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Cerium oxide (CeO2) nanoparticles are expected to have applications in the
biomedical field because of their antioxidative properties. Inorganic
nanoparticles interact with proteins at the nanoparticle surface and change
their conformation when administered; however, the principle underlying this
interaction is still unclear. This study aimed to investigate the secondary structural
changes occurring in bovine serum albumin (BSA) mixed with CeO2 nanoparticles
having different surface modifications using Fourier transform infrared
spectroscopy. CeO2 nanoparticles (diameter: 240 nm) were synthesized from
an aqueous cerium (III) nitrate solution using a homogeneous precipitation
method. The surfaces of the nanoparticles were modified by the catechol
compounds dopamine and 3,4-dihydroxyhydrocinnamic acid (DHCA). In the
presence of these CeO2 nanoparticles (0.11–0.43 mg/mL), β-sheet formation
of BSA (30 mg/mL) was promoted especially on the amine-modified (positively
charged) nanoparticles. The local concentration of BSA on the surface of the
positively charged nanoparticles may have resulted in structural changes due to
electrostatic and other interactions with BSA. Further investigations of the
interaction mechanism between nanoparticles and proteins are expected to
lead to the safe biomedical applications of inorganic nanoparticles.

KEYWORDS

nanotoxicology, protein corona, protein conformation, albumin, infrared spectrometry,
β-sheet

1 Introduction

Recent advances in nanotechnology offer applications of various nanoparticles (NPs) for
targeted drug delivery, bioimaging, and biosensing by utilizing their enhanced magnetic,
antibacterial, and other bioactive properties (McNamara and Tofail, 2017). Cerium oxide
(CeO2) NPs are crucial industrial materials, including polishing materials in the glass and
optics industry (Dahle and Arai, 2015). In addition, they have gained much interest for
biological applications owing to their antioxidant properties. Because of the quick conversion
of the oxidation state between Ce3+ and Ce4+, CeO2 NPs exhibit anti-oxidative activities,
including superoxide oxidase and catalase mimetic properties to scavenge excess reactive
oxygen and nitric species in biological tissues (Korsvik et al., 2007; Heckert et al., 2008;
Caputo et al., 2014; Xu and Qu, 2014). These properties of CeO2 NPs may contribute to the
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regulation and maintenance of cell proliferation in tissue
engineering (Hosseini and Mozafari, 2020). Previous studies have
shown that CeO2 NPs ameliorate neurodegeneration in a
Parkinson’s disease model (Hegazy et al., 2017) and drug-
induced keratinocyte cytotoxicity (Singh et al., 2016), oxidative
brain injury (Elshony et al., 2021), reproductive toxicity (Saleh
et al., 2020), and hepatic steatosis (Wasef et al., 2021).

When NPs are applied to in vivo tissues, biomolecules, such as
proteins, interact with the particle surface. Protein adsorption to
NPs (corona formation) depends on the charge (Aramesh et al.,
2015) and chemical modification (Galdino et al., 2020) of the NP
surface and salts coexisting in the dispersant (Givens et al., 2019).
This interaction is not limited to simple adsorption (corona
formation) and desorption, but can cause conformational
changes in proteins (Lynch et al., 2006; Khanal et al., 2016;
Onoda et al., 2017) and following cellular responses (Onoda
et al., 2020). In this context, the NP surface can act as a catalyst
to provide a high-energy activated state for the stable secondary
structure of proteins. Dysregulation of the conformation
(misfolding) of proteins reduces their solubility and degradability,
and in some cases, causes tissue dysfunction and diseases (Zerovnik,
2002; Gidalevitz et al., 2010). The potential for such conformational
changes was indicated by the Raman shift in the amide I region of
bovine serum albumin (BSA) interacting with zinc oxide NPs
(Žūkienė and Snitka, 2015). Based on the Fourier transform
infrared (FT-IR) spectra of the amide I band (Sakaguchi et al.,
2022), we recently reported that concentrating amyloid β peptides
on the NP surface may enhance the formation and stacking of their
β-sheet structure. The coexistence of ions that can interact with
peptides also modifies the interaction between the NPs and peptides
(Sakaguchi et al., 2022). Some other studies reported a potential of
secondary structure (conformational) changes of albumin by metal
oxide NPs such as titanium dioxide, zinc oxide, CeO2, (Simón-
Vázquez et al., 2014; Ranjan et al., 2016; Bukackova and Marsalek,
2020), and iron oxide (Mehrabi et al., 2021; Nisar et al., 2022).

In general, forces such as hydrophobic interactions, hydrogen
bonding, and electrostatic interactions act between the NPs and
biomolecules. The interaction pattern can be predicted to some
extent based on the forces between functional groups at the NP
surface, that is, at the interface, and biomolecules, including
proteins (Co and Li, 2021). However, because proteins are
constantly adsorbing and desorbing at the surface of NPs and
the interactions between NPs and proteins are constantly
changing (Saptarshi et al., 2013), it is difficult to accurately
predict the complex effects of these interactions on protein
conformations. Furthermore, the effect on protein
conformation depends not only on the physicochemical
properties of NPs but also on their concentration (Wangoo
et al., 2008). When NPs are administered to living organisms
for biomedical and pharmaceutical purposes, it is necessary to
screen for conformational changes in proteins at the NP surface
to prevent unintentional and toxic reactions. Surface
modification to tune the properties of NPs is an effective
measure for the systematic study of these interactions. Here,
we used CeO2 NPs as a model of metal oxide whose surface can be
easily modified. The present study aimed to investigate the
changes in protein secondary structure due to interactions
with CeO2 NPs, an inorganic material expected to be used in

the biomedical field. BSA, which is abundant in the blood of
humans and animals, was used as a model protein.

2 Materials and methods

2.1 Materials

Cerium (III) nitrate hexahydrate (Ce(NO3)3 6H2O; product
No. CEH09XB) was purchased from Kojundo Chemical
Laboratory Co., Ltd. (Saitama, Japan). Urea (product No. 219-
00175) was purchased from Fujifilm Wako Pure Chemical Co.
(Osaka, Japan). BSA (product No. A2153), dopamine
hydrochloride (product No. H8502), 3,4-
dihydroxyhydrocinnamic acid (DHCA; product No. 102601),
and deuterium oxide (D2O; product No. 151890) were
purchased from Sigma-Aldrich Co. (St Louis, MO, USA). All
the reagents were used without further purification.

2.2 Synthesis and characterization of
CeO2 NPs

CeO2 NPs were synthesized using a homogeneous precipitation
method. Ce(NO3)3 6H2O (4 mmol) and urea (50 g) were mixed and
dissolved in distilled water (300 mL) and heated at 90°C for 60 min
in a hot water bath. After cooling to 20°C, the precipitate was
collected as a precursor by centrifugation (10,000 g, 10 min) and
washed with distilled water (10,000 g, 10 min, ×3). After drying the
precursor at 80°C for 24 h, it was calcined by increasing the
temperature to 800°C at a rate of 10°C/min and maintaining it at
800°C for 1 h in an electric furnace (NHK-170; Nitto Kagaku Co.,
Ltd., Nagoya, Japan). Calcined samples (1 g) were milled using
Pulverrisette 7 Classic Line (Fritsch GmbH, Idar-Oberstein,
Germany) at 250 rpm for 60 min. The obtained samples were
analyzed using an FT-IR spectrometer (FT/IR-6000; JASCO Co.,
Tokyo, Japan), X-ray diffraction (XRD; RINT-TTR III; Rigaku Co.,
Tokyo, Japan), dynamic light scattering (DLS; ELSZ-2000ZS; Otsuka
Electronics Co., Ltd., Osaka, Japan), and scanning electron
microscopy (SEM; S-4200; Hitachi High-Tech Co., Tokyo,
Japan). The crystalline size of samples was also determined by
the half-width of XRD peaks according to the Scherrer formula
(Patterson, 1939).

2.3 Surface modification of CeO2 NPs

The surfaces of CeO2 NPs can be modified by catechol
compounds, as described previously (Togashi et al., 2011; Hayat
et al., 2014). The samples of CeO2 NPs (1.7 mg) were mixed and
stirred for 48 h with dopamine (0.25 mM) or DHCA (0.25 mM) in
distilled water (5 mL) for surface modification of the particles. The
suspension was then washed four times with distilled water and
collected via centrifugation (5,000 g et al., 2 min) on an Amicon
Ultra centrifugal filter device (MWCO 100 k; Merck KGaA,
Darmstadt, Germany) to remove excess dopamine and DHCA.
Finally, the dispersion medium was replaced with D2O via
centrifugal washing on the filter device.
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2.4 Fourier transform infrared spectroscopy
of Protein-NP mixtures

The BSA solution (40 mg/mL) in D2O was mixed with CeO2

NPs dispersed in D2O at a 3:1 volume ratio; thus, the final
concentration of BSA in the mixed samples was 30 mg/mL. The
final concentration of NPs in the mixture was 0, 0.11, and 0.43 mg/
mL. The BSA solutions with and without NPs in D2O were
sandwiched between two CaF2 plate windows (spacer, 0.025 mm).
D2O was used as the solvent instead of water because the IR
absorption peak at 1,600–1,650 cm–1 derived from O-H bonding
in water overlaps with the peak of the amide I band and disturbs the
analysis. FT-IR spectra, including amide bands, were recorded using
an FT/IR-6200 spectrometer (JASCOCo., Tokyo, Japan) for samples
set between the CaF2 windows.

3 Results and discussion

CeO2 NPs were prepared via the homogenous precipitation
method (Venkatachalam et al., 2009), which enables the synthesis
of products with homogeneous particle sizes and high yields.
Figure 1A shows the FT-IR spectra used to evaluate the chemical
composition of the NPs after calcination. The peaks at 3,300 and
1,500 cm–1 indicate the presence of hydroxides and carbonates in the
NP samples. In homogeneous precipitation (Venkatachalam et al.,
2009), urea is converted to ions of ammonium (NH4

+), hydroxide

(OH−), and hydrogen carbonate (HCO3
−) in a cerium solution at

80°C. The OH−and HCO3
− produced precursor NP composed of

cerium hydroxide and cerium hydrogen carbonate. This precursor
was converted into CeO2 via calcination. As shown in Figure 1A,
hydrogen carbonate was removed by calcination at 800°C, but
remained after treatment at 600°C. Thus, similar to the case of
yttria reported previously (Venkatachalam et al., 2009), calcination
at 800°C is suitable for yielding an oxide (ceria).

The samples were characterized using XRD (Figure 1B), DLS
(Figure 1C), and SEM (Figure 1D). Figure 1B shows the
characteristic XRD pattern of CeO2 in the samples obtained after
calcination. DLS showed a peak in the size distribution of calcined
CeO2 at 550 nm, with a wide distribution from 350 to 1,000 nm
(Figure 1C), which shows their agglomeration in dispersion in water.
Therefore, milling was performed to prevent the agglomeration of
the samples. The milling treatment yielded CeO2 NPs with a size
distribution peak at 240 nm (Figure 1C), which was validated using
SEM (Figure 1D). XRD data suggested the crystalline size of CeO2

was 15.8 nm. The mass of a CeO2 NP (density: 7.22 mg/cm3) could
be calculated as 5.22 ×10−14 g; thus, the particle concentrations of the
CeO2 dispersions at 0.11 and 0.43 mg/mL were 2.11 and 8.24 × 109

particles/mL, respectively.
The surface of the synthesized CeO2 NPs was modified with the

catechol compounds, which can form strong bonds with hydroxy
groups on the surface of metal oxides (cerium oxide, iron oxide, and
gadolinium oxide, etc.) (Togashi et al., 2011; Hayat et al., 2014).
Dopamine and DHCA were used as catechol compounds with

FIGURE 1
Characterization of CeO2 nanoparticles (NPs) synthesized in this study. (A) Fourier transform infrared (FT-IR) spectra of NP samples before and after
calcination at 600°C and 800°C. (B) X-ray diffraction pattern of NP samples before and after calcination at 800°C. The pattern of the calcined sample
showed the characteristics of CeO2 (JCPDS no. 43-1,002). (C) Size distribution data from dynamic light scattering of samples before and after milling
treatment (250 rpm, 60 min). (D) SEM image of the obtained NP samples after the milling treatment.
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amino and carboxy groups, respectively, to analyze the changes in
the secondary structure of albumin due to the difference in the
surfaces of CeO2 NPs. When the NPs were mixed and stirred with
each catechol solution, the surface modification was confirmed by
the colorimetric change in the dispersion (Figure 2A), as reported
previously (Hayat et al., 2014). Such colorimetric change is observed
due to the formation of dopaquinone structure on the NPs (Hayat
et al., 2014). BSA, which is abundant in the blood and other body
fluids and is highly similar to human albumin, was used as a model
protein. The mixture ratio was set considering the number
concentration of the NPs and BSA molecules to ensure that the
particle concentration was not too high relative to BSA to unrealistic
levels. The number concentration of BSA (30 mg/mL; Mw: 66,500)
was 2.72 ×1017 molecules/mL; therefore, the number ratios of BSA/
CeO2 NPs were 1.3 ×10

8 and 3.3 ×107 per CeO2 NP in this study. The
FT-IR spectra of albumin and NP samples mixed in D2O were
analyzed to investigate the secondary structure of albumin. The
amide I band (around 1,650 cm–1), attributed to C=O stretching, was
focused on because it is hardly affected by the nature of the side
chains but depends on the secondary structure of the backbone
(Jiang et al., 2011) and therefore, it is applicable to both in vitro
(Barth and Zscherp, 2002) and in situ (Onoda et al., 2017) analyses
of the protein secondary structure. Because water molecules (H2O)
show peaks at 3,300 cm–1 as well as 1,650 cm–1 that interferes with
those of the amide I band, which was the target of analysis in this
study, D2O was used for incubating BSA with NPs instead of H2O.

As shown in Figures 2B,C, the amide I band in the FT-IR
spectrum of BSA shifted to a slightly higher wavenumber in the

presence of CeO2 NPs. In addition, the shape of the low-
wavenumber side of the amide I band peak changed when BSA
was mixed with CeO2 NPs. The minor shoulder of the low-
wavenumber side tended to be slightly larger in the presence of
NPs. Deconvolution analysis using Gaussian fitting showed that the
FT-IR spectra of BSA included, in addition to the major peak at
1,650 cm–1, a minor peak corresponding to protein β-sheet
formation at 1,618 cm–1 (Barth and Zscherp, 2002) (Figure 3).
The results showed that the ratio of β-sheets did not change
upon mixing with the NPs having plain or carboxylate surfaces
at lower concentration, but increased 1.1-fold by reacting with the
NPs having an amine surface (Figure 4). On the other hand, α-helix
slightly decreased with the increase in the β-sheet structure by the
amine-modified NPs (Figure 4). At higher concentration (0.43 mg/
mL of NPs), all the three NPs affected the β-sheet structure. The
change in BSA was due to whole NPs because it was incubated with
NP samples after the purification with the centrifugal filter
membrane to remove the excess catechol compounds unbound to
the NPs.

The primary interaction between NPs and protein molecules
depends on the size and morphology of the NPs and the strength of
their affinity (Co and Li, 2021). In addition to hydrophobic
interaction (Roach et al., 2006), electrostatic interaction also
works; the contribution of electrostatic interaction is considered
to be significant because the increase rate of β-sheet was larger when
incubated with the amine-modified NPs in this study. The surfaces
of the amine-modified NPs are positively charged in the dispersion.
In contrast, BSA, which has an isoelectric point of 4.9, is positively

FIGURE 2
FT-IR spectra of albumin reacted with CeO2 NPs having different surface modifications. (A) Images of aqueous suspensions of CeO2 NPs modified
with dopamine and 3,4-dihydroxyhydrocinnamic acid (DHCA). (B, C) FT-IR spectra of albumin (30 mg/mL) incubated with (B) 0.11 mg/mL and (C)
0.43 mg/mL of NPs with plain (OH, bare NPs) and modified NH2 and COOH surfaces.
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FIGURE 3
Results of the deconvolution analysis of FT-IR spectra of albumin (30 mg/mL) with CeO2 NPs.

FIGURE 4
Change in the ratio of α-helix and β-sheet in the amide I band of FT-IR spectra of albumin reacted with CeO2 NPs.
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charged as a whole molecule in a neutral pH environment. Protein
adsorption onto NPs is dependent on the surface charge of the NPs
(Aramesh et al., 2015; Yadav et al., 2017). Under neutral conditions,
the amine-modified NPs attracted BSA through electrostatic
interactions and concentrated locally near the NP surface causing
secondary structure changes. Further interactions of the
concentrated BSA molecules with each other via forces such as
hydrogen bonding may change the folding state and increase the
ratio of the β-sheet structure in BSA. Differences in such interaction
the different surface modifications of NPs with proteins may
contribute to modulation of their toxicity. Although the toxicity
of these NPs with different surfaces was not compared in the present
study, the amine-modified NPs with cationic surface generally show
higher membrane permeability and toxicity. Further investigation of
the method to separate the protein and NPs after their reaction is
underway to study the effect of the deconformed proteins by NPs on
toxicity to cells and animals.

This paper focused on the method of FT-IR data for secondary
structural analysis of proteins with NPs. In addition to FT-IR,
analysis of circular dichroism (CD) data in ultraviolet (UV) is
also useful for validating the secondary structure of proteins in
the liquid phase. Our preliminary data showed a quite large
difference in the optical absorbance of proteins between UV and
IR, and therefore, a need to investigate using protein samples with
very different concentrations. Care should be taken for the possible
changes in the secondary structure due to differences in
concentration of proteins for analysis in future studies. In
addition, zeta potential data to evaluate the surface modification
could not be obtained due to the low concentration of well-dispersed
particle samples obtained after the final centrifugation on the
centrifugal filter device (see section 2.3). Further investigations
are needed to obtain a method of NP preparation to analyze
such secondary structure changes with zeta potential data of NPs.

Overall, we present an IR spectroscopy-based method for
evaluating changes in the secondary structure of proteins interacting
with NPs, having large liquid–solid interfaces, using albumin, which is
abundant in body fluids, as amodel. Changes in the secondary structure
of BSA were induced by a reaction with amine-modified NPs, which
increased the β-sheet structure. Further investigations are needed to
clarify the effects of NPs on the secondary structure of other proteins
and their dependence on particle size. Moreover, the effects of
coexisting molecules and ions on NP–protein interactions, together
with other methods such as molecular dynamics simulations, are of
interest for elucidating the details of the mechanisms underlying the
interactions in an in vivo environment. This approach will contribute to
the safe biomedical application of inorganic nanomaterials by providing
a mechanistic understanding of the interactions between biomolecules
and inorganic nanomaterials designed for future applications.
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