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Objective: Using finite element analysis to identify the optimal internal fixation
method for oblique lateral lumbar interbody fusion (OLIF), providing guidance for
clinical practice.

Methods: A finite elementmodel of the L4– L5 segmentwas created. Five types of
internal fixations were simulated in the generated L4-L5 finite element (FE) model.
Then, six loading scenarios, i.e., flexion, extension, left-leaning, right-leaning,
rotate left, and rotate right, were simulated in the FE models with different
types of fixations. The biomechanical stability of the spinal segment after
different fixations was investigated.

Results: Regarding the range of motion (ROM) of the fused segment, OLIF +
Bilateral Pedicle Screws (BPS) has a maximum ROM of 1.82° during backward
bending and the smallest ROM in all directions of motion compared with other
models. In terms of the von Mises stress distribution on the cage, the average
stress on every motion direction of OLIF + BPS is about 17.08MPa, and of OLIF +
Unilateral Vertebral Screw - Pedicle Screw (UVS-PS) is about 19.29 MPa. As for the
von Mises stress distribution on the internal fixation, OLIF + BPS has the maximum
internal fixator stress in left rotation (31.85 MPa) and OLIF + Unilateral Pedicle
Screw (UPS) has the maximum internal fixator stress in posterior extension
(76.59 MPa). The data of these two models were smaller than those of other
models.

Conclusion:OLIF + BPS provides the greatest biomechanical stability, OLIF + UPS
has adequate biomechanical stability, OLIF + UVS-PS is inferior to OLIF + UPS
synthetically, andOLIF +Double row vertical screw (DRVS) and Individual OLIF (IO)
do not present significant obvious advantages.
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Introduction

Currently, lumbar fusion surgery (LIF), including posterior lumbar fusion (PLIF) or
transforaminal lumbar fusion (TLIF), is widely used in clinical practice (Huang et al., 2022).
However, insertion of the fusion through a posterior approach requires the removal of the
posterior structures of the vertebral body, which can affect vertebral stability. Additionally,
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repeated traction on the dural sac and nerve roots during the
procedure may lead to nerve injury. Multiple surgical approaches
have been attempted to minimize complications.

Oblique lateral lumbar interbody fusion (OLIF) is considered
one of the best options for lumbar fusion (Aleinik et al., 2021). In
1997, Mayer (Mayer, 1997) described a minimally invasive anterior
approach to the lumbar spine through a retroperitoneal approach at
the L2-L5 level and a transabdominal approach at the L5-S1 level,
which first proposed OLIF. In OLIF, the cage enters the disc from the
oblique lateral side, preserving the small posterior joints, muscles,
and other tissues. In 2012, Silvestre et al. (Silvestre et al., 2012)
improved Mayer’s approach to the procedure, resulting in the OLIF
that is currently used. OLIF is a discectomy implant fusion
performed through the anatomical gap between the
retroperitoneal lumbar major muscle anteriorly and the aorta.
The mechanisms of OLIF include restoring disc height,
increasing posterior longitudinal ligament tension, and improving
the sagittal sequence of the spine. (Alimi et al., 2014; Liu et al., 2019).

Compared to other lumbar fusion methods, OLIF has the
following advantages (Huang et al., 2022; Liu et al., 2022; Zhang
et al., 2022). First, OLIF allows the cage to enter the lumbar spine
anteriorly without opening the spinal canal or damaging the
posterior muscles, ligaments, and bony structures. This preserves
more bone, which is particularly important for patients with disc
degeneration combined with osteoporosis. Second, by removing
sufficient disc tissue and providing a large contact area with the
endplate, the fusion device significantly enhances the supporting
strength of the fusion. Third, OLIF reduces the possibility of
damaging the lumbar muscles and lumbosacral nerves. Fourth,
the interbody fusion used in OLIF is much larger compared to
conventional posterior fusions, and it is placed across the endplate,
which significantly enhances its biomechanical stability. In addition,
OLIF has the advantages of a low complication rate, less surgical
blood loss, shorter operative time, and shorter patient hospital stay
(Mobbs et al., 2015; Lu and Lu, 2019; Aleinik et al., 2021). Joseph
et al. (2015) reported a complication rate of 20.2% (380/1885) after
TLIF, whereas Abe et al. (2017) reported a complication rate of 1.2%
(2/155) after OLIF, indicating a significant reduction in innerve
injury with OLIF. Moreover, the OLIF procedure preserves more of
the anatomy, theoretically providing more resistance during motion
(Kim et al., 2005).

It has also been suggested that OLIF leads to lumbar instability
and increases the risk of fusion subsidence and fracture (Abe et al.,
2017; Quillo-Olvera et al., 2018; Bereczki et al., 2021). After OLIF,
especially in osteoporotic patients, surgical injury can lead to
instability of the corresponding lumbar segment, subsidence, and
displacement of the fusion cage, which can ultimately result in
surgical failure (Malham et al., 2015). Therefore, in most cases, OLIF
requires reinforcement with internal fixation devices to enhance the
stability of the fusion (Cappuccino et al., 2010; Shasti et al., 2019).
The internal fixation system must maintain good function until firm
bony fusion is achieved. For lumbar fusion, the stiffness of the
internal fixation system at the operative segment and its ability to
share the load of the fusion apparatus is fundamental to bone healing
or fusion. The combination of fusion inserted through OLIF with
posterior internal fixation instrumentation results in a stronger and
more stable structure (Kim et al., 2005; Niemeyer et al., 2006;
Kornblum et al., 2013). Different types of internal fixation

devices play important roles in maintaining the stability of the
operated segment and reducing fusion device complications (Pham
et al., 2016; Xu et al., 2018). Fusion device complications are related
to bone density, fusion level, disc position, disc height, and pedicle
screw internal fixation (Kim et al., 2013; Oh et al., 2017). Fusion
settling is a major factor in revision surgery after OLIF (Alimi et al.,
2014; Tempel et al., 2018). Local healing is better facilitated if the
load transmitted through the fusion device can be increased without
fusion settling.

There is limited research on the biomechanical stability of OLIF
combined with internal fixation. This study aims to identify an OLIF
supplementary internal fixation method that can provide the best
spinal stability. We established a normal vertebral body model and
five surgical models and compared their biomechanical stability
using finite element (FE) analysis. In these 5 models, although the
Individual OLIF (IO) model did not have any additional internal
fixation, we still established its model as a reference.

Methods

Three-dimensional FE model of the lumbar
spine

A female volunteer (age: 39 years old, height: 169.0 cm,
weight: 60.0 kg) with lumbar degenerative disease was
recruited. The entire lumbar spine was scanned using a
NEUVIZ 64-row spiral CT scanner with a slice thickness of
0.1 mm. Appropriate gray values were selected to distinguish
bone and tissues. The images of the L4-L5 segment were selected
from the complete lumbar spine image, as this is the most
commonly used in OLIF surgery. The computed tomography
images were stored in the format of Digital Imaging and
Communications in Medicine (DICOM). The DICOM data
were imported into Mimics Research 20.0 (Materialise,
Belgium) for the three-dimensional (3D) reconstruction of
Lumbar 4-5 segments. Then the reconstructed model was
imported into Geomagic Wrap 2021 (Reverse Engineering
Software, United States) for surface optimization, eliminating
defects in the initial model. After the smoothing process was
completed, the vertebral body of the spine model was offset
inward by 0.5 mm. The hollow part between the original
model and the offset model was added to the anterior
vertebral body as cortical bone and the inner body was used
as cancellous bone. The cortical bone on the upper and lower
surfaces of the vertebral body is set as an endplate with a
thickness of 0.5 mm. The cartilage part was first created by
creating an appropriately sized cylinder in SolidWorks 2019
(CAD software, Dassault Systems, United States), and then
performing Boolean operations on the L4 and L5 endplates
that fit with the cylinder to generate the cartilage. The fusion
device and bone screw were established in Solidworks 2019 with
corresponding dimensions. Finally, all the models were imported
into 3-material (Metric, Belgium) to adjust the screw positions,
perform Boolean operations, generate four screw layout schemes,
and import the inp file into Abaqus 6.14 after generating the
mesh. The ligaments were established in Abaqus 6.14 with seven
major ligaments created at appropriate locations: Anterior
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Longitudinal Ligament (ALL), Posterior Longitudinal Ligament
(PLL), Ligamentum Flavum (LF), Intertransverse Ligament
(ITL), Supraspinous Ligament (SL), and Interspinous
Ligament (ISL).

In the interaction setting, the bonding surface of cortical bone
and cancellous bone were bound, the fusion device was bound to
the lower surface of the L4 segment and the upper surface of the
L5 segment, the ligament was bound to the outer surface of
cortical bone, the bone screw was bound to the surface of the hole
after Boolean operation of the spine. The friction contact
coefficient between the cartilage and the surface of the upper
and lower articular processes was set to 0.1 (Cai et al., 2022). The
bone parts in the complete FE model of the L4-L5 segments
include cortical bone, cancellous bone, and cartilage parts. The
cortical bone thickness was set to 0.5 mm based on CT image
estimation and another research (Cai et al., 2022). The element
type for cortical bone, cancellous bone, fusion cage, and bone
screw was C3D4, the element type of ligament was T3D2, and the

element type of cartilage was C3D4. The developed L4-L5 spinal
segment model was meshed using C3D4 elements after a mesh
convergence study.

FE models of the internal fixation and cage

In the present study, the Individual OLIF (IO) model and
OLIF combined with four internal fixation models were
established (Figure 1). The cage measures 45.0 mm in length,
17.0 mm in width, and 14.0 mm in height. The length of the
screw is 45.0 mm and the diameter is 6.5 mm. The connecting
rod has a length of 50.0 mm and a diameter of 5.5 mm. The
fusion device and internal fixation were established by
corresponding dimensions in Solidworks 2019. During the FE
simulation, the entire nucleus pulposus and fibrous ring were
removed. In the Individual OLIF (IO) model, fusion cages were
implanted in the intervertebral space, and no internal fixation

FIGURE 1
Four types of internal fixation models. (OLIF: Oblique lateral lumbar interbody fusion, UPS: Unilateral Pedicle Screw, BPS: Bilateral Pedicle Screws,
DRVS: Double row vertical screw, UVS-PS: Unilateral Vertebral Screw-Pedicle Screw).
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was implanted. In the OLIF + Unilateral Pedicle Screw (OLIF +
UPS) model, while implanting a fusion cage in the intervertebral
space, screws were implanted in one side of the pedicle, and the
upper and lower screws were connected by connecting rods. In
the OLIF + Double row vertical screw (OLIF + DRVS) model,
while implanting a fusion cage in the intervertebral space,
double row screws were implanted in the lateral vertebral
body, which was connected by connecting rods. At the same
time, a transverse connection was added at the level of the
intervertebral disc to connect the bilateral connecting rods. In
the OLIF + Unilateral Vertebral Screw - Pedicle Screw (OLIF +
UVS-PS) model, a fusion cage was implanted in the
intervertebral space, screws were implanted in one side of the
pedicle, and screws were implanted in the same side of the
vertebral body. The pedicle screws and vertebral screws were
connected by connecting rods, respectively. In the OLIF +
Bilateral Pedicle Screws (OLIF + BPS) model, a fusion cage

was implanted in the intervertebral space, screws were
implanted in both pedicle screws, and the upper and lower
screws were connected by connecting rods.

Definition of the properties of the materials

Linear elastic material models were used for the bony
tissues. Facet cartilage and intervertebral discs were modeled
using Neo-Hookean and Mooney-Rivlin hyperelastic materials
(Du et al., 2014; Cai et al., 2020; Cai et al., 2022; Liu et al., 2022).
The nucleus pulposus constituted 50% of the disc and the cortical
bone thickness was 0.5 mm (Cai et al., 2022; Zhang et al., 2022).
The material parameters of the tissue model are shown in Table 1.
The material used in the cage is Poly ether ether ketone (PEEK),
and the material used for internal fixation is titanium alloy.
Linear elastic material models were used for the spinal cage

TABLE 1 Material properties, element type, and number for the component in the FE model of the spinal segment.

Component E [MPa] ν Element type References

Bony Structures

Cortical bone 12,000 0.3 C3D4 Burstein et al. (1976)

Cancellous bone 1,500 0.3 C3D4 Lindahl (1976)

Posterior bone 3,500 0.3 C3D4 Shirazi-Adl et al. (1986)

End plate 12,000 0.3 C3D4 Grant et al. (2001)

Facet cartilage 20 0.3 C3D4

Intervertebral disc

Annulus fibrosus Calibrated stress-strain curves

Nucleus pulposus Mooney–Rivlin, C1 = 0.12, C2 = 0.03

Implants

Cage 22,000 0.3 C3D4

Internal fixation 110,000 0.3 C3D4

(*E represents Young’s modulus and ν represents the Poisson’s ratio).

TABLE 2 Material properties, element type, number, and cross-sectional area of the ligaments in the FE model.

Ligament E1*[Mpa] E2*
[Mpa]

ε12** Element type (number) Area [mm2] Reference

Anterior Longitudinal Ligament 7.8 20.0 0.12 T3D2 (7) 32.4 Moramarco et al. (2010)

Posterior Longitudinal Ligament 1.0 2.0 0.11 T3D2 (6) 5.2

Ligamentum Flavum 1.5 1.5 0.06 T3D2 (3) 84.2

Intertransverse Ligament 10.0 59.0 0.18 T3D2 (3) 1.8 Chazal et al. (1985)

Supraspinous Ligament 3.0 5.0 0.2 T3D2 (4) 25.2

Interspinous Ligament 13.2 42.6 0.15 T3D2 (4) 35.1

Ligament E [Mpa] ν Element type (number) Area [mm2] Reference

Capsular Ligament 24.4 0.3 T3D2 (6) 23.8 Tyndyka et al. (2007)

(*E1 denotes the Young’s modulus of the first phase and E2 denotes the Young’s modulus of the second phase; ε12** denotes the strain transition between two bilinear moduli E1 and E2.).
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and internal fixation components. Therefore, an elastic modulus
of 22000 MPa and Poisson’s ratio of 0.3 were defined for the cage,
and an elastic modulus of 110000 MPa and Poisson’s ratio of
0.3 were defined for internal fixation. All ligaments were meshed
using tension truss elements (T3D2). Based on literature data, the
bilinear elastic material model described the mechanical behavior
of ALL, PLL, LF, ITL, SSL, and ISL, while the linear elastic
material model described the mechanical behavior of CL.
(Table 2).

The setting of the loading and boundary
conditions

In the FE L4-L5 spinal fixation models, the spinal cage was fully
constrained to its adjacent bony parts. The screws were fully

constrained to their surrounding bone tissues, and the
connecting bars and screws were also fully constrained to each
other. Six loading scenarios (flexion and extension, leaning-left and
leaning-right, rotate right and rotate left) were simulated in the FE
L4-L5 spinal fixation models to mimic the daily activities (Figure 2).
In all the loading scenarios, a vertically downward load of 200.0 N
was applied in the model to simulate the body weight. Boundary
conditions were established to fix the lower surface of L5, a reference
point was established at the center of the upper surface of L4, the
reference point was coupled with the upper surface, a torque of
5 N m and a concentrated force perpendicular to the upper surface
of the vertebral body of 200 N were applied to the reference point,
and the forces on the spine were jointly simulated. After the settings
were applied, the results were calculated.

IOmodel has 232,411 nodes and 1424600 elements. OLIF + UPS
model has 228,770 nodes and 1393400 elements. OLIF + DRVS

FIGURE 2
Six activity directions and boundary conditions.
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model has 232,840 nodes and 1415121 elements. OLIF + UVS-PS
model has 229,094 nodes and 1390833 elements. OLIF + BPS model
has 242,659 nodes and 1808364 elements. The mesh size of bones
ranges from 0.5 to 2.5. The mesh size of the cage ranges from 1.2 to
4.5. The mesh size of the screw ranges from 0.5 to 2.5.

Results

Validation of the FE spinal model

Apply 10 N m to our model and compare the ROM of fused
segments with cadaver studies (Yamamoto et al., 1989). Our results

fall within the range of variation, demonstrating our model’s
reliability (Figure 3).

Ranges of motion (ROM) of the fused spinal
segment

The ultimate goal of OLIF surgery is to make the fusion segment
as a whole part, and thus the angle of vertebral body movement can
directly reflect the effectiveness of the surgery. The ROMof the fused
segment is expressed as an angle, which directly reflects the stability
of the fused segment. The less ROM, the more stable of fusion
segment and the less risk of complication (Cai et al., 2022). The

FIGURE 3
The comparision of ROM between the intact model and the previous in vitro experimental study. (Unit:degree).

FIGURE 4
The ranges of motion (ROM) of fusion segments (Unit:degree).
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ROM of the surgical model under a combined load of 200 N and
5 N m is shown in Figure 4 and Table 3. In the flexion group, the
ROM of IO was 9.48°, and the ROM of OLIF + DRVS was 6.74°. In
the backward bending group, the ROM of IO was 6.44°, and the
ROM of OLIF + DRVS was 7.91°. These four data are significantly
greater than the data of other models in various motion directions.
OLIF + BPS has a maximum ROM of 1.82° during backward
bending and has the smallest ROM in all directions of motion.
OLIF + UPS is similar to OLIF + UVS-PS, and both models are
slightly inferior to OLIF + BPS overall, but the difference is not very
significant.

Distribution of the von mises stress in the
cage and internal fixations

The greater the stress distributed on the fusion cage and internal
fixation, the higher the likelihood of complications is to occur, such
as cage settlement, endplate collapse, fractures, and screw loosening
and fracture (Villa et al., 2014; Singhatanadgige et al., 2021; Qin
et al., 2022). The distribution of the von Mises stress on the Cage is
shown in Figures 5, 6; Table 4. In the flexion group, the von Mises
stress of IO was 68.15 MPa, and of OLIF + DRVS was 44.64 MPa. In
the backward bending group, the von Mises stress of IO was
54.07 MPa, and of OLIF + DRVS was 53.42 MPa. These four
data are significantly greater than the data of other models in
various motion directions. The data of OLIF + BPS and OLIF +

UVS-PS are similar and are less than others. The average stress on
every motion direction of OLIF + BPS is about 17.08 MPa and of
OLIF + UVS-PS is about 19.29 MPa.

The distribution of the von Mises stress on the internal fixation
is shown in Figures 7, 8; Table 5. In flexion and posterior extension,
the maximum internal fixation stresses on OLIF + DRVS and OLIF
+ UVS-PS were significantly greater than those in the other models.
OLIF + DRVS had the maximum internal fixator stress in forward
bending (155.9 MPa), and OLIF + UVS-PS had the maximum
internal fixator stress in posterior backward bending (105.8 MPa).
OLIF + BPS had the maximum internal fixator stress in left rotation
(31.85 MPa), and OLIF + UPS had the maximum internal fixator
stress in posterior extension (76.59 MPa). The data of these two
models were smaller than in the other models.

Discussion

This study aims to identify an OLIF supplementary internal
fixation method that can provide the best spinal stability. In the
present study, the biomechanical stability of the L4-L5 spinal
segment using different fixations was investigated using FE
analysis. Five different models, e.g., OLIF + DRVS, OLIF + UPS,
IO, OLIF + BPS, OLIF + UVS-PS, were simulated and the ROM of
the fused spinal segment and stress distribution in the cage and
internal fixations were investigated (Cai et al., 2022). All
intervertebral discs in the figures have been replaced by fusion cages.

TABLE 3 The ROM of fusion segments (Unit: degree).

Name Flexion Extension Left-leaning Right-leaning Rotate left Rotate right

Individual OLIF 9.48 6.44 1.47 1.90 1.51 1.61

OLIF + Bilateral pedicle screws 0.64 1.82 0.93 1.05 1.14 1.18

OLIF + Unilateral pedicle screw 1.22 2.99 1.20 2.44 1.69 1.36

OLIF + Double row vertebral screw 6.74 7.91 1.96 2.31 2.24 2.73

OLIF + Unilateral vertebral screw - pedicle screw 1.98 2.35 1.40 1.97 1.33 1.38

FIGURE 5
Maximum von Mises stresses distributed on the cage (Unit: MPa).
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By comparing the ROM of different models, we found that OLIF +
BPS has the least ROM in each motion mode. On the one hand, this
indicates that OLIF + BPS provides a more stable load-sharing on the
fusion, facilitates bone healing or fusion, and has themost stable fusion-

vertebral body interface, reducing the likelihood of complications such
as fusion loosening. On the other hand, the IO and OLIF + DRVS had
the greatest ROM in flexion and extension motion compared to all
surgicalmodels. This implies that postoperative patients who accept one

FIGURE 6
Cloud map of stress distribution in the fusion device during flexion and extension.
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of these two operations aremore likely to experience pain due to lumbar
instability. The excessive motion indicates a weaker fusion-vertebral
body interface, increasing the risk of cage loosening, displacement, or
even prolapse.

The maximum stress on the IO and OLIF + DRVS fusion cages
during flexion and extension is significantly greater than that onOLIF +
BPS and OLIF + UVS-PS. This indicates that IO and OLIF + DRVS are
more prone to fusion cage settlement compared to OLIF + BPS and
OLIF + UVS-PS. This result is consistent with the study by Guofang
Fang et al. They found that OLIF + BPS can reduce themaximum stress
on the endplate, thereby reducing the incidence of cage settlement.
Compared to OLIF + BPS, the IO method of OLIF surgery generates
more pressure, especially in terms of extension and flexion, which may
be a potential risk factor for cage settlement (Fang et al., 2020). In
addition, in our study, the maximum stress on the fusion cage during
forward flexion and backward extension is significantly greater than in
other directions, mostly occurring in the upper front or lower back. This
indicates that the fusion cage ismore likely to enter the vertebral body in
an inclined posture (Figure 6). This is consistent with the research
results of Fang, G. et al. (Fang et al., 2020). The maximum cage stress in
the OLIF + UPS was less than that in the IO and OLIF + DRVS, but
greater than that in OLIF + BPS and OLIF + UVS-PS. Under different
motion loads, the cage was less stressed in the OLIF + BPS and OLIF +
UVS-PS. Only in flexion and rotating right, the maximum cage stress
was greater in OLIF + UVS-PS than in OLIF + BPS. In the rest of the
motion loads, the maximum cage stress was similar in both internal

fixation methods, indicating a lower likelihood of cage subsidence in
both models.

The maximum internal fixation stresses for OLIF + UVS-PS
were significantly greater in flexion, extension, and rotating left
compared to the other models, except for OLIF + DRVS. These
results indicate that the components of OLIF + DRVS and OLIF +
UVS-PS are more likely to fracture. The maximum internal fixation
stresses for OLIF + UPS and OLIF + BPS were smaller and similar in
all motion directions. The maximum internal fixator stress of OLIF
+ BPS was greater than that of OLIF + UPS only in left rotating.
Therefore, OLIF + BPS is the least likely to experience a component
fracture due to metal fatigue, followed by OLIF + UPS. These
findings are consistent with the study by Cai, X. Y. et al., where
the maximum stress of OLIF + DRVS was significantly greater than
that of OLIF + UPS and OLIF + BPS (Cai et al., 2022).

The performance of the ROMandmaximum stresses of OLIF + BPS
were better than the other models under the same loading conditions.
This indicates that OLIF + BPS can limit the movement of the surgical
segment, share the stress of the fusion and endplate, maintain the effect of
indirect decompression after OLIF, and further improve its stability with
significant biomechanical advantages. However, OLIF + BPS cannot be
performed in a single position and requires intraoperative changes in the
patient’s position. OLIF + UPS were slightly less effective than OLIF +
BPS in terms of internal fixation, but still provided good biomechanical
stability in all directions of motion and did not require intraoperative
changes in the patient’s position. OLIF + UVS-PS is inferior to OLIF +

TABLE 4 The maximum stress of the cage (Unit: MPa).

Name Flexion Extension Left-leaning Right-leaning Rotate left Rotate right

Individual OLIF 68.15 54.87 29.72 20.29 19.98 19.99

OLIF + Bilateral pedicle screws 7.919 27.98 15.65 16.85 18.82 15.29

OLIF + Unilateral pedicle screw 15.63 39.23 26.96 29.42 24.24 17.11

OLIF + Double row vertebral screw 44.64 53.42 20.16 15.33 18.27 16.31

OLIF + Unilateral vertebral screw - pedicle screw 13.99 27.22 13.96 23.7 20.37 16.52

FIGURE 7
Maximum von Mises stresses distributed on the internal fixation sytem (Unit: MPa).
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UPS in terms of internal fixation stress, patient economic burden, and
surgical procedure. Moreover, the vertebral screws of OLIF + UVS-PS
were only subjected to a small amount of stress, which indicates that
vertebral screws may not be necessary (Figure 8). The ROM and
maximum fusion stresses of IO and OLIF + DRVS are inferior to

those of the other models, which indicates that the incidence of fusion
subsidence and vertebral instability may be higher in these two models
than in the other models. Only one of the two vertebral screws in OLIF +
DRVS was significantly stressed, and the crossbeam was almost
unstressed, which indicates that it may not be necessary to add two

FIGURE 8
Internal fixation strss distribution cloud map during flexion and extension.

TABLE 5 Maximum stress on the internal fixation system (Unit: MPa).

Name Flexion Extension Left-leaning Right-leaning Rotate left Rotate right

OLIF + Bilateral pedicle screws 38.49 54.56 31.85 42.24 64.2 57.26

OLIF + Unilateral pedicle screw 52.82 76.59 21.98 44.78 67.52 64.13

OLIF + Double row vertebral screw 155.9 130.2 28.82 49.74 60.66 42.49

OLIF + Unilateral vertebral screw - pedicle screw 73.88 105.8 56.38 39.61 66.37 74.58
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vertebral screws to the vertebral body and connect them through the
crossbeam (Figure 8).

Although the present study comprehensively investigated different
implantation methods, some limitations should be acknowledged. First,
only the FE analysis is performed in the present study and no cadaver
studywas performed, whichmay result in conclusions deviating from the
actual situation. Second, this study did not simulate soft tissues except for
the ligaments and intervertebral discs such as muscles, fascia, and fat.
These soft tissues provide slight traction due to their elasticity. However,
currently, there is no evidence to prove that this traction force affects the
biomechanical stability after lumbar surgery. What’s more, it is
conventionally believed that early postoperative lumbar spine surgery
often requires limiting lumbar muscle activity. Therefore, even without
simulating soft tissues like muscles, the results will not be affected
(Williamson et al., 2007). Third, simplified FE models of the cage and
screw are used in the present study.However, the texture on the surface of
the fusion device and the thread of the screw do not affect the overall
mechanical performance, so removing the texture on their surface will
not affect the results of this study. In summary, further experimental
research on cadaveric biomechanics is still necessary for future
investigations. Despite these limitations, our research findings can still
assist spinal surgeons in selecting the most suitable fixation strategy in
clinical practice.

Conclusion

It is concluded from the present study that OLIF + BPS has the best
biomechanical stability, but it requires changing the patient’s position
during the surgery, which reduces the simplicity of the surgery. OLIF +
UPS provides adequate biomechanical stability. OLIF + UVS-PS is
inferior to OLIF + UPS in terms of internal fixation stress, patient
economic burden, and surgical procedure. IO andOLIF +DRVS do not
have significant advantages in biomechanical stability, and may only be
of value in exceptional circumstances. Based on the biomechanical
analysis, OLIF + BPS is recommended for OLIF surgery. OLIF + UPS
can be used as an alternative.
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