processes
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