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Following viral infection, viral antigens bind specifically to receptors on the

surface of lymphocytes thereby activating adaptive immunity in the host. An

epitope, the smallest structural and functional unit of an antigen, binds

specifically to an antibody or antigen receptor, to serve as key sites for the

activation of adaptive immunity. The complexity and diverse range of epitopes

are essential to study andmap for the diagnosis of disease, the design of vaccines

and for immunotherapy. Mapping the location of these specific epitopes has

become a hot topic in immunology and immune therapy. Recently, epitope

mapping techniques have evolved to become multiplexed, with the advent of

high-throughput sequencing and techniques such as bacteriophage-display

libraries and deep mutational scanning. Here, we briefly introduce the

principles, advantages, and disadvantages of the latest epitope mapping

techniques with examples for viral antigen discovery.
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Introduction

Adaptive immunity plays a vital role in the elimination of pathogens and the protection

of organisms from re-infection. Adaptive immunity relies primarily on two types of

lymphocytes, B cells and T cells, which mature in the bone marrow and thymus respectively

and enter the peripheral lymphoid organs via the circulatory system (1). When foreign

proteins (e.g. pathogens) are degraded, they are broken down into peptides and presented

on the surface of the antigen presenting cell (APC) (2). When these peptides are detected

via specific receptors on lymphocytes, the naive lymphocytes are activated, proliferate and

differentiate into effector cells and memory cells (3, 4). The effector cells can specifically

recognize ‘non-self’ foreign substances and either directly or indirectly eliminate pathogens

or pathogen-infected cells. Different effector cells have their own specific functions. Plasma

cells, the predominant effector B cells, secrete antibodies that specifically bind and
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recognize, thus mediating humoral immunity (5). Depending on

their function, effector T cells are classified as cytotoxic T cells,

helper T cells and regulatory T cells. Cytotoxic T cells bind and kill

infected cells; helper T cells activate and maintain the function of

other immune cells by producing a large number of cytokines; and

regulatory T cells negatively regulate immune-mediated

hyperinflammation (2). Memory cells also have the ability to

specifically recognize ‘non-self’ foreign peptides, but unlike

effector cells which die rapidly after the infection has been

eliminated, memory cells can survive for long periods of time, up

to 100 years (6). When re-infected with the same or a highly similar

pathogen, memory cells are rapidly activated by the antigen and

differentiate into effector cells, triggering a series of immune

responses to clear the infection. This is the basis of

immunological memory and is the main principle of vaccine

immunity (7).

These foreign poly-peptides that stimulate adaptive immunity

are collectively referred to as antigens. There are many different

pathogens in nature, which in turn contain a variety of antigens. An

effective antigen should have two main functions: immunogenicity,

the ability of the antigen to efficiently activate the proliferation and

differentiation of naive lymphocytes; antigenicity, the ability of the

antigen to bind with high specificity to the immune effector cell (8).

As antigen molecules are difficult to recognize by immune cells,

epitopes are recognized by immune cells as an immune active

region on the antigen. Epitopes, also known as antigenic

determinants, are the smallest structural and functional units of

an antigen molecule that bind specifically to an antibody or antigen

receptor (8). Commonly, epitopes consist of 1-6 monosaccharides

or 5-8 amino acid residues (B cells) or 8-11 amino acids (for T cells)

(9, 10). Thus, an antigenic molecule contains more than one

immunologically active region. Even the same pathogen can

contain hundreds of different antigens.

B cells and T cells recognize epitopes via different mechanisms.

B cells bind directly and specifically to antigens via the membrane

surface immunoglobulins, called B cell receptors (BCRs), and

differentiate into plasma cells and memory B cells with the same

antigenic specificity. Plasma cells secrete antibodies that bind

specifically to antigens and are important effector molecules in

mediating humoral immunity against pathogens. The structure of

an antibody is closely linked to its function. Antibody structures can

be divided into variable region (V region) and constant region (C

region) (11). The region of an antibody that has a highly variable

amino acid composition is the V region. Both recombination and

somatic hypermutation in the genes encoding immunoglobulins

result in the high diversity of the V region, giving rise to diverse

antibody repertoires (12). Theoretically, the human immune system

can produce up to 1026 antibodies in different sequence

combinations (13, 14). When a person is infected, a large number

of antigenic epitopes of the pathogen continuously stimulate

specifically recognized T/B cells. During massive proliferation and

replication, activated B cells undergo somatic hypermutation, which

alters the affinity of the antibodies. This occurs via gradual

mutational optimization of complementarity-determining regions

(CDR)-antigen interactions. During infections such as SARS-CoV-
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2, this has been shown to increase overtime to gradually evolve our

antibody responses against a pathogen (15). Plasma cells that

produce high-affinity antibodies are retained and proliferate,

while plasma cells with poor-affinity are eliminated (16, 17).

Antibodies can control and clear infections by directly

neutralizing pathogens or toxins, activating complement,

mediating antibody-dependent cellular cytotoxicity and antibody-

dependent cellular phagocytosis (18). At high viral loads, viral

genomes are highly susceptible to mutation, and these ongoing

mutations may evade adaptive immunity and reduce its

effectiveness (19).

The antigen recognition receptors on the surface of T cells are

also membrane surface immunoglobulins and are known as T cell

receptors (TCRs). Similar to BCRs, TCRs are also divided into V

regions and C regions, and therefore TCRs have the ability to

recognize, bind to and deliver activation signals to the cell (20).

TCRs can generally only recognize antigens loaded into MHC

molecules and so cannot recognize and bind to antigens directly.

The key molecule, major histocompatibility complex (MHC), is

therefore essential for processing and presentation of antigens by

APCs. MHC-I primarily mediates antigen presentation of

endogenous antigens and is expressed by all nucleated cells;

MHC-II is expressed only by professional APCs (21). The

antigens are degraded into short antigenic peptide fragments in

APCs, usually 8-11 amino acids (22, 23). These subsequently bind

to MHC and present themselves on the cell surface as an antigenic

peptide-major histocompatibility complex (p-MHC), ultimately

activating the T cells via TCR engagement (20).

Both B cells and T cells have the capacity to recognize various

epitopes that suit a variety of functions. Epitopes may be further

classified into the following classifications: linear epitopes and

conformational epitopes, based on their structural distinctions.

Linear epitopes, also known as continuous epitopes, consist of

amino acid residues arranged in a continuous sequence.

Conformational epitopes, also known as a discontinuous epitope,

consists of amino acid residues that are not continuously arranged

but are close to each other in spatial structure (24). While B cell

epitopes can be linear or conformational, T cell epitopes are usually

linear due to digestion and processing by APCs, though recently

evidence for the importance of structural conformations in T cell

epitope affinity has been observed (25).

During infection, diverse viral epitopes stimulate the host to

produce a wide variety of antibodies and cytotoxic T cells (26, 27).

Antigenic variation occurs between different strains and genotypes

of the same virus. For example, Influenza A virus, whose major

antigenic proteins, hemagglutinin and neuraminidase, vary between

strains, generates subtype-specific immune responses (28). As

viruses continue to replicate, mutations in the viral genome

accumulate. Under immune selection pressure, viral mutants may

acquire immune-evasion to survive, further increasing epitope

diversity (29, 30). In addition, the epitopes targeted by antibodies

and cytotoxic T cells vary between individuals, depending on a

number of factors, such as age, history of previous infections,

affinity maturation and the diversity of MHC genes (31–33).

Adaptive immunity may not have the capacity to protect the host
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when Original Antigenic Sin, or failure to mount a response against

an evolving pathogen, is present. As such, an optimal epitope is one

that induces effective cellular and humoral immunity, no longer

requires further adaptations, and plays a key role in the

development of efficient vaccines or immunotherapies (8).

Epitope mapping technology is essential to clarify the natural

antigenic landscape and evaluate the most potent and effective

epitopes for an appropriate immune response. Common B cell

epitope mapping techniques include Deep Mutational Scanning,

peptide/protein microarrays, bacteriophage peptide/protein display

and other peptide display techniques. Common T cell epitope

mapping techniques are divided into three categories, peptide-

MHC multimer-based, cell-based and yeast-based epitope

mapping techniques. Here, we cover the latest in multiplexed

epitope mapping technology (Table 1) and discuss their

importance to the advancement of immunological therapeutics.
B cell epitope mapping techniques

Traditional immunology has relied on specific antibodies

generated against a single, well-defined, conformational epitope

or a short linear section of a protein (often <50 aa’s). While whole

proteins are sometimes utilized to generate antibodies, manual

mapping of the antibody epitope must then occur through a

range of somewhat arduous techniques. These techniques may

provide high specificity and detail but they lack the capacity for

en-bulk high-throughput mapping.
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Deep mutational scanning

Deep Mutational Scanning (DMS) utilizes gene mutagenesis,

coupled with other techniques such as high-throughput sequencing,

to obtain a saturated library of mutations covering antigenic

epitopes (34, 35). DMS can be combined with peptide/protein

display libraries to form a genotype-phenotype linkage, thus

exploring the specific function of each amino acid located in the

antigenic epitope by coupling to functional screens (35). Although

DMS does not directly obtain structural information, it identifies

specific amino acid residues that are involved in binding of linear or

conformational epitopes. It may also identify key amino acid

residues altering smaller conformational structures that interfere

with the ability to bind other regions. Davidson et al. developed

high-throughput shotgun mutagenesis-epitope mapping by

combining DMS with peptide display techniques, to successfully

identify at least 150 dengue virus epitopes (36). Using DMS,

Francino-Urdaniz et al. identified five SARS-CoV-2 RBD escape

mutants, of which K417, D420, Y421, F486 and Q493 are key sites

mediating escape mutations (37). Greaney et al. also applied DMS

to map escape mutations of SARS-CoV-2 and they predicted the

possible RBD escape mutations under immune stress (38).

Similarly, it can be used to study binding affinity profiles to assess

the ability of commercially developed antibodies or vaccines to

target novel mutants and in the case of SARS-CoV-2, evaluate

restriction in the presence of new mutations observed in variants of

concern (VOCs) (39, 40). Identifying the evolutionary trajectory of

immuno-evasion can help in design of antibody therapies or
TABLE 1 Epitope mapping technologies.

Technique Linear
epitopes

Conformational
epitopes

High
resolution

High
throughput

Time Cost

B cell epitope

Deep mutational scanning Y Y Y Y ++ ++

Peptide/protein microarray Y N N Y + +

Bacteriophage peptide/protein display Y N^ N Y + +

Bacterial surface display Y N^ N Y ++ +

Yeast surface display Y N^ N Y + +

T cell epitope

Based on peptide-MHC multimers Y N^ N Y ++ ++

Based on cellular expression Y N^ N Y +++ ++

Based on yeast display Y N^ N Y + +

Structural analysis

X-ray crystallography Y Y Y N +++ +++

Nuclear magnetic resonance Y Y Y N +++ +++

Cryo-electron microscopy Y Y Y N +++ +++

Mass spectrometry Y Y Y Y ++ ++
The table summarizes the characteristics of each epitope mapping technique. “Y” is yes and “N” is no. ^Partial conformation/structure of linear epitopes is tolerated. "+" indicates the degree of
time/cost; sequentially from +,++ to +++ as the most expensive/longest time.
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vaccine design for generating vaccines resistant to potential

escape (38).
Peptide/protein microarrays

In 1984, Geysen et al. first proposed a technique for the rapid

synthesis of peptides on the surface of immobilized carriers,

followed by screening the immobilized peptides for antigenic

epitopes using antibodies. Subsequently, Frank and Fodor et al.

proposed new peptide synthesis techniques, SPOT synthesis and

photolithography synthesis, respectively (41, 42). These two peptide

synthesis techniques, especially SPOT synthesis, are more efficient

and affordable compared to the traditional techniques of attaching

the synthesized target peptide to the carrier surface.

Peptide/protein microarrays can be used to characterize

antibody responses. Gallerano et al. prepared a set of microarrays

covering HIV-1 clade C proteins and peptides that can be used to

diagnose HIV and detect changes in specific antibody responses as

HIV infection and treatment progress (43). Valentine et al.

monitored changes in serum antibodies over time after Bacille

Calmette-Guerin vaccine (BCG) by random peptide microarrays

(44). Peptide/protein microarrays have also excelled in exploring

the epitopes of emerging viruses, contributing to the understanding

of the immune response induced by the virus. Several months after

the initial SARS-CoV-2 outbreak, researchers managed to design a

peptide microarray containing 966 representative SARS-CoV-2

peptides, based on the reference sequences of 10 proteins encoded

by SARS-CoV-2 (45). Reactive IgM & IgG sera of COVID-19

patients in the early stages of infection were screened via peptide

microarrays to obtain a B cell epitope map of the SARS-CoV-2

proteome, confirming four B cell epitopes predicted by

bioinformatics and identifying an epitope located within the

binding region of the SARS-CoV-2 RBD to the ACE2 receptor

that may stimulate B cell neutralizing antibody production. Li et al.

constructed a peptide microarray covering the SARS-CoV-2 spike

protein and tested a large range of sera from COVID-19 patients

(46). They evaluated an asymptomatic population and a control

population and identified several epitopes of high diagnostic value,

providing new epitopes for a more accurate, efficient and cost-

effective diagnosis of SARS-CoV-2. Schwarz et al. applied a high-

density peptide microarray including the whole SARS-CoV-2

proteome for a longitudinal study of serological changes in

patients (47). Their results suggested that circulating serum IgA

has a very short lifespan compared to IgG, with a late peak for

induction and rapid decay, whereas circulating IgG can be present

in serum at high titers for a long period of time. Using peptide

microarrays covering SARS-CoV-2 spike and nucleocapsid, Voss

et al. found that high levels of antibodies against S-811-825, S-881-

895 were strongly associated with poor disease outcomes whereas

antibody levels against N-156-170 were negatively associated with

poor outcomes (48).

The Sengenics KREX chip is a commercially available protein

microarray that immobilizes proteins with full-length sequences,

correctly folded carrier and functional validation. Due to the

presence of biotin carboxyl carrier protein (BCCP), BCCP-tagged
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biotinylated KREX proteins can only be immobilized on the chip if

the carrier protein is correctly folded (49). The majority of mis-

folded proteins are believed to upset the BCCP tag and therefore

reduce the loading of misfolded proteins. Using the Sengenics

KREX microarray, Smith et al. not only found a strong

correlation between antibody titer and disease severity and age,

but also identified an immunodominant epitope for SARS-CoV-2

located in the C-terminal domain of nucleocapsid protein (50).

The identification of important immunogenic epitopes of

pathogens plays a key role in the development of targeted

antibody therapies. Gu et al. used peptide arrays to screen the

epitopes recognized by antibodies in the sera of patients at different

stages of hepatitis B infection (51). They found that antibodies in

the serum of hepatitis phase patients with alanine aminotransferase

(ALT) flares recognized more epitopes than those in chronic

infection phase, and that the number of epitopes recognized by

antibodies in the serum rose as patients moved from chronic

infection phase to hepatitis phase patients with ALT flares.

Accordingly, they identified several epitopes that may be highly

relevant to the treatment of chronic hepatitis virus infection as

vaccine candidates.

Due to their flexibility, speed, relative affordability and high

throughput, peptide/protein microarrays are widely used in the

development of new diagnostics, therapeutic antibodies, and

vaccines against pathogens. However, there are still many

shortcomings with the automated use of peptide microarrays.

Current techniques for constructing novel peptide/protein

microarrays are costly and inefficient (52–55). When the artificial

surface chemistry has inconsistencies, it may result in an uneven

density distribution of peptides (56). Regional changes in intensity,

therefore, do not necessarily imply changes in peptide/protein

binding capacity but may result from discrepancies in surface

chemistry, as such, additional controls and corrections to the data

are required. Non-target proteins can also rapidly adsorb to the

artificial surface, increasing background (57, 58). Non-specific

proteins can increase false positive results yet also prevent the

binding of the target protein to the immobilized peptide, leading to

false negatives. To ensure that the peptide-antibody complex

remains stable throughout, the times for washing, relative on-off

rates etc., must be carefully validated to accurately quantify

antibody binding, whereby data for low affinity interactions may

be lost (59). Therefore, the relative advantages and disadvantages of

peptide microarrays must be carefully evaluated depending on the

experimental requirements.
Bacteriophage peptide/protein
display technology

To further meet the demand for mass production of peptides

and multiplexing, peptide display technologies have emerged as a

potential solution. Bacteriophage peptide display technology

automatically and efficiently translates a large range of target

sequences into peptides and presents them to the external surface

with minimal extrinsic processing and as such is ideal for epitope

mapping. Most phage display libraries utilize insertion of a small
frontiersin.org
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gene fragment as a fusion with a natural coat protein variant,

thereby facilitating transcription, translation, and display on the

surface. While large full-length proteins up to 50-80kDa can be

expressed on the phage-surface, the insertion of small linear

peptides allows for minimal bias between different inserted

proteins and facilitates rapid and efficient processing when

dealing with very large libraries (60). While not used for epitope

identification, antibody identification often utilizes high diversity

Fab fragment (~25kDa) libraries displayed on phage surfaces (61).

In 1990, Scott and Smith developed the idea of using phage display

technology to screen for epitopes (62). Later, Smith demonstrated

that epitopes displayed on the surface of phages could be recognized

and bound by specific antibodies (63). Phage display libraries have

been made up to 1011 pfu/ml in size and can contain thousands of

different peptides/proteins (64). Indeed, bacteriophages have been

used to display functional SARS-Cov-2 Spike RBDs on the surface,

coupled to functional screening, indicating a role for structural

conformation of whole protein domains present on the phage

surface (65). Additionally, phage-based protein scaffold libraries

have already been developed for surface presentation of small

proteins (66). This provides hope for utilization of phage-display

technologies to display entire protein libraries suitable for

epitope mapping.

With the development of sequencing technology in recent years,

Larman et al. were the first to combine phage display, high-

throughput DNA oligo synthesis and high-throughput sequencing

to invent a more efficient and cost-effective technique called phage

immunoprecipitation sequencing (PhIP-seq) for identifying

antigenic epitopes recognized by antibodies in autoimmune

diseases (67). Unlike traditional methods, the PhIP-Seq technique

introduced defined amino acid motifs of a specific length

representing a specific list of known pathogens. PhIP-seq does

not require multiple rounds of biopanning for enrichment of

antigenic epitopes; epitopes are enriched by PCR using barcoded

PCR primers after phage-antibody immunocomplex precipitation

(67, 68). Traditionally, the M13 phage is used extensively for phage

protein display. Recently, the T7 phage is also becoming more

accepted due to a high efficiency in expressing peptides and its

ability to lyse the host cell, post-replication, thereby avoiding the

effect of the host cell’s proteins on subsequent amplification (69–

71). For peptide display, the PhIP-seq method has higher yields,

lower costs, longer display peptides and higher quality compared to

traditional peptide microarrays (68). Due to the high throughput of

PhIP-seq and its ability for massive-multiplexing, it can be utilized

to screen large numbers of epitopes in a simple liquid format

compatible with robotics. PhIP-seq and other phage-display

technologies, therefore, have a wide potential for applications in

the field of virology, such as epidemiological surveys, risk factor-

related surveillance studies, pathogenic diagnosis, and vaccinology.

Phage-display libraries may be used to quickly screen multiple

different peptide or protein display libraries. One particular PhIP-

seq library, Virscan, encodes a peptide display library covering the

antigenic epitopes of the currently known human viral proteome

(72). Due to this coverage of over one thousand viruses, Virscan

profiled each individual’s infection history, both in terms of

ongoing infections and past infection history. PhIP-seq was used
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to identify etiological evidence for infectious diseases of unknown

etiology and can be combined with traditional serological testing

techniques to improve diagnostic accuracy for targeted treatment

(73–75). For example, Schubert et al. applied PhIP-seq and found

that the cerebrospinal fluid of patients with acute flaccid myelitis

(AFM) was enriched with antibodies against enterovirus epitopes,

providing new evidence that enteroviruses are a potential cause of

AFM (73). PhIP-seq can also screen for risk factors for infection

that may be associated with disease or pathological states (31, 75–

77). For existing vaccines, PhIP-seq provides long-term monitoring

of vaccine efficacy, dosing, or comparison with naturally infected

individuals to identify specific epitopes of antibodies produced by

vaccination and thus guide vaccine improvement. For vaccines in

development, PhIP-seq provides access to specific antigenic

epitopes of induced antibodies (especially neutralizing antibodies)

as well as epitopes that cross-react between either viruses or highly

conserved epitopes, which may be important for the design of

efficient and broad-spectrum vaccines (31). In addition, PhIP-seq

can be combined with other techniques, such as alanine

mutagenesis or mutation scanning, to improve resolution and

help predict the likely mutational direction of the virus (31).

Combining epitope information from PhIP-seq with the clinical

history of the patient’s disease was used to help define and predict

the severity of the patient’s condition (78).

Two limitations of the high-throughput phage display technique

are the inability to display peptides or proteins that are post-

translationally modified, such as glycosylation, SUMOylation etc.,

and when using synthetic peptide libraries or small protein libraries,

the inability to display conformational epitopes associated with large

proteins and complexes (over 50-80 kDa) (72). While larger domains

and proteins may be expressed on bacteriophage surfaces, this does

require optimization and validation in a manner not very consistent

with unbiased, high-throughput workflows. This does provide leeway

for bacteriophage-screening of conformational epitopes in the future,

however, with optimization and development of new techniques.

Additionally, the design of each new (large) phage display library

requires considerable cost, particularly if using unique gene sequences,

though this does depend on the library diversity. Randomized oligos

and error-prone PCR may provide cheaper alternatives and synthetic

library generation costs are quickly decreasing as gene synthesis

techniques advance. Yet, with its’ ability to process large sample

sizes, express diverse epitopes without the need to clone from

source materials and the simultaneous mapping of a large number

of functional epitopes (theoretically up to 1011), phage display

techniques utilizing synthetically produced libraries still have an

irreplaceable advantage (31, 64, 72).
Other peptide/protein display techniques

Bacterial surface display is a common technique for displaying

epitopes on the surface of bacteria. First, a suitable host is selected as

the display platform (79). Gram-negative bacteria are often used as

host cells because of their familiar genetic background. The bilayer

structure of Gram-negative bacterium sometimes prevents the

display of larger peptides on the surface of the cell membrane,
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whereas Gram-positive bacteria have only a single membrane and

can facilitate the display of fusion peptides (80). Carrier proteins are

then required to translocate the peptides to the bacterial surface. As

such, eventual surface presentation may vary depending on the

choice of carrier protein. However, both the choice of host cell and

carrier protein requires careful consideration of the properties of

the target peptide (79). The size of the peptide or protein to be

displayed is of importance also, as very large proteins have more

potential variation between proteins in the same library. Bacterial

surface display is highly sensitive and specific for the diagnosis of

pathogens, even compared to traditional serological tests with

inherent signal amplification (81). It has been used to predict

disease progression based on the variability in the specific

epitopes of antibodies in patients with different levels of disease

severity and efficiently detect pathogenic immune evasion caused by

mutations thus can facilitate improved vaccine design (82).

Yeast surface display is similar to that of bacterial surface

presentation. Coupling the epitope sequence to an anchoring

protein sequence on the surface of the yeast host allows the

epitope to be presented on the yeast surface. Yeast, unlike

bacteria, is a eukaryotic cell and is therefore closer to mammalian

cells in terms of protein folding, post-translational modifications

and secretion mechanisms (83). For example, yeast expression of

coronavirus RBD is highly similar to that expressed by human cells

(84, 85). This gives yeast surface display an advantage for the

expression and display of antigenic epitopes. In addition, yeast

surface display can significantly improve enrichment and screening

efficiency through Magnetic Cell Sorting (MACS) and fluorescence-

activated cell sorting (FACS) (86). Yeast surface display in tandem

with deep mutational scanning, and high-throughput sequencing,

form a platform to provide efficient, accurate epitope mapping (87).

Yeast display with DMS was previously used to map epitopes for

Influenza A Virus Hemagglutinin (88). The advent of DMS and

high-throughput sequencing together with yeast display suggests

not only identification of antigenic epitopes of pathogens, but also

prediction of potential mutation, thereby improving target site

choice for vaccine and antibody therapies (38, 89–91). Limitations

include the lower efficiency of transformation into yeast and that

the diversity of peptides expressed by the yeast display system is

approximately 108-109, significantly less than other peptide display

techniques (92). Unlike bacteriophage display libraries that express

from a single gene insertion site, multiple copies of a protein or

peptide may be transformed and present on the same yeast surface

at the same time, resulting in unwanted multivalent binding and

affecting readouts for binding affinity (93).

In addition to phage display techniques, several other peptide

display techniques have been developed and used for epitope

mapping. A shotgun mutagenesis strategy was used to express

SARS-CoV-2 Spike RBD mutants in mammalian cells for antibody

mapping via 384-well plate high-content immunofluorescence (94).

Due to the endogenous eukaryotic secretion mechanism, the

structure and function of proteins/peptides displayed in

mammalian cells are more similar to natural human proteins than

via bacterial or yeast display. Mammalian cell display can also be used

for high-throughput rapid screening of target proteins/peptides
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(95, 96). Ehling et al. performed single-cell sequencing of COVID-

19 patient plasma cells to obtain antibody Ig genes and used them to

construct a mammalian display library (96). The library was screened

for SARS-CoV-2 binding by flow cytometry and deep sequencing in a

high-throughput manner. Importantly, 43 antibodies were

consequently identified to be specific for the SARS-CoV-2 antigen.

Due to the limitations of low transfection efficiency, however,

mammalian display libraries have relatively small library sizes

(usually up to 107). This limitation has been partially ameliorated

with integration of CRISPR-Cas9, or another approach that utilizes

libraries from immunized animals with initial antibody screening and

maturation in vivo (97, 98).
T cell epitope mapping techniques

Unlike B cell epitopes, T cell epitopes require the formation of

an MHC-peptide (p-MHC) complex by an APC in order to be

specifically recognized by the TCR. Overlapping peptide pools have

previously been used for systematic screening and epitope

identification of Infectious Bronchitis Virus in humans by direct

stimulation in PBMCs, using readouts such as ELISpot or cytokine

production measured by flow cytometry (99, 100). This method has

the advantage of requiring functional surface recognition to trigger

T Cell stimulation, with modified cell lines allowing identification of

specific HLA-restriction, though it may require multiple rounds of

screening to identify individual peptides, and to date, is yet to

accommodate very large peptide libraries (101). While this complex

multi-protein/peptide structure may be hard to mimic artificially,

several techniques are still available for high-throughput T cell

epitope mapping.
Epitope mapping techniques based on
peptide-MHC multimers

As this complex heteromeric MHC protein is normally folded

inside the cell prior to loading a peptide (with additional help from

other proteins), this key p-MHC complex formation is essential for

T cell epitope mapping. The generation of libraries for T cell

binding therefore goes well beyond just the generation of

antigens. In the absence of co-stimulation, p-MHC has a very

weak affinity for TCR(1-100 mM), dissociating rapidly and

making it difficult to detect the interaction between TCR/p-HMC

(102). Alman et al. pioneered the development of an Avidin-biotin-

based p-MHC tetramer, which facilitated a stabilized interaction

between the TCR and p-MHC (103). Subsequently, dimeric,

pentameric and higher oligomeric forms of p-MHC multimers

were developed. The classical method of p-MHC multimer

staining involves coupling p-MHC multimers with fluorescent

markers and incubating them with T cells, thereby identifying T

cells that recognize the p-MHC multimers by traditional flow

cytometry (103). To further improve the ability to screen T cells

for epitopes, a technique combining many p-MHC multimers

labelled with heavy metal ions instead of fluorescence, and then
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screening by mass spectrometric analysis (cytometry by time-of-

flight, or CyTOF) was developed (104). Multiple permutations

between different isotopes or between isotopes and specific

antibodies have been investigated to increase the number of

simultaneously detected peptides, though the technique is

currently limited to 96 barcodes (105–107). Neither fluorescent

nor metal tags are able to cover the depth of T cell epitope diversity,

which is greater by several orders of magnitude, therefore failing to

perform true high-throughput epitope mapping. In an attempt to

achieve high throughput screening of T cell epitopes, unique DNA

barcodes have been used instead of fluorescent or metal tags (108).

Combinations of different bases to generate unique DNA barcodes,

detected via NGS sequencing, generate a high enough degree of

diversity, allowing each sequence of p-MHC to contain a unique

label. The DNA barcode-p-MHCs are then fluorescently labelled to

screen for functional binding to T cells and consequently determine

the epitope sequence. Saini et al. used p-MHCmultimers with DNA

barcodes to specifically detect T cell epitopes that map to SARS-

CoV-2, ultimately identifying 122 epitopes targeted by CD8+ T cells

(26). The vast majority of these epitopes were derived from open

reading frames. This is an important guide for vaccine design to

induce specific T cell immunity.
Epitope mapping techniques based on
cellular expression

When cells come in contact, the phenomenon of sharing and

transferring membranes and membrane-associated proteins

between cells is called trogocytosis (109). When T cells bind to

APCs, the T cells acquire the membrane and associated proteins

from the APC (one-directional) (109, 110). However, genetically

engineered APCs can convert the unidirectional trogocytosis of T

cells into bidirectional trogocytosis (111). An epitope mapping

technique was devised by Joglekar et al. using this same principle

(112). T cells expressing TCR specifically recognize and label p-

MHC on the APCs displaying cognate peptide. Currently, the

method has a labeling rate of 70% for identifiable APCs, while

unrecognized APCs are not labeled. The labeled APCs (with

successful binding) are then screened by FACS and sequenced to

obtain specific epitope information. Unlike other techniques that

are limited by the development of MHC alleles, this method is based

on direct, natural, interaction between cells. In theory, it can easily

be applied to a wider range of TCRs or MHC alleles without

optimization. This also implies that the technique allows for high

throughput screening and detection of a more diverse range

of epitopes.

In addition, they have developed another epitope mapping

technique that uses a chimeric receptor called the signal

transducer and antigen presenting antigen bifunctional receptor

(SABR) to identify TCR-p-MHC interactions (113). SABR, a p-

MHC multimer (extracellular) attached to a signal transducer on

the intracellular side. The target cell requires a readout such as GFP.

When the TCR-p-MHC interaction occurs, SABR transmits the

signal into the cell to stimulate the transcription and translation of
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GFP. Ultimately, the target cells are screened for GFP expression by

flow cytometry and further epitope sequencing from APC genomic

DNA is performed. SABR also allows high throughput screening,

currently up to 106 epitopes, but significantly less than the diversity

of the yeast display library. False positive results have occurred in

some cases and further refinement of the technique is required to

improve the specificity of the assay.

Using both approaches, homologous epitopes of novel TCRs

isolated from melanoma patients were successfully retrieved. The

feasibility of these two cell-based epitope mapping techniques in

exploring homologous epitopes of TCRs was demonstrated, to

guide the site of action of immunotherapy (112, 113). The

technique exhibited a good potential for high-throughput viral

epitope mapping by p-MHC deep sequencing. Liquid

chromatography-tandem mass spectrometry (LC-MS/MS)-based

epitope mapping techniques have been used to identify naturally

expressed HIV peptides on the surface of APCs, combined with

identification of HLA-restricted T cell recognition and consequent

identification of p-MHC’s associated with favorable clinical

outcomes (114–116). However, these methods fail to identify all

identify all peptides expressed on the surface of cells and the

diversity of peptides identified appears relatively small.

T-scan is a genome-wide approach that allows comprehensive

scanning and discovery of cytotoxic T cell epitopes (117). The key

point of this technology is that activated cytotoxic T cells secrete a

serine protease, granzyme B (GzB), which specifically targets APCs

and cleaves proteins to promote apoptosis (118). Based on the

specific induction of GzB, they developed a GzB reporter system.

When cytotoxic T cells are specifically activated by p-MHC, GzB is

released into the cell, triggering cleavage of a GzB-linker and

activating fluorescence. Thus, activated target cells can be further

isolated by FACS and specific epitopes can be identified from the

APCs using PCR against the p-MHC coupled with NGS. Using

T-scan, they identified four undiscovered antigenic regions and

mapped the TCR-epitope binding interface (117). T-scan has now

been applied to the study of T cell epitopes of SARS-CoV-2.

Unbiased screening of cytotoxic T cell epitopes from COVID-19

patients has identified T cell epitopes that are highly conserved

among coronaviruses and mutant epitopes of SARS-CoV-2 leading

to decreased cellular immunity (119). These studies provide ample

evidence that the T-scan can help guide the design of viral vaccines

at key epitopes.
Epitope mapping technique based
on yeast display

As described earlier for B cell epitopes, the structure of proteins

displayed through yeast is highly similar to that of mammals, and

therefore yeast display can be applied for high-throughput epitope

mapping of T cells. Yeast libraries are specifically generated with a

high diversity of peptides though unlike B cell epitope mapping, the

display libraries utilize a fusion protein with a cell wall anchoring

protein expressed on the cell surface. This gives each yeast the

ability to display a unique p-MHC on its surface (120). The yeast
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display library is then incubated with fluorescently labelled soluble

TCRs or TCRs combined with magnetic beads and sorted by

multiple rounds of FACS or magnetic aspiration to identify p-

MHC-TCR complexes and sequencing of the peptide-encoding

gene present in the yeast (121–123). After obtaining information

on potential T cell epitopes, in-depth data analysis is performed to

match functional hits from the library with observed natural T cell

epitopes. Currently, human MHC molecules that have been

displayed by yeast include HLA-DR15, HLA-DR1, HLA-DR4,

HLA-DQ6 and HLA-A*02:01 etc (120–123).

Chiou et al. used a yeast peptide-HLA A∗02:01 display library to
identify the non-small cell lung cancer (NSCLC) epitope,

TMEM161A, overexpressed in cross-reactive epitopes of Epstein-

Barr virus and Escherichia coli, suggesting that the presence of

antigenic cross-reactivity between tumor and virus may be a novel

feature in oncogenesis (124).

In contrast, the yeast agglutination-mediated TCR antigen

discovery system (YAMTAD) enables rapid and efficient

confirmation of p-MHC-TCR interactions even in the absence of

TCR tetramers with the aid of yeast display and engineered yeast

mating (125). The basic principle is that the TCR, as well as the

MHC are displayed on the surfaces of mating-matched MATa/

MATalpha brewer’s yeast cells. If the TCR displayed on a MATa

yeast recognizes the homologous p-MHC displayed on a MATalpha

yeast, mating is induced. By carrying a mating-specific fluorescent

reporter and complementary amino acid-assisted nutritional

markers, it allows mating yeast to be identified by either FACS or

diploid selection.

Other techniques for T cell epitope identification have also been

developed recently, including lentiviral expression libraries

containing antigens for binding of TCRs and BCRs, coupled to

scRNA-Seq for simultaneous identification of both antigen (post-

integration into the genome) and the TCR/BCR itself from the same

cell (126). This technique offers high throughput screening, though

howmany antigens fail to be expressed/bind TCR/integrate etc., due

to technical reasons is still unknown. Some of the current challenges

in epitope mapping of B and T cells include the difficulty in

obtaining purified antigens and p-MHCs that reflect their natural

state, the continued lack of exploration of epitopes targeted by

MHC-II-restricted TCRs, the partial limitation of sensitivity and

specificity of epitope mapping, and uneven distribution of single-

point and combined-DMS hits.
Low throughput structural analysis

Predictive structural modelling of proteins with the likes of

AlphaFold has dramatical ly improved accessibi l i ty of

computationally predicted structures. However, epitopes and

conformational epitopes, are often flexible regions that do poorly

with structural prediction due to the lack of constraints.

Additionally, modelling and docking of peptides inside the MHC-

groove and between MHC, peptide and TCR are still relatively poor

predictors of true binding dynamics. Recent advances in machine-
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learning driven TCR-epitope binding are improving, however,

structure-based epitope mapping techniques are still an

indispensable tool for understanding many epitopes (127). While

these technologies may generate high-resolution, fine-detail

mapping, they all suffer from workflow limitations, namely that

they are largely low-throughput. While the advent of liquid

handling robotics, high-throughput chemistry and enhanced

frameworks for automated antibody crystallization are improving

this field, the acquisition time and cost of data collection remains

the biggest limitation (128).

X-ray crystallography not only enables the construction of 3D

structural models of antigen-antibody complexes, but also the detailed

description of epitope, paratope and the interaction forces between

them. Koenig et al. designed four SARS-CoV-2 neutralizing

nanobodies and identified two different epitopes by x-ray

crystallography, among which one bound by VHH E overlaps highly

with ACE2 (29). However, the construction of three-dimensional (3D)

crystal structures by X-ray crystallography is not easy. Stable, high-

quality crystals, complex data processing, specialized technicians, and

expensive equipment greatly limit the application of x-ray

crystallography for high-throughput epitope mapping (129–131).

Cryogenic electron microscopy (Cryo-EM), which collects the

scattered signal of an electron beam after it has passed through ice

layers, uses less starting material, can image protein complexes in

solution and can image antibody-epitope complexes, is used to re-

construct detailed 3D structures (132). Recent advances in Cryo-EM

combined with powerful computational advances are constantly

increasing the maximum obtainable resolution (94, 133). 384-well

plate-based immunofluorescence combined with negative stain EM

also allowed semi-high throughput screening for epitope mapping. By

determining the 3.1 Å structure of the neutralizing antibody 4A8

bound to SARS-CoV-2, Chi et al. proposed that the Spike NTD could

serve as a new epitope for SARS-CoV-2 treatment (134). Like X-Ray

crystallography, EM is costly due to expensive equipment, manual

screening of samples, long data acquisition and computational analysis.

While it may be limited to hundreds of proteins at a time, Cryo-EM

does not require the formation of crystals from proteins and the

amount required is much smaller than X-ray crystallography. Together,

it now provides complementary epitope information together with X-

ray crystallography, rather than being used as a stand-alone technique

(135, 136).

Mass spectrometry analyzes charged molecules or ions by mass-

to-charge ratio (m/z). Hydrogen/deuterium exchange, in the core

binding region of antibody-bound epitope, is significantly lower

than in the unbound region, allowing a readout for specific

information on conformational epitopes (137). Mass spectrometry

therefore has the ability to map both types of epitopes (138, 139). It

has been used to map polyclonal antibody epitopes in the sera of

rabbits receiving Neisseria meningitidis vaccine and thus guide the

improvement of vaccines (140). Combined with other structural

techniques it can identify details of the epitope-paratope interface in

antibody-epitope complexes (141, 142). Mass spectrometry is more

rapid, sensitive and somewhat high-throughput compared to other

structural techniques (143, 144).
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Prospects for the future

Adaptive immunity generates long-term immunological

memory and can stimulate powerful pathogen clearance; as such,

antigenic epitopes play an important role in immunotherapy and

vaccinology as a ‘switch’ to stimulate initiation. Epitopes associated

with B cells can generally be characterized by the specific binding to

antibodies generated by B cells. T cell epitopes are generally

considered to be more simple, smaller epitopes compared to

antibody binding, but their recognition is tightly associated with

MHC loading and presentation. Both are associated with high-

specificity and a great diversity of potential epitopes. This in turn

increases difficulty for identification of specific epitopes and leads to

several differences in epitope mapping techniques between B and T

cells. Despite this, many mapping tools have been developed,

allowing high-throughput epitope analysis (~1010-1014) coupled

with classical structure-based techniques for fine conformational

identification. T cell epitopes require the design of peptide libraries

based on specific MHCmolecules which poses difficulties due to the

high polymorphisms of MHCmolecules and more complex binding

dynamics. Still, many tools for T cell epitope mapping have been

utilized, although on a much smaller scale than those for B cells, to

obtain high-resolution epitope information. These techniques,

summarized in Figure 1, have been used to map specific epitopes

in viruses such as IAV, DENV, HepC, EBV, Enterovirus, HIV,
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SARS-CoV-1, SARS-CoV-2 and even tumor antigens. The

combination of epitope mapping together with utilization of large

TCR or BCR-databases, may also reveal further insight into

immunological antigenic landscapes (145).

The combination of different technologies may also accelerate

the fine-mapping of important antigenic regions. As Next

Generation Sequencing (NGS) becomes cheaper and more high-

throughput, it facilitates more comprehensive characterization of

higher diversity libraries (72). DMS, in conjunction with other

epitope mapping tools, identifies possible mutant epitopes

susceptible to viral immune escape, thereby helping to avoid

vaccines targeting epitopes located in potentially mutated

regions (31, 37). DMS provides a platform for studying the

rapid evolution of viral proteins, and can be used to investigate

potential new variants, prior to them being observed in nature.

The combination of DMS with scRNA-Seq also helped identify

specific T cell clones against functionally relevant viral epitopes.

Recent research into post-vaccination responses against SARS-

CoV-2 have highlighted the need for thorough investigation of

both B cell and T cell responses. Techniques combining

simultaneous B- and T-cell mapping would then also be highly

beneficial. Potential combinations of the highly diverse

phage display libraries with other mapping readouts may

also accelerate identification of relevant viral epitopes for

vaccine design.
FIGURE 1

Multiplexed serology for viral epitope mapping. Top left: Alanine Scanning-Deep Mutational Scanning (DMS) of dsDNA to generate multiple epitope
variants. Top right: peptide/protein arrays with hundreds/thousands of proteins spotted onto glass array slides and quantified by fluorescent antibody
binding. Bottom right: bacteriophage display library, such as Virscan, generating single bacteriophage with single peptides, then quantified via NGS
sequencing post-immunoprecipitation. Bottom left: p-MHC loaded multimers screened in a similar way to display libraries, coupled to NGS of
attached DNA barcodes for epitope identification.
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Current techniques for epitope mapping have evolved towards

large scale epitope screening, combined with lower cost, higher

sensitivity, and increased specificity. Advances in sequencing,

scRNA-Seq, barcoding, surface display libraries, DMS and cell-

free binding have all rapidly expanded our knowledge of epitopes.

Further utilizing this high-throughput data with machine-learning

algorithms may also facilitate optimal epitope prediction methods,

with higher success rates than what is currently observed, to

advance targeted vaccine design. This will also help to explore the

general immune response process during viral disease, autoimmune

disease, tumor progression and provide future guidance for disease

diagnosis, vaccine development and immunotherapy (146–149).

These massively-multiplexed epitope mapping platforms are now

readily accessible, with decreasing costs and increased availability of

reagents and techniques, such that they are now more applicable to

a wide-range of scientific research needs.
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