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The roles of FGF21 and GDF15 in
mediating the mitochondrial
integrated stress response

Jayashree Jena, Luis Miguel Garcı́a-Peña
and Renata O. Pereira*

Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism,
Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
Various models of mitochondrial stress result in induction of the stress-

responsive cytokines fibroblast growth factor 21 (FGF21) and growth

differentiation factor 15 (GDF15). This is an adaptive mechanism downstream

of the mitochondrial integrated stress response frequently associated with

improvements in systemic metabolic health. Both FGF21 and GDF15 have been

shown to modulate energy balance and glucose homeostasis, and their

pharmacological administration leads to promising beneficial effects against

obesity and associated metabolic diseases in pre-clinical models. Furthermore,

endogenous upregulation of FGF21 and GDF15 is associated with resistance to

diet-induced obesity (DIO), improved glucose homeostasis and increased insulin

sensitivity. In this review, we highlight several studies on transgenic mouse

models of mitochondrial stress and will compare the specific roles played by

FGF21 and GDF15 on the systemic metabolic adaptations reported in

these models.
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Introduction

Chronic mitochondrial stress is associated with the activation of stress response

pathways such as the mitochondrial unfolded protein response (UPRmt) (1) and the

integrated stress response (ISR) (2) in various tissues such as liver, adipose tissue and

skeletal muscle. This is believed to be an adaptive mechanism to mitigate stress at the

cellular level, but is also associated with cell non-autonomous mechanisms via the secretion

of mitokines (3).

Metabolic stress and changes in mitochondrial membrane potential can result in

mitochondrial dysfunction, thereby inducing the mitochondrial stress response (1). The

UPRmt mediates retrograde mitochondria to nucleus signaling to alleviate mitochondrial

stress (4). In mammals, it has been shown that the UPRmt is strongly coupled with the ISR

(5). The ISR can be induced by four different eukaryotic initiation factor 2 alpha (eIF2a)
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kinases that act as early responders to disturbances in cellular

homeostasis (2). Once activated, the ISR leads to phosphorylation

of eIF2a and induction of its main effector, the activating

transcription factor 4 (ATF4), which coordinates activation of

transcriptional programs aiming at restoring cellular homeostasis.

The ISR can promote UPRmt activation, thereby reducing the stress

on mitochondrial chaperones and proteases, and attenuating

mitochondrial dysfunction (5). ATF4 can also mediate the

transcription of fibroblast growth factor 21 (FGF21) and growth

differentiation factor 15 (GDF15) (6–9), mitokines that can act

distally to regulate systemic metabolic homeostasis (10, 11).

FGF21 and GDF15 can also be induced under physiological

stress conditions, such as in response to an obesogenic diet (12, 13),

exercise (14, 15) and cold exposure (16, 17). Furthermore,

pharmacological administration of FGF21 or GDF15 ameliorates

obesity and related metabolic complications by improving energy

and glucose homeostasis (18, 19). Nonetheless, there are several yet

unresolved questions regarding the endogenous roles played by

these cytokines in response to phys io log ica l versus

mitochondrial stress.

In this review, we will focus on the systemic metabolic

adaptations mediated by endogenous FGF21 and GDF15

induction in response to mitochondrial stress and activation of

the mitochondrial stress response. We will summarize various

transgenic mouse models harboring mitochondrial defects of

different etiologies and in different tissues but resulting in similar

improvements in metabolic health. Finally, we will discuss

downstream mechanisms that are predominantly regulated by

either FGF21 or GDF15 and their possible synergistic effects on

systemic metabolism.
FGF21 and its roles in metabolism

FGF21 is a member of the fibroblast growth factor (FGF) family

that can be released into the circulation to act as a hormone. High

FGF21 levels have been reported in various metabolic diseases,

including obesity, fatty liver disease, and diabetes (20, 21). In both,

rodents (22) and humans (23), circulating levels of FGF21 are

derived primarily from the liver under physiological conditions,

however Fgf21 mRNA can be detected in numerous tissues

including the pancreas, muscle, and adipose tissues (24, 25).

Circulating levels of FGF21 are low under baseline conditions and

are markedly induced by numerous cellular and nutritional stress

signals (21). Depending on the metabolic state, induction of FGF21

instructs the system to reestablish homeostasis through actions on

multiple tissues (21). In the context of metabolism, FGF21 has been

proposed to function in an endocrine manner as a ‘master

sensitizer’ of specific hormonal signals that maintain energy

balance via the regulation of glucose and lipid metabolism.

Furthermore, previous studies have established a role for FGF21

in enhancing insulin sensitivity, increasing energy homeostasis,

decreasing hepatic triglycerides, and regulating macronutrient

preferences (21, 26). The multiple metabolic effects of FGF21 are

mediated by both its central and peripheral actions, and by its fine-

tuning of inter-organ metabolic crosstalk (26).
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Besides its endogenous roles, pharmacological administration

of FGF21 can decrease plasma glucose levels by more than 50% in

animal models with genetically induced and diet-induced obesity

(DIO) mainly through peripheral glucose disposal (21).

Furthermore, prolonged administration of FGF21 or FGF21

analogs has important metabolic effects, including a marked

decrease in body weight in rodents and non-human primates, and

more modest effects on body weight in humans (10, 27, 28). In the

context of obesity, pharmacological administration of FGF21 to

obese rodents reverses diabetes and obesity through increasing

energy expenditure (28, 29). Moreover, prolonged FGF21

administration to DIO mice significantly decreases body weight,

adiposity, and hepatic triglycerides and cholesterol. FGF21 also

reverses plasma hyperglycemia and hypertriglyceridemia and

increases insulin sensitivity (28). In individuals with obesity and

type 2 diabetes mellitus, FGF21 analogs alleviate dyslipidemia

and increase adiponectin levels, but have minimal effects on

glycemic control, thereby highlighting interspecies differences in

the actions of FGF21 (26). Similarly, in patients with non-alcoholic

steatohepatitis, FGF21 analogues ameliorate hepatic steatosis, liver

stiffness and biomarkers of liver fibrosis (26), however the long-

term effects of FGF21 in clinical outcomes remain unknown.
GDF15 and its role in metabolism

Growth differentiation factor 15 (GDF15), also known as

macrophage inhibitory cytokine-1 [MIC-1] (12), is a stress-

induced cytokine originally classified as a divergent member of

the transforming growth factor beta (TGF-b) superfamily (30).

GDF15 is synthesized as pro-GDF15 dimer in the cytoplasm and

is subsequently cleaved and secreted as mature GDF15 (25kDa) into

the blood stream (31). GDF15 is expressed in several tissues

including liver (12, 32), lungs (33), kidney (34), and adipose

tissue (12, 17). Levels of mature circulating GDF15 can be

measured and are normally very low in humans under normal

physiological conditions (35, 36). However, GDF15 levels are

markedly elevated in various pathological conditions including

cancer (37), inflammatory diseases (38), cardiovascular disease

(39, 40), obesity (12) and mitochondrial dysfunction (41).

Glial cell–derived neurotrophic factor (GDNF) family receptor

a-like protein (GFRAL) has been recently identified as GDF15’s

receptor (18, 42). GFRAL’s expression is restricted to neurons of the

area postrema and solitary tract nucleus in the brain (43). Mature

GDF15 binds to its receptor GFRAL in the brain inducing

phosphorylation of RET (tyrosine kinase co-receptor) and other

intracellular signaling molecules, such as AKT and ERK1/2, thereby

controlling appetite (12). Furthermore, studies also suggest mature

GDF15 may affect several metabolic pathways independently of the

GFRAL/RET receptor pathway and can modulate metabolism

independently of changes in food intake. Indeed, systemic

overexpression of GDF15 prevents obesity and insulin resistance

by modulating metabolic activity and enhancing the expression of

thermogenic and lipolytic genes in brown adipose tissue (BAT) and

white adipose tissue (WAT) (44–46). Some of these effects were

independent of changes in food intake (43).
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Obesity is also associated with increased serum concentrations

of GDF15. An increase of up to 10-fold in serum GDF15 levels was

observed in obese mice (12). Several studies have reported the role

of GDF15 towards reducing food intake, body weight, and adiposity

and improving glucose tolerance under normal and obesogenic

diets (12, 45, 47). Indeed, GDF15 and GFRAL knockout mice fed a

high-fat diet (HFD) display a slight increase in fat depots and body

weight when compared to their wild-type counterparts (43, 48).

Conversely, GDF15 overexpression is associated with leanness and

other improved metabolic parameters in mice (44–46).

Besides its endogenous roles, pharmacological administration

of GDF15 has gained significant interest owing to its role as an

appetite suppressor and a regulator of energy homeostasis (18, 49).

Pre-clinical studies administering recombinant GDF15 in rodents

and non-human primates revealed the potential of GDF15 for the

treatment of metabolic disorders such as obesity and diabetes.

GDF15 treatment potently reduces food intake in ob/ob mice

(50), and in non-human primates with spontaneous obesity (18).

Several studies have shown that treatment with recombinant-

GDF15 attenuates obesity and improves glycemic control through

GFRAL-dependent suppression of food intake (18, 42).

Furthermore, administration of a long-acting GDF15 molecule to

non-human primates maintained the decrease in appetite and body

weight for 4 weeks, suggesting this molecule might be used for

chronic treatment of obesity (51). In addition to changes in food

intake and body weight, recombinant GDF15 also reduces liver

steatosis and improves glycemic control via GFRAL in genetically

induced and DIO mouse models (45, 46). Noteworthy, besides

reducing food intake, treatment with recombinant GDF15 reduces

adiposity and corrects metabolic dysfunction in obese mice by

increasing thermogenesis in adipocytes (35), and by increasing

energy expenditure via increased adrenergic stimulation and futile

calcium cycling in skeletal muscle through GFRAL signaling (52).

Recent studies also uncovered roles for GDF15 in mediating the

beneficial effects of compounds with anti-obesity properties,

including metformin (53), capsaicin (54), resveratrol (55) and

conjugated linoleic acid (56). Furthermore, GDF15 may also

interact with other appetite regulators such as leptin to regulate

body weight and adiposity (57). Lastly, a GLP-1/GDF15 dual

agonist effectively lowers body weight and caloric intake in

various animal models, including obese non-human primates (58).

These promising pre-clinical studies have now been extended to

clinical trials. Indeed, results from a recently completed clinical trial

using a new long-acting GDF15 receptor agonist show significant

reduction in body weight in rodents and in non-human primates.

However, despite displaying an acceptable safety profile and

reducing food intake in humans, body weight was only modestly

affected (49). These interesting results highlight potential

differences in GDF15 signaling and mechanisms of action

between rodents, non-human primates and human subjects.

Furthermore, this suggests that additional GDF15-mediated

mechanisms that might be independent of GFRAL signaling, or

food intake reduction are likely required to promote weight loss

in humans.
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FGF21 and GDF15 as downstream
modulators of the mitochondrial
integrated stress response

FGF21 and GDF15 can be induced in response to mitochondrial

stress, and as such are recognized as mitokines (59, 60). Mitokines

are signaling molecules that enable communication between local

mitochondrial stress and distant cells and tissues, that can be

strongly induced in mouse models of metabolic dysregulation and

mitochondrial dysfunction (59). Mitochondrial dysfunction of

various etiologies, such as defective mitochondrial oxidative

phosphorylation (OxPhos) and coupling efficiency (59, 61),

impaired quality control (46) or dynamics (6, 62, 63) activate the

UPRmt and the ISR, leading to increased phosphorylation of eIF2a
(2). eIF2a phosphorylation inhibits overall translation, while

selectively allowing for the translation of stress responsive

proteins such as the activating transcription factor 4 (ATF4).

Downstream of eIF2a, ATF4 directly induces Fgf21 transcription

and via induction of C/EBP homologous protein (CHOP) it

indirectly induces Gdf15 expression (59, 64) (Figure 1).

Several mouse models of mitochondrial stress have shown an

upregulation of FGF21 as a protective mechanism against

mitochondrial injury and metabolic dysregulation. Ectopic

expression of the uncoupling protein 1 (UCP1) in skeletal muscle

in vivo (UCP1-Tg) leads to induction of FGF21, which is required to

increase browning of white adipose tissue (WAT), with only mild

effects on the metabolic phenotype of these mice (9, 59). In mice

lacking UCP1 in brown adipose tissue (BAT), the main effector in

canonical BAT thermogenesis, induction of FGF21 promotes

resistance to DIO (61). In models of disrupted mitochondrial

dynamics in skeletal muscle (62), BAT (6) and liver (63),

secretion of FGF21 resulted in protection against DIO and

improved metabolic phenotypes. Genetic impairment of

adipocytes OxPhos function in vivo also protects mice from DIO

and insulin resistance, with ablation of FGF21 in this model leading

to increased body weight and adiposity, and hepatic steatosis after 8

weeks on high-fat diet (HFD) (41). ATG7 deletion selectively in

skeletal muscle inhibits mitophagy and induces FGF21 as a

mitokine, leading to protection from obesity and insulin

resistance (65). Another model of impaired mitophagy also

showed upregulated Fgf21 expression, and a role for ISR-

mediated secretion of FGF21 in promoting thermogenic

remodeling of adipose tissue (66). Furthermore, several studies of

gain- and loss-of-function indicate that FGF21 is a key metabolic

mediator to improve compromised mitochondrial function and

reduce inflammation and apoptosis in skeletal muscle (67).

Various transgenic mouse models of mitochondrial

dysfunction also result in GDF15 induction in a tissue-specific

manner, leading to improved systemic metabolic homeostasis (60,

68). Elevated GDF15 expression in and secretion from skeletal

muscle has been described in human subjects with mitochondrial

myopathies (69–71). Furthermore, mouse models of selective

mitochondrial dysfunction in muscle have higher levels of
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circulating GDF15, which is associated with improved aspects of

systemic metabolism. Indeed, mice with muscle-specific deletion

of a component of mtDNA ribosomes, Crif-1, have impaired

oxidative phosphorylation and upregulation of Gdf15 expression

in and secretion from muscle via activation of a UPRmt-ATF4-

CHOP axis. This increase in GDF15 levels was required to promote

resistance to DIO and insulin resistance, due to an increase in

lipolysis in adipocytes and hepatocytes (60). In another model of

mitochondrial dysfunction caused by Ant1 deficiency in muscle,

Gdf15 levels were highly up regulated (72). Moreover, UCP1-tg

mice also leads to increased GDF15 circulating levels. Deletion of

either Fgf21 or Gdf15 in the UCP1-tg background showed that

FGF21 was of minor importance for the metabolic adaptations of

this particular mouse model (9), whereas ablation of Gdf15 led to a

progressive body mass increase due to an accumulation of body fat,

and abolished the increased insulin sensitivity reported in this

mouse model. These effects were also associated with day-time

restricted anorexia, which was dependent on GDF15 (7).

Mice with liver-specific mitochondrial stress induced by a loss

of function of Crif-1 have aberrant OxPhos and activated UPRmt,

increasing the secretion of GDF15 and FGF21 as mitokines. By

using whole body GDF15 or FGF21 knock out mouse models in

conjunction with Crif-1 deletion in liver, the authors concluded that

GDF15 is necessary to regulate body mass and fat mass and to

prevent diet-induced hepatic steatosis, whereas FGF21 is requited to

improve insulin sensitivity, energy expenditure and thermogenesis

in WAT (32).
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Furthermore, adipocyte-specific deletion of Crif-1 in mice

decreases adipocyte OxPhos function and induces FGF21 and

GDF15 as mitokines, thereby promoting resistance to DIO, and

improving glucose homeostasis. Long-term induction of GDF15 in

this model was required to attenuate the progression of obesity by

increasing energy expenditure, while FGF21 did not affect energy

expenditure, but remarkably ameliorated DIO and insulin

resistance (41). Finally, a report by Miyake et al. shows that

induction of GDF15 secretion mediated by activation of the

integrated stress response (ISR) in adipocytes reduces food intake

via GFRAL signaling and decreases body weight in mice fed

HFD (64).

Mitochondrial stress in the
pathogenesis of metabolic diseases

It is important to note that, although chronic mild

mitochondrial stress can lead to adaptive responses that result in

improved metabolic health, unresolved mitochondrial stress is

central to the pathogenesis of many major metabolic disorders

such as obesity, insulin resistance and type 2 diabetes (4, 73).

During OxPhos, in addition to generating ATP, mitochondria

also generate reactive oxygen species (ROS) as toxic by-products.

In excess, ROS may damage mitochondrial and cellular DNA,

proteins, l ipids and other molecules, contributing to

mitochondrial dysfunction (74).
FIGURE 1

Summary of FGF21 and GDF15 mediated actions downstream of mitochondrial stress. Mitochondrial stress of various etiologies and in various tissues
lead to the activation of stress response pathways such as the mtUPR and the ISR, resulting in the translation of transcription factors such as ATF4
and its downstream target CHOP, which promote induction of FGF21 and GDF15, respectively. Secretion of these factors into the circulation
mediates metabolic adaptations in response to mitochondrial stress. Together, these adaptations promote improvements in systemic metabolic
health, including increases in energy expenditure, resistance to diet-induced obesity (DIO), improved insulin sensitivity and glucose homeostasis,
attenuated hepatic steatosis, and increased browning. Abbreviations: WAT (white adipose tissue), BAT (brown adipose tissue), UPRmt (mitochondrial
unfolded protein response), ISR (integrated stress response), ATF4 (activating transcription factor 4), CHOP (C/EBP homologous protein), FGF21
(fibroblast growth factor 21) and GDF15 (growth differentiation factor 15).
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Mitochondrial dysfunction has been shown to be associated

with insulin resistance in various tissues including skeletal muscle

(75), liver (76) and adipose tissue (77). In skeletal muscle, impaired

mitochondrial oxidative capacity, reduced ATP production rates

and increased ROS levels have all been reported as contributing

factors in the pathogenesis of insulin resistance (4). Impaired

mitochondrial b-oxidation is found in patients with nonalcoholic

fatty liver disease (NAFLD), contributing to hepatic steatosis, liver

injury (78, 79) and fibrosis (80). Mitochondria are also crucial for

adipose tissue function (73), therefore, unsurprisingly, impaired

mitochondrial function and dynamics disrupts adipocyte

homeostasis (77, 81) and is a central driver for obesity,

inflammation and associated metabolic disorders (82).
Discussion

Both GDF15 and FGF21 are central endocrine regulators of

systemic energy metabolism and glucose homeostasis with robust

therapeutical potential for the treatment of obesity and associated

metabolic diseases (10, 18). Pre-clinical studies suggest that GDF15

acts predominantly on reducing energy intake (42, 51), whereas

FGF21 might play a primary role on increasing energy expenditure

(10, 21). Nonetheless, recent clinical trials were unable to show a

robust effect on weight loss, even though other metabolic

parameters seem to be ameliorated by FGF21 and GDF15

treatment (49, 83, 84). Therefore, further studies will be required

to determine the primary targets and fundamental mechanisms of

actions of both factors in humans so that more effective therapies

can be developed.

In mouse models of mild mitochondrial stress, chronically

elevated FGF21 and GDF15 provide resistance to DIO and

insulin resistance and ameliorate diet-induced hepatic steatosis

and glucose intolerance (6, 32, 62). These effects are likely caused

by the lifelong induction of a catabolic state in these models.

However, induction of FGF21 levels in adult obese mice, by

inducible deletion of the mitochondrial fusion protein optic

atrophy 1 (OPA1) in skeletal muscle, was able to reverse DIO,

suggesting that induction of this pathway after the onset of obesity

may still exert beneficial metabolic effects (62). Noteworthy, GDF15

and FGF21 play divergent roles in regulating energy metabolism

and glucose homeostasis as part of the mitochondrial stress

response. These different roles are dictated by the type of

mitochondrial stress, the tissue directly affected by the stress and

the metabolic state of the animal. Together, studies support a

predominant role for GDF15 rather than FGF21 in promoting

resistance to DIO in response to mitochondrial stress and suggests a

role for GDF15 in promoting browning during DIO (32).

Conversely, FGF21 is required to increase insulin sensitivity,

energy expenditure and UCP1-mediated thermogenesis in

inguinal white adipose tissue (iWAT) of regular chow-fed mice

(6, 32). However, whether FGF21 and GDF15 interact to modulate
Frontiers in Endocrinology 05
energy balance and glucose homeostasis in response to

mitochondrial stress remains to be investigated.

Finally, while our understanding of the role of endogenous

FGF21 and GDF15 in the regulation of metabolic homeostasis in

response to mitochondrial stress has advanced in the recent years

with the characterization of various mouse models, several

outstanding questions remain to be addressed. Although studies

have shown that the pharmacological actions of FGF21 are

primarily mediated by its receptor in the brain and in adipose

tissues, to date, the only GDF15 receptor identified is strictly

expressed in discrete areas of the brain. Nonetheless, studies

suggest GDF15 may exert some of its effects independently of

GFRAL via activation of yet non-identified receptors. Moreover,

the role of these cytokines in response to physiological stressors

such as exercise and cold exposure remain to be assessed. Better

understanding of the roles of endogenous FGF21 and GDF15 in

health and disease might lead to the development of new therapies

to treat metabolic disorders.
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