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Crosstalk of RNA methylation
writers defines tumor
microenvironment and alisertib
resistance in breast cancer

Xiaoqiang Zhang1,2†, Li Shen1†, Yanhui Zhu2†, Changyuan Zhai1,
Hanling Zeng1, Xiaoan Liu2* and Jing Tao1*

1Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing
Medical University, Nanjing, Jiangsu, China, 2Breast Disease Center, The First Affiliated Hospital of
Nanjing Medical University, Nanjing, Jiangsu, China
Background: The five major RNA methylation modifications (m6A, m1A, m6Am,

m5C, and m7G) exert biological roles in tumorigenicity and immune response,

mediated mainly by “writer” enzymes. Here, the prognostic values of the “writer”

enzymes and the TCP1 role in drug resistance in breast cancer (BC) were

explored for further therapeutic strategies.

Methods: We comprehensively characterized clinical, molecular, and genetic

features of subtypes by consensus clustering. RNA methylation modification

“Writers” and related genes_risk (RMW_risk) model for BC was constructed via a

machine learning approach. Moreover, we performed a systematical analysis for

characteristics of the tumor microenvironment (TME), alisertib sensitivity, and

immunotherapy response. A series of experiments in vitro were carried out to

assess the association of TCP1 with drug resistance.

Results: One “writer” (RBM15B) and two related genes (TCP1 and ANKRD36) were

identified for prognostic model construction, validated by GSE1456, GSE7390, and

GSE20685 cohorts and our follow-up data. Based on the patterns of the genes

related to prognosis, patients were classified into RMW_risk-high and RMW_risk-

low subtypes. Lower RMW_Score was associated with better overall survival and

the infiltration of immune cells such as memory B cells. Further analysis revealed

that RMW_Score presented potential values in predicting drug sensitivity and

response for chemo- and immunotherapy. In addition, TCP1 was confirmed to

promote BC alisertib-resistant cell proliferation and migration in vitro.

Conclusion: RMW_Score could function as a robust biomarker for predicting BC

patient survival and therapeutic benefits. This research revealed a potential TCP1

role regarding alisertib resistance in BC, providing new sights into more effective

therapeutic plans.
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1 Introduction

Breast cancer (BC) is a complex disease affected by multiple risk

factors, including genetic and environmental factors, recognized as

the most common cause of cancer-related deaths among women

worldwide (1–3). Recent studies have focused on investigating the

underlying association of the tumor microenvironment (TME) with

BC. The TME, composed of tumor cells and multiple non-

malignant cell types (immune cells, fibroblasts, and endothelial

cells), exerts influences at all disease stages, including tumor

initiation, metastatic progression, and response to therapies (4–6).

Evidence indicates that significant differences could be derived from

various cellular compositions of immune infiltration in BC, thus

offering prognostic and predictive values (7). In D. Hammerl and T.

Karn’s investigations, tumor-infiltrating leukocytes (TILs) could

serve as a sensitive biomarker, a high level of which indicated

better survival, especially in patients with triple-negative breast

cancer (TNBC) (8, 9). However, apart from the apparent progress

achieved in immunotherapies, clinical benefits from these

applications are restricted to a minority of patients (10). TILs and

other components of the TME in BC were demonstrated to predict

response to anticancer immunotherapies (11). Thus, a

comprehensive understanding of the TME in BC will assist in

enhancing clinical prediction and developing effective

individual strategies.

Recent years have witnessed the identification of over 100 types

of RNA modifications including methylations, cytosine

modifications, isomerization of uridine, and ribose modification

(12, 13). Among them, RNA methylation modifications are

involved in the pathogenesis of various diseases including cancer

through the dysregulation of epigenetic pathways (14, 15). Here,

most attention has been focused on five major RNA methylation

modifica t ions , i . e . , N 6 -methy ladenos ine (m6A) , N 1 -

methyladenosine (m1A), N6,2′-O-dimethyladenosine (m6Am), 5-

methylcytosine (m5C), and 7-methylguanosine (m7G), reckoned to

be activated by “writers” enzymes (16–23). The valid associations of

the five major RNA modifications and related enzymes with the

TME are reported in recent studies (24–26). However, given only

one or two RNA modification “writers” contained in these studies,

the antitumor effect of RNA modifications through multiple

regulators lacks attention, especially in BC. Thus, our study sheds

light on the correlations between numerous “writers” and the TME

in BC for a holistic understanding.

Alisertib (MLN8237), an Aurora A inhibitor, has been shown to

prevent Aurora A from being phosphorylated. This drug has been

reported to prevent N-myc signaling and tumor growth by

inhibiting the interaction between N-myc and the factor AURKA

(27). By modifying the expression of the BCL-2 family (Bcl-xL), the

drug might cause apoptosis (28). In a randomized clinical trial, the

safety and effectiveness of weekly paclitaxel therapy with alisertib

addition in metastatic breast cancer patients were assessed (29).

This phase 2 study found that compared with paclitaxel, weekly

paclitaxel plus oral alisertib presented improved progression-free

survival (PFS) significantly, and the toxic impacts were manageable.

Nevertheless, studies concerning the potential mechanism of BC

cells resistant to alisertib remain few.
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In this work, the prognostic roles of RNA methylation

modification “writers” were explored using bioinformatics and

statistical analysis, based on cases from The Cancer Genome

Atlas (TCGA), the Gene Expression Omnibus (GEO) dataset, and

our follow-up data. One “writer” and two related genes were

identified to construct the RNA methylation modification

“writers” and related genes_risk score (RMW_Score) model. It

was observed that the risk signature was related to immune

infiltration, therapeutic response, and genetic and molecular

features. Interestingly, we also proposed the TCP1 role in

resistance to alisertib, which may offer a novel target for

overcoming drug resistance.
2 Materials and methods

2.1 Data collection and processing

Complete clinical information and gene expression data of BC

patients were extracted from TCGA and GEO databases. With the

use of the “caret” R package, the 1,089 BC patients from TCGA

database (https://portal.gdc.cancer.gov/) were randomly assigned to

training and validation cohorts in a 1:1 ratio. GSE1456, GSE7390, and

GSE20685 cohorts were retrieved from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). A total of 194 BC samples from our

follow-up data were used for further validation. The IMvigor210

cohort was included to evaluate the role of RMW_Score in predicting

immunotherapy benefits. The expression of data and clinical details

of the IMvigor210 cohort were obtained from http://research-

pub.gene.com/IMvigor210CoreBiologies.
2.2 Clustering pattern

Unsupervised clustering algorithm was performed to identify

the robust clustering of BC using the “ConsensusClusterPlus”

package. According to previously published literature, 20

acknowledged RNA methylation modification “writers” were

collated to explore potential prognostic biomarkers. These

“writers” consist of seven m6A enzymes (METTL14, METTL16,

WTAP, RBM15, RBM15B, ZC3H13, and VIRMA), five m1A

enzymes (TRMT61A, TRMT61B, TRMT10C, TRMT6, and

TRPM5), one m6Am enzyme (PCIF1), five m5C enzymes

(NSUN2, NSUN3, NSUN4, NSUN5, and NSUN6), and two m7G

enzymes (METTL1 and WDR4).
2.3 Enrichment analysis

We identified differentially expressed genes (DEGs) via

Bioconductor packages “DESeq2” and “limma”. “GSEA” and

“GSVA” R packages were utilized respectively for gene set

enrichment analysis (GSEA) and gene set variation analysis

(GSVA) to study the variation of RNA modification patterns in

biological processes. The gene sets were available from the

MSigDB database.
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2.4 Immune infiltration

The infiltrating level of 28 immune cell types was quantified

using single-sample gene set enrichment analysis (ssGSEA).

ssGSEA employed an enrichment score to represent the relative

abundance of each immune cell type by package “gsva”. The

normalized distribution was from 0 to 1. Via TIMER,

CIBERSORT, and xCell algorithms, the levels of immune

infiltrating cells were calculated. The related data were

downloaded from the TIMER2.0 website (http://timer.comp-

genomics.org/).
2.5 Construction of the RMW_Score and
drug sensitivity

The RMW_Score of each BC patient was calculated by the

formula Risk score =on
i=1(Coefi ∗Xi), where i represents the RNA

modification phenotype-related genes and Xi represents the

expression value of each gene. Coefi is the coefficient of each gene

in the RMW_Score model. The Coefi for RBM15B, TCP1, and

ANKRD36 were −0.101981953, 0.017033828, and −1.224417758,

respectively. Genomics of Drug Sensitivity in Cancer (GDSC; http://

www.cancerrxgene.org/downloads) provided the antitumor drugs

in cancer cell lines and relative drug targets/pathways for

investigation. Spearman’s correlation analysis was applied to

calculate the correlation of RMW_Score with drug sensitivity (|

Rs| > 0.2 and false discovery rate (FDR)<0.05).
2.6 Cell culture and cell transfection

The MDA-MB-231, BT-549, alisertib-resistant MDA-MB-231,

and BT-549 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) (Gibco, Grand Island, NY, USA) medium

containing 10% fetal bovine serum (FBS; Gibco) and 1%

penicillin/streptomycin (Gibco, USA) at 37°C in a 5% CO2

incubator. MDA-MB-231/alisertib and BT-549/alisertib cells were

also cultured in 2 mg/ml of alisertib to maintain drug resistance.

Small interfering RNA (siRNA) (GenePharma, Shanghai, China)

was utilized to silence transiently the expression of TCP1. Based on

the producer’s instructions, we conducted transfection with

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).
2.7 Alisertib-sensitive assay

Cell Counting Kit-8 (CCK-8) was used to determine the half-

maximal inhibitory concentration (IC50) for the drug-sensitivity

test to alisertib. Fresh media were used to cultivate 1.5 * 104 MDA-

MB-231 and BT-549 cells in 96-well plates. The corresponding

concentration of alisertib (0.1, 0.5, 1, 5, 10, 20, and 40 mM) was

administrated to cells. Cell Counting Kit-8 (Dojindo, Japan) was

used at the specified time to measure the in vitro drug sensitivity
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Waltham, MA, USA) set at 450 nm. With GraphPad 8.0, the IC50

was visually determined.
2.8 Quantitative reverse transcription
polymerase reaction

TRIzol reagent (Invitrogen, USA) was used to extract total RNA

from cells in accordance with the producer’s protocol. RNA was

reverse transcribed into cDNA through a reverse transcription kit

(Takara, Maebashi, Japan). The primers sequences were listed as

follows: GAPDH-F: 5′-GACAGTCAGCCGCATCTTCT-3′;
GAPDH-R: 5′-TTAAAAGCAGCCCTGGTGAC-3′; TCP1-F: 5′-
CGGGATCCATGGCGGTGAAGGCCCTT-3′; TCP1-R: 5′-
GCTTCTAGATCAGCCTTTAAGAGATGAC-3′.
2.9 EdU assay

BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 594

(Beyotime, Shanghai, China) was utilized. Cells were washed with

phosphate-buffered saline (PBS). DMEM (Gibco, USA) and 10 mM
of EdU were then added to the plate. After 2-h incubation at 37°C/

5% CO2, the medium containing DMEM and EdU was removed by

washing the cells with PBS. A solution of 4% paraformaldehyde was

used as a fixative solution at room temperature for 30 min. The cells

were then stained with DAPI for 3 min. At last, the cells were

washed with PBS and observed with an inverted microscope.
2.10 Cell proliferation assay

MDA-MB-231/alisertib cells receiving si-NC or si-TCP1

treatment were seeded in 96-well plates. CCK-8 solution

(RiboBio, Guangzhou, China) measuring 10 ml was added per

well at a specified time (0, 24, 48 h, etc.) based on the protocol.

We used a microplate reading element (Synergy4, USA) to measure

the cell absorbance at 450 nm.
2.11 Transwell assay

The methods of the migration assay were similar to those of the

invasion assay except for the membrane type in the upper transwell.

The membrane for migration detection was normal, while that for

invasion detection was a Matrigel-coated membrane (BD

Biosciences, San Jose, CA, USA). MDA-MB-231/alisertib cells

receiving si-NC or si-TCP1 were cultured with serum-free

DMEM medium in the upper chamber. A complete medium

including 10% FBS was placed into the bottom chamber as a

chemotactic agent. After 48-h incubation, the cells were fixed

with 4% paraformaldehyde and then stained with crystal violet.

At last, we used a microscope to observe the difference.
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2.12 Colony formation assay

The single-layer culture cell suspension during the logarithmic

growth phase was diluted due to multiple gradients, and the culture

plate was inoculated with the appropriate cell density. After the

supernatant was discarded, PBS was used to wash the cells twice.

Pure methanol measuring 5 mL was added at room temperature for

15 min to fix cells. After removal of the fixative solution, Giemsa

stain was added to establish a staining solution for 10–30 min.

Finally, the plate was turned upside down with a grid of

transparencies overlaying, and the clones were directly counted

by the naked eye.
2.13 Western blotting

radioimmunoprecipitation assay (RIPA) buffer (Beyotime,

China) with protease inhibitors (Sigma-Aldrich, St. Louis, MO,

USA) was used to lyse the cells. The protein lysates were separated

by the 10% sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS-PAGE) and then transferred by

polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica,

MA, USA). Membranes were exposed under primary (anti-TCP1

antibody, Proteintech, Wuhan, China; anti-a-tubulin antibody,

Proteintech, China) and secondary antibody incubation. After

washing, the chemiluminescence system (Bio-Rad, Hercules, CA,

USA) and Image Lab Software (NIH) were respectively utilized for

obtaining signals and processing them.
2.14 Cell cycle arrest and apoptosis
measurement by flow cytometry

MDA-MB-231/alisertib cells treated differently were washed

with PBS. The cells were then fixed with 75% ethanol and kept at

−20°C overnight. The cell cycle detection kit (MultiSciences,

Hangzhou, China) and Annexin V-APC/PI Apoptosis Detection

Kit (MultiSciences, China) were used respectively for cell cycle

distribution and apoptotic cell staining. The different cells were

ultimately analyzed by flow cytometry.
2.15 Statistical analysis

Spearman’s correlation analysis was used to estimate the

correlation coefficient of RNA modification “writers”. Moreover,

univariate Cox regression assisted in identifying statistically

significant genes related to prognostic value. The association

between the RMW_Score signature and prognosis was analyzed

via the Kaplan–Meier survival analysis with “survival” and

“survminer” packages. The cutoff point of survival information

was used for dichotomy RMW_Score. Then, potential points were

tested to obtain the maximum rank statistic. In addition, the

classification performance of the RMW_Score signature in

prognosis was evaluated through the receiver operating

characteristic (ROC) curve and the area under the curve (AUC)
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values via the “ROC” R package. Univariate and multivariate Cox

regression were employed to demonstrate the role of RMW_Score

in predicting prognosis independently. A nomogram model was

constructed by the “rms” R package. All statistical analyses were

performed via R software (Version 4.2.1), GraphPad Prism 8.0

(GraphPad Software, San Diego, CA, USA), and SPSS 26.0 (IBM,

Armonk, NY, USA). Statistical significance was defined as p< 0.05.
3 Results

3.1 Consensus clustering for BC patients in
TCGA cohort

The flowchart of our work is shown in Figure 1. With consensus

clustering performed based on RNA methylation modification (k =

2), 1,089 BC patients from TCGA dataset were stratified into two

subgroups: cluster 1 (n = 321) and cluster 2 (n = 768, Figure 2A).

Noticeably, the Kaplan–Meier curves revealed that patients in

cluster 2 had better overall survival (OS; p = 0.013). To explain

the significant difference in OS, Gene Ontology (GO) enrichment

analysis was performed, showing that DEGs between the clusters

were identified enriched in organelle fission, nuclear division, and

amide binding (Figure 2B). We also observed the proportions of 28

immune cell types between clusters 1 and 2 by leveraging the

ssGSEA algorithm. The distribution of 28 immune cell types is

illustrated in Figure 2C, supporting that cluster 1 was associated

with higher proportions of activated CD4 T cell, gamma delta T cell,

memory B cell, and type 2 T helper cell. However, the proportions

of most immune cell types were higher in cluster 2 than those in

cluster 1, such as central memory CD4 T cell, central memory CD8

T cell, effector memory CD8 T cell, T follicular helper cell, type 1 T

helper cell, type 17 T helper cell, CD56bright natural killer cell,

CD56dim natural killer cell, eosinophil, macrophage, mast cell,

monocyte, natural killer cell, natural killer T cell, neutrophil, and

plasmacytoid dendritic cell. In addition, Figure 2D displays the

distribution of immune cells in different subtypes, including

clusters, tumor purity, estimate score, immune score, and

stromal score.

Subsequently, more molecular and genetic insights were

focused on clustering. Related gene expressions such as CD274

and CTLA4 were upregulated in cluster 1 over cluster 2 except

TBX2 (Figure 2E). The results from Figures 2F, G revealed that

PIK3CA accounted for 36%, the highest incidence in cluster 2,

whereas TP53 had the highest incidence (51%) of mutations in

cluster 1. Of note, compared with cluster 2, tumor mutational

burden (TMB) was significantly enriched in cluster 1 (Figure 2H).

Moreover, 69 differentially expressed pathways in two clusters were

identified as related to survival (Figure 2I). GSVA was performed to

investigate these differentially expressed pathways between the

cluster subtypes. In that matter, BC patients with low expression

of regulation of autophagy pathway had favorable prognosis,

whereas high expressions of JAK/STAT signaling and drug

metabolism cytochrome p450 pathways were significantly

associated with worse outcomes (Figures 2J–L). Other major

pathways were exhibited in the heatmap (Figure 3A).
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Furthermore, as displayed in Figure 3B, PCIF1 and NSUN2 had a

widespread frequency of copy number variation (CNV) gain in

both clusters.
3.2 Investigation of five types of RNA
methylation modification “writers”

The findings based on the cluster subtype supported the roles of

RNA methylation modification in prognosis and immune

infiltration. To quantify the RNA methylation modification

patterns in individual BC patients, we attempted to develop a

prognostic score model. The roles of 20 RNA modification

“writers” were explored in this work. According to current

investigations (19, 23, 30, 31), seven m6A modification “writers”,

five m1A modification “writers”, one m6Am modification “writer”,

five m5C modification “writers”, and two m7G modification

“writers” were included. First, we observed that compared with

normal samples, the expression of “writers” such as TRMT61A,

TRPM5, TRMT10C, and NSUN2 was significantly upregulated in

BC samples, whereas “writers” like TRMT61B and ZC3H13 were

apparently decreased in BC samples (Figure 3C). Additionally,
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pairwise correlations among the expression of the 20 writers were

calculated to estimate their relationships (Figure 3D). Obviously, a

remarkable correlation existed in the same categories. Significant

correlations were also observed among different types of RNA

modification writers. The expressions of METTL1, TRMT61A,

NSUN5, and NSUN3 were positively correlated with other

writers. On the contrary, negative correlations were present in the

expression of NSUN6, RBM15, NSUN2, TRMT6, TRMT10C, and

WTAP with other writers. Thus, negative correlations occurred

more frequently than positive ones.
3.3 Construction and validation of a
prognostic signature for BC

We then performed univariate Cox regression analysis to

evaluate the relationship between these writers and the prognosis

of BC patients (Figure 3E). Further analysis of these writers, 20

writers, and 82 related genes were curated (p< 0.05, Cor ≫ 0:65.

Then, machine learning was utilized to identify three genes

(RBM15B, TCP1, and ANKRD36) linked with BC prognosis

(Figure 3F). In that matter, TCP1 was correlated with m6A
FIGURE 1

Flowchart of the study design.
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modification “writer” WTAP. According to the results, a scoring

model termed as RMW_Score (RNA methylation modification

“writers” and related genes_risk score) was constructed to

quantify RNA modification patterns of individual BC patients.

The RMW_Score of each patient could be calculated, and 1,089

BC cases from TCGA database were divided into RMW_Score-high

and RMW_Score-low groups. Then, the Kaplan–Meier survival

analysis was performed, suggesting that patients in the

RMW_Score-high group had a worse outcome than the

RMW_Score-low group in both the training cohort (n = 545) and

validation cohort (n = 544) (p< 0.001, Figure 3G).
3.4 Immune landscapes of
RMW_Score signature

To explore the potential mechanisms underlying the different

prognoses of RMW_Score-high and RMW_Score-low groups, we

first investigated the DEGs in the two groups. As indicated in the

volcano plot (Figure 3H), a total of 1,272 DEGs consisting of 1,053

upregulated and 219 downregulated genes were identified. Then, we

observed that these genes were enriched in biological processes,
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such as the interleukin-1-mediated signaling pathway and

nucleoside triphosphate metabolic process by GSEA (Figure 3I).

These DEGs were also found related to hallmarks like mTORC1

signaling and reactive oxygen species pathways. We also compared

the expression of 20 “writers” in the two groups (Figure 3J) and

found that in the RMW_Score-low group, NSUN6, TRMT61B,

PCIF1, ZC3H13, METTL14, NSUN4, RBM15B, METTL16,

NSUN3, and VIRMA were upregulated while TRMT10C,

METTL1, NSUN5, and WTAP were downregulated.

Next, the ssGSEA approach was applied to estimate the

infiltrating levels of immune cells in BC. The association of

immune cell distribution with different subtypes (RMW_Score,

tumor purity, estimate Score, immune score, and stromal score) is

depicted in the heatmap (Figure 3K). In that matter, the infiltrating

levels of major immune cells were positively linked with

RMW_Score, including monocyte, gamma delta T cell, and

activated CD4 T cell. The correlations of the six types of immune

cells (activated CD4 T cell, gamma delta T cell, monocyte, activated

CD8 T cell, activated dendritic cell, and CD56bright natural killer

cell) with RMW_Score could be viewed in Figure 3L. Furthermore,

the significant association of RMW_Score with nine immune

checkpoints including CTLA4 was observed (Figure 4A). We also
DA B

E F G

I
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FIGURE 2

(A) Consensus clustering matrix for k = 2 and Kaplan–Meier curve revealed OS of patients in cluster 1 (red) and cluster 2 (blue). (B) Gene Ontology
(GO) based on differentially expressed genes (DEGs) between two clusters. (C) The infiltrating levels of 28 immune cell types were compared
between cluster 1 (red) and cluster 2 (blue). ns, no significance,*p < 0.05, **p < 0.01 and ***p < 0.001. (D) Heatmap for the landscape of immune cell
types (rows) in patients (columns). Column annotations represent cluster, Tumor Purity, ESTIMATE Score, Immune Score, and Stromal Score. (E) The
box plot compared the expression of different immune targets between cluster 1 (red) and cluster 2 (blue). ns,no significance,*p < 0.05, **p < 0.01
and ***p < 0.001. Waterfall maps revealed genetic alterations of BC patients in cluster 1 (F) and cluster 2 (G). (H) Relative distribution of tumor
mutational burden (TMB) in cluster 1 versus cluster 2 exhibited in the boxplot. (I) Venn diagram indicating 69 survival-related pathways. (J–L)
Kaplan–Meier curves for three pathways highly associated with survival, including regulation of autophagy, JAK/STAT signaling pathway, and drug
metabolism cytochrome p450. OS, overall survival; BC, breast cancer.
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set sight on the distribution of TMB and found that patients with

high RMW_Score had higher TMB (p< 0.001, Figure 4B). In

addition, a positive correlation was observed between

RMW_Score and TMB (Figure 4C). The prognosis of BC patients

with high immune scores was better than that of patients with low

immune scores (p = 0.019, Figure 4D). We also investigated the

distribution of immune infiltrating cells among RMW_Score-high

and RMW_Score-low groups via TIMER, CIBERSORT, and xCell

(Figure 4E). These results suggested the involvement of the

RMW_Score signature in the BC immune microenvironment.
3.5 Mutation status associated with
RMW_Score signature

Moreover, 69 differentially expressed pathways linked with OS

were selected (Figure 5A). A heatmap with GSVA was established to

visualize and evaluate the major relative pathways, including amino
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sugar and nucleotide sugar metabolism, oxidative phosphorylation,

and galactose metabolism pathways (Figure 5B). Of note, CNV

mutations existed prevalently. PCIF1, NSUN2, and TRMT6

exhibited an extensive frequency of CNV gain no matter in the

RMW_Score-high or RMW_Score-low group, as shown in Figure 5C.
3.6 RMW_Score signature for
nomogram construction

The AUC values of the signature for predicting 5-, 7.5-, and 10-

year OS were respectively 0.659, 0.619, and 0.615 (Figure 5D). To

further confirm the predictive capacity of the RMW_Score signature,

we employed univariate Cox regression analysis based on

clinicopathological features including age, gender, stage, T, M, N,

and PAM50 (Figure 5E). It implied that RMW_Score could serve as a

prognostic biomarker (HR = 1.210, 95%CI 1.102–1.329, p< 0.001).

Moreover, with multivariate Cox regression analysis performed,
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FIGURE 3

(A) A heatmap showing KEGG pathways (rows) for each sample (columns) in both clusters via gene set variation analysis (GSVA). (B) The CNV gain
and loss frequency of RNA modification “writers” in cluster 1 and cluster 2. (C) Box plots compared the expression distribution of 20 “writers”
between paired tumor (red) and normal (blue) tissues. ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001. (D) Heatmap displaying the
correlations among 20 “writers” of five types of RNA methylation modification in BC by Spearman’s correlation analysis. Red, negative correlation;
blue, positive correlation. *p< 0.05, **p< 0.01, ***p< 0.001. (E, F) Identification of prognostic “writers” and related genes in forest plots using
univariate and multivariate Cox regression. (G) Kaplan–Meier curves for BC patients in the training cohort and validation cohort from TCGA database.
(H) DEGs in the volcano plot. Red and blue dots represent upregulated and downregulated genes, respectively. (I) Gene set enrichment analysis
(GSEA) for the association of hallmarks, biological process, and molecular function with DEGs. (J) Analyses for the expression of 20 “writers” in
different RMW_Score groups. ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001. (K) Heatmap for the landscape of immune cell types (rows) in
patients (columns). Column annotations represent risk group, risk score, Tumor Purity, ESTIMATE Score, Immune Score, and Stromal Score. (L)
Correlations of RMW_Score with six immune cell types. KEGG, Kyoto Encyclopedia of Genes and Genomes; CNV, copy number variation; BC, breast
cancer; TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes.
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RMW_Score was an independent and robust predictive factor

(Figure 5F, HR = 1.109, 95%CI 1.003–1.227, p = 0.043). The AUC

of the RMW_Score signature was 0.632, validating its predictive

advantage compared with other factors (Figure 5G). Additionally, a

heatmap in Figure 5H showed the association of RNA modification

patterns with clinical features and RMW_Score. As expected, a

nomogram was constructed according to RMW_Score, PAM50,

age, stage, N, and T stage (Figure 5I). As Figure 5J shows, the

distribution of RMW_Score in PAM50 subtypes was different

significantly. The alluvial diagram in Figure 5K reveals associations

between two clusters and two RMW_Score groups in TCGA patients.
3.7 External validation and
potential therapeutic value for
RMW_Score signature

A total of 194 BC samples from our follow-up data were further

analyzed (Figure 5L). As expected, patients with high RMW_Score
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had worse outcomes, verifying the reliability of the prognostic

model. Consistent with these results, patients in the RMW_Score-

low group from the GSE1456 cohort (n = 159, p< 0.001), GSE7390

cohort (n = 198, p = 0.005), and GSE20685 cohort (n = 327, p =

0.003) also showed an obvious survival advantage (Figure 5M). We

also confirmed the predictive role of RMW_Score in

immunotherapeutic benefits for BC patients. Considering the lack

of published datasets of BC patients receiving immunotherapy, the

urothelial cancer patients (IMvigor210) receiving anti-PD-L1

therapy were used in our study. It was noticed that patients with

high RMW_Score in the IMvigor210 cohort had inferior prognoses

than those with low RMW_Score (p = 0.030, Figure 5N). Moreover,

236 BC patients receiving chemotherapy selected from TCGA

dataset were divided into RMW_Score-high and RMW_Score-low

groups. The Kaplan–Meier curves showed that patients in the

RMW_Score-low group had more survival benefits (p = 0.011,

Figure 5N). Together, RMW_Score could function as an effective

b i omarke r f o r manag ing su i t ab l e and sa t i s f a c t o ry

treatment strategies.
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FIGURE 4

(A) The difference in the expression of different immune targets between RMW_Score-high (red) and RMW_Score-low (blue) groups. ns, no
significance, *p < 0.05, **p < 0.01, ***p < 0.001. (B) The TMB of two RMW_Score groups is compared and plotted. (C) The correlation of TMB with
RMW_Score is shown. (D) Kaplan–Meier curves analyses revealed that high immune scores were associated with more favorable OS (p = 0.019). (E)
A heatmap designed for the normalized scores of immune and stromal cell infiltrations. Blue, lower infiltration; red, higher infiltration. Wilcoxon test
was used to compare the difference between the groups. *p< 0.05, **p< 0.01, ***p< 0.001. Meanwhile, gene mutation patterns and clinical
characteristics are exhibited as an annotation. TMB, tumor mutational burden; OS, overall survival.
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We evaluated the relationship between the RMW_Score and

the response to medications in BC cell lines in order to better

understand the implications of the RMW_Score on drug

response. In the Genomics of Drug Sensitivity in Cancer

database, we found 43 substantially linked relationships

between RMW_Score and drug sensitivity from 345 drugs by

using Spearman’s correlation analysis (Figure 6A) (32). In that

matter, 41 pairs displayed drug resistance associated with the

RMW_Score, including alisertib (Rs = 0.526, p< 0.001), Ara-G

(Rs = 0.51, p< 0.001), and LDN-193189 (Rs = 0.492, p< 0.001).

Drug sensitivity related to the RMW_Score could be noticed in

two pairs, including AZD6482 (Rs = −0.212, p< 0.05) and

pictilisib (Rs = −0.273, p< 0.01). As illustrated in Figure 6B,

drug sensitivity correlated with RMW_Score-high was mainly

targeting PI3K/mTOR signaling pathway, whereas drug

sensitivity correlated with RMW_Score-low was targeting

apoptosis regulation and RTK signaling pathway.
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3.8 TCP1 expression positively correlated
with alisertib resistance

The RMW_Score model of this work was constructed based on

RBM15B, TCP1, and ANKRD36, in which TCP1 was the most

significant element for its lowest p-value (p< 0.001). The Kaplan–

Meier analysis of TCP1 supported that TCP1 was a risk factor for

BC patients, and its high expression was apparently associated with

poor OS (Figure 6C, p< 0.001). Moreover, the potential role of

TCP1 in regulating drug resistance of various tumors including

acute myeloid leukemia (AML) and lung adenocarcinoma (LUAD)

has been investigated in recent studies (33, 34). In our work, the cell

viability assay and quantitative reverse transcription polymerase

reaction (qRT-PCR) results respectively confirmed that MDA-MB-

231/alisertib and BT-549/alisertib cells were more resistant to

alisertib and had higher TCP1 expression than their parental cells

significantly (Figures 6D, E). These findings suggested that TCP1
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FIGURE 5

(A) Venn diagram for 69 distinct pathways related to survival in two subgroups. (B) The survival-related pathways (rows) for each patient (columns)
are shown in the heatmap. Red represents high expression, and blue represents low expression. (C) The CNV gain and loss frequency in
RMW_Score-high and RMW_Score-low groups. (D) ROC curve analyses were performed to evaluate the predictive value of RMW_Score in patients
(AUC of 0.659, 0.619, and 0.615 for 5-, 7.5-, and 10-year overall survival, respectively). (E, F) Forest plots for the independence of RMW_Score as a
prognostic predictor by univariate and multivariate Cox regression. (G) ROC curves for RMW_Score, age, gender, stage, T, M, N, and PAM50.
(H) Heatmap depicting the relationships between three patterns (one RNA modification “writer” and two related genes) and RMW_Score and clinical
characteristics. (I) RMW_Score, age, stage, T, N and PAM50 were used to construct a nomogram (*, p< 0.05; ***, p< 0.001). (J) Comparison of
RMW_Score expression in different PAM50 subgroups. (K) Alluvial diagram of survival status in groups with different clusters and RMW_Score. (L) The
Kaplan–Meier curves for 194 patients from our follow-up data. (M) Kaplan–Meier curves suggested that the RMW_Score-low group all had better
OS in the GSE1456 cohort (n = 159, p< 0.001), GSE7390 cohort (n = 198, p = 0.005), and GSE20685 cohort (n = 327, p = 0.003). (N) The Kaplan–
Meier curves of OS for predicting the immunotherapeutic and chemotherapeutic benefits respectively in the IMvigor210 cohort and TCGA cohort.
CNV, copy number variation; ROC, receiver operating characteristic; AUC, area under the curve; OS, overall survival.
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may contribute to BC cells’ resistance to alisertib. Therefore, we

transiently transfected MDA-MB-231/alisertib and BT-549/alisertib

cells, which have considerably greater TCP1 expression, with TCP1-

specific siRNA vector to reduce TCP1 expression to investigate

whether the cellular TCP1 level is connected to the resistance of BC

cells to alisertib. According to evidence from cell viability assays,

knocking down TCP1 in MDA-MB-231/alisertib and BT-549/

alisertib cells increased alisertib’s capacity to suppress cell viability

and reduced the drug’s half-life (IC50) (Figure 6F). We constructed

TCP1 siRNA and verified the knockdown efficiency in MDA-MB-

231/alisertib cells through Western blotting (Figure 6G).
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3.9 The effects of TCP1 knockdown in
MDA-MB-231/alisertib

For evaluating the effects of TCP1 knockdown in MDA-MB-

231/alisertib, a series of experiments in vitro were conducted. It was

observed that TCP1 knockdown significantly weakened MDA-MB-

231/alisertib cell proliferation through EdU (Figure 6H). The

amount of MDA-MB-231/alisertib colonies was lower in the si-

TCP1 group than that in the negative control (NC) group,

suggesting that the colony formation capacity could be affected by

TCP1 knockdown (Figure 6I). Additionally, we discovered that the
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FIGURE 6

(A) Spearman’s analysis estimating the correlation between RMW_Score and drug sensitivity. Each column indicates a drug. Rs > 0, drug resistance;
Rs< 0, drug sensitive. (B) Drug-targeted signaling pathways based on the RMW_Score. Red represents resistance; blue represents sensitivity. The
significance of the correlation was indicated by the size of the point. (C) The Kaplan–Meier curves for subgroups with different TCP1 expressions.
(D) The cell viability assay was used to compare drug resistance between BC cells and their respective drug-resistant cells. (E) The expression levels
of TCP1 were detected by qRT-PCR. (F) The effects of expression of TCP1 on the inhibiting rate were calculated by CCK-8 assay after 48-h
treatment of alisertib, and the IC50 was calculated by SPSS. (G) The efficiency of TCP1 knockdown was confirmed by Western blotting analysis.
(H) EdU assays indicated the effects of TCP1 knockdown on cell proliferation in MDA-MB-231/alisertib cells. Scale bars = 100 mm. (I) Colony
formation assay of siRNA-treated MDA-MB-231/alisertib cells. (J) Apoptosis analysis of the effects of TCP1 knockdown and statistical analysis are
shown. (K) Cell cycle analysis of the effects of TCP1 knockdown and the cell cycle distribution is shown. (L) CCK-8 assays showed the effects of
TCP1 knockdown on MDA-MB-231/alisertib cell proliferation. (M, N) Effects of TCP1 knockdown on cell migration and invasion in MDA-MB-231/
alisertib cells by transwell assay. Scale bars = 100 mm. Data were analyzed with the mean ± SD of three replicates. *p< 0.05, **p< 0.01, and ***p<
0.001. BC, breast cancer; CCK-8, Cell Counting Kit-8.
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quantity of apoptotic MDA-MB-231/alisertib cells was dramatically

increased in the si-TCP1 group (Figure 6J). As shown in Figure 6K,

TCP1 knockdown increased the percentage of MDA-MB-231/

alisertib in the S and G2 phases while decreasing the G1 phase

population by flow cytometry analyses. Furthermore, the result in

Figure 6L indicated the effect of TCP1 on promoting the MDA-MB-

231/alisertib cell proliferation through CCK-8 assays. We also

found that compared with the NC group, the si-TCP1 group was

less invasive and migrated (Figures 6M, N). Collectively, these data

revealed the effects of TCP1 on promoting the proliferation and

migration of MDA-MB-231/alisertib and drug resistance.
4 Discussion

Increasing evidence has revealed the essential roles of RNA

methylation modifications in the TME through interaction with

numerous “writers”. The single type of RNA methylation

modification “writer” was the main concern in most reported

works of literature. However, a clear view of the functions of

multiple types of “writers” in BC has not been established.

Herein, the RMW_Score model (containing m6A, m1A, m6Am,

m5C, and m7G) was developed via machine learning approaches as

an integrative predictor of BC patients’ survival and therapeutic

responses in BC. Then, using data from 20 RNA modification

enzymes, we determined two unique RNA modification patterns

and identified two BC subtypes associated with RNA modification.

The further landscape of immune cell, genetic, and molecular

characteristics in the two clusters was explored, and cluster 2 was

closely correlated with higher infiltrating levels of immune cells

compared with cluster 1. We also found that 69 pathways differently

expressing in the two clusters were related to survival, most of

which like the JAK–STAT signaling pathway appeared to

upregulate in BC patients with favorable clinical outcomes. These

findings revealed the essential roles of RNA methylation

modifications in the TME and BC prognosis.

Tumor cell metastasis and drug resistance are impacted by

epithelial–mesenchymal transition (EMT) (35, 36), and naïve CD4+

T-cell recruitment might inhibit TI Tregs, restore immune tumor

killing, and inhibit cancer growth and metastases (37). According to

Bach et al., the JAK–STAT pathway, which regulates the expression

of PDL1 and MHC class I, is activated by IFN-g released from

effector T cells in cancer cells. This signaling cascade can cause

tumor cell death in a variety of ways (38, 39). Therefore, we

developed the RMW_Score scoring model (consisting of one

distinct RNA methylation modification pattern (RBM15B) and

two related genes (TCP1 and ANKRD36)) to quantify RNA

methylation modification patterns in individual tumors,

predicting the prognosis of BC patients and facilitating effective

therapeutic strategies. RBM15B, the paralog of RBM15, was found

involved in prognostic models of several types of tumors, such as

alcohol-related hepatocellular carcinoma (A-HCC), small cell lung

cancer (SCLC), and melanoma (40–42). The predictive values of

TCP1 and ANKRD36 were also elucidated in many investigations

(43, 44). For example, it was reported that TCP1 may contribute to

HCC cell proliferation and metastasis by regulating the Wnt7b/b-
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catenin pathway and is a molecular marker for the prognosis (44).

Of note, we explored the involvement of the RMW_Score model.

The RMW_Score-high subtype indicated poor survival

significantly, which was verified in several cohorts including the

GSE1456 cohort, GSE7390 cohort, GSE20685 cohort, and 194

samples from follow-up data.

Subsequently, we observed the association of the RMW_Score

model with the tumor microenvironment and found that the

amounts of immune infiltrating cells were apparently different

between the two groups. The RMW_Score-low group was

associated with high infiltrating levels of memory B cell,

eosinophil, mast cell, natural killer cell, and plasmacytoid

dendritic cell. Recent studies reported that tumor-infiltrating B

cells (TIL-B) in BC were correlated with improved outcomes (45,

46). An analysis of HER2+ and triple-negative breast cancer

patients from the BIG 02-98 clinical trial confirmed the

correlation between positive outcomes and higher TIL-B densities

(46). Similar to these studies, the results in our work implied that

high amounts of memory B cells were associated with better

clinical outcomes.

Additionally, the results from enrichment analyses revealed that

DEGs were remarkably enriched in the interleukin-1-mediated

signaling pathway, nucleoside triphosphate metabolic process,

mTORC1 signaling, and reactive oxygen species pathway. In a

further analysis of these pathways, we found 69 pathways related

to survival, such as Notch signaling and oxidative phosphorylation

(OXPHOS) pathways. Recent studies indicated that OXPHOS could

be upregulated in many cancers, including lymphomas, pancreatic

ductal adenocarcinoma, and breast cancer, based on which

OXPHOS inhibitors exerted positive effects on treating cancers

(47). For instance, marizomib (Mzb) inhibited TNBC metastasis via

OXPHOS inhibition (48). Moreover, we found that BC cases from

either the RMW_Score-low group or the RMW_Score-high group

had high mutations of TP53 and PIK3CA and an enormous

frequency of CNV gain of PCIF1, NSUN2, and TRMT6.

Nevertheless, patients with high RMW_Score were dramatically

associated with TMB.

Moreover, the RMW_Score model could independently predict

the prognosis of BC patients revealed by univariate and multivariate

Cox regression analyses, thus showing predominant advantages

compared with several clinicopathological parameters. Based on

RMW_Score, PAM50, age, stage, T, and N stage, a visualized

nomogram was designed to offer risk score prediction for each

patient. Furthermore, we also found the remarkable effects of the

RMW_Score model on therapeutic response. RMW_Score was

correlated with sensitivity to drugs (AZD6482 and Pictilisib)

targeting PI3K/mTOR signaling pathway and resistance to drugs

targeting apoptosis regulation and RTK signaling pathway. It was

discovered that the drug metabolism enzyme P450 plays a

significant role in affecting the development of BC. The results

demonstrated that patients in the RMW_Score-high group may

benefit from drugs targeting PI3K/mTOR signaling pathway. In

addition to drug response, we analyzed the effects of RMW_Score as

a predictor of chemotherapy and immunotherapy responses. As

expected, patients achieving chemotherapy with low RMW_Score

presented prolonged survival outcomes. Urothelial cancer patients
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(IMvigor210) in the RMW_Score-low group achieved apparent

benefits from anti-PD-L1 therapy. Despite the veracity of

RMW_Score in anti-PD-L1 therapy, further work is needed to

assess the response in patients with BC. Together, our model could

work as a robust and precise biomarker for improving

therapeutic strategies.

T-complex protein 1 (TCP1), also termed CCT1, is one of eight

CCT (chaperonin-containing T complex) subunits (CCT1–8).

According to recent investigations, TCP1 could promote the

tumorigenesis and progression of various tumors (49, 50). For

instance, TCP1 has been found overexpressed in ovarian cancer,

which is correlated with poor prognosis (49). Activation of the PI3K

signaling pathway may contribute to the process of TCP1

upregulation in promoting cancer progression. TCP1 is also

found crucial to BC patients’ survival, connected to driving

oncogenes (50). Furthermore, increasing studies have reported the

effects of TCP1 involved in drug resistance (34). TCP1 presented

high expression in acute myeloid leukemia cells, responsible for

drug resistance. In the current work, we found that TCP1 was

elevated in drug-resistant MDA-MB-231/alisertib and BT-549/

alisertib cells. While TCP1 overexpression imparts resistance to

the therapeutic benefits of MDA-MB-231/alisertib and BT-549/

alisertib, TCP1 downregulation can increase their sensitivity to

alisertib. In light of these findings, it appears that alisertib drug

resistance was linked to high TCP1 levels.

Although the RMW_Score model presented reliable and

efficient prediction in prognosis and therapeutic response of BC

patients, there still existed some limitations. Tumor heterogeneity

and retrospective datasets were the main reasons. Moreover, anti-

PD-L1 therapy response was analyzed in this work based on

patients with urothelial cancer (IMvigor210) due to insufficient

data on BC patients undergoing anti-PD-L1 therapy. Thereby,

further investigation is needed to evaluate immunotherapeutic

response in BC patients.
5 Conclusions

In summary, RBM15B, TCP1, and ANKRD36 were identified

by machine learning approach to construct RNA methylation

modification “writers” and related genes_risk score (RMW_Score)

model. We found that RMW_Score could predict BC patient
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survival and therapeutic benefits as a sensitive marker.

Additionally, TCP1 was confirmed to promote BC alisertib-

resistant cell proliferation and migration in vitro.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.
Author contributions

XZ, JT and LS conceived and designed the study. XZ, YZ and LS

performed bioinformatics analyses. YZ, CZ and HZ analyzed and

interpreted data and/or supervised parts of the study. XZ and LS

wrote the paper. JT and YZ revised the paper. All authors

contributed to the article and approved the submitted version.
Funding

The current study was supported by the National Natural

Science Foundation of China (Grant Nos. 82072931 and 82002805).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Arthur RS, Wang T, Xue X, Kamensky V, Rohan TE. Genetic factors,
adherence to healthy lifestyle behavior, and risk of invasive breast cancer among
women in the uk biobank. J Natl Cancer Inst (2020) 112(9):893–901. doi: 10.1093/
jnci/djz241

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

3. Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention.
Nat Rev Cancer (2020) 20(8):417–36. doi: 10.1038/s41568-020-0266-x

4. Flister MJ, Bergom C. Genetic modifiers of the breast tumor microenvironment.
Trends Cancer (2018) 4(6):429–44. doi: 10.1016/j.trecan.2018.04.003
5. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and
metastasis. Nat Med (2013) 19(11):1423–37. doi: 10.1038/nm.3394

6. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-
cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell
(2018) 174(5):1293–308 e36. doi: 10.1016/j.cell.2018.05.060

7. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of immune
infiltration in breast cancer and their clinical implications: a gene-expression-based
retrospective study. PloS Med (2016) 13(12):e1002194. doi : 10.1371/
journal.pmed.1002194

8. Karn T, Jiang T, Hatzis C, Sanger N, El-Balat A, Rody A, et al. Association
between genomic metrics and immune infiltration in triple-negative breast cancer.
JAMA Oncol (2017) 3(12):1707–11. doi: 10.1001/jamaoncol.2017.2140
frontiersin.org

https://doi.org/10.1093/jnci/djz241
https://doi.org/10.1093/jnci/djz241
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41568-020-0266-x
https://doi.org/10.1016/j.trecan.2018.04.003
https://doi.org/10.1038/nm.3394
https://doi.org/10.1016/j.cell.2018.05.060
https://doi.org/10.1371/journal.pmed.1002194
https://doi.org/10.1371/journal.pmed.1002194
https://doi.org/10.1001/jamaoncol.2017.2140
https://doi.org/10.3389/fendo.2023.1166939
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1166939
9. Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R.
Breast cancer genomics and immuno-oncological markers to guide immune
therapies. Semin Cancer Biol (2018) 52(Pt 2):178–88. doi: 10.1016/j.semcancer.
2017.11.003

10. Polk A, Svane IM, Andersson M, Nielsen D. Checkpoint inhibitors in breast
cancer - current status. Cancer Treat Rev (2018) 63:122–34. doi: 10.1016/
j.ctrv.2017.12.008

11. Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the
immune system: challenges for prognosis and clinical benefit from immunotherapies.
Semin Cancer Biol (2021) 72:76–89. doi: 10.1016/j.semcancer.2019.12.018

12. Roundtree IA, Evans ME, Pan T, He C. Dynamic rna modifications in gene
expression regulation. Cell (2017) 169(7):1187–200. doi: 10.1016/j.cell.2017.05.045

13. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer
(2020) 20(6):303–22. doi: 10.1038/s41568-020-0253-2

14. Zhou Y, Kong Y, FanW, Tao T, Xiao Q, Li N, et al. Principles of rna methylation
and their implications for biology and medicine. BioMed Pharmacother (2020)
131:110731. doi: 10.1016/j.biopha.2020.110731

15. Shi H, Wei J, He C. Where, when, and how: Context-dependent functions of rna
methylation writers, readers, and erasers. Mol Cell (2019) 74(4):640–50. doi: 10.1016/
j.molcel.2019.04.025

16. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine
promotes mrna export - nsun2 as the methyltransferase and alyref as an m(5)c reader.
Cell Res (2017) 27(5):606–25. doi: 10.1038/cr.2017.55

17. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-
Haim MS, et al. The dynamic n(1)-methyladenosine methylome in eukaryotic
messenger rna. Nature (2016) 530(7591):441–6. doi: 10.1038/nature16998

18. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of n6-methyladenosine and
its role in cancer. Mol Cancer (2019) 18(1):176. doi: 10.1186/s12943-019-1109-9

19. Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-
mediated M(7)G trna methylome is required for normal mrna translation and
embryonic stem cell self-renewal and differentiation. Mol Cell (2018) 71(2):244–55
e5. doi: 10.1016/j.molcel.2018.06.001

20. Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T, Navarrete-Perea J,
et al. Pcif1 catalyzes m6am mrna methylation to regulate gene expression. Mol Cell
(2019) 75(3):620–30 e9. doi: 10.1016/j.molcel.2019.05.030

21. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible
methylation of m(6)am in the 5' cap controls mrna stability. Nature (2017) 541
(7637):371–5. doi: 10.1038/nature21022

22. Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)a, m(5)c and psi rna
modifications in cancer: Novel therapeutic opportunities. Mol Cancer (2021) 20(1):18.
doi: 10.1186/s12943-020-01263-w

23. Sun HL, Zhu AC, Gao Y, Terajima H, Fei Q, Liu S, et al. Stabilization of erk-
phosphorylated mettl3 by usp5 increases m(6)a methylation. Mol Cell (2020) 80
(4):633–47 e7. doi: 10.1016/j.molcel.2020.10.026

24. Gu Y, Wu X, Zhang J, Fang Y, Pan Y, Shu Y, et al. The evolving landscape of n
(6)-methyladenosine modification in the tumor microenvironment. Mol Ther (2021)
29(5):1703–15. doi: 10.1016/j.ymthe.2021.04.009

25. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. M(6)a regulator-mediated
methylation modification patterns and tumor microenvironment infiltration
characterization in gastric cancer. Mol Cancer (2020) 19(1):53. doi: 10.1186/s12943-
020-01170-0

26. Pan J, Huang Z, Xu Y. M5c rna methylation regulators predict prognosis and
regulate the immune microenvironment in lung squamous cell carcinoma. Front Oncol
(2021) 11:657466. doi: 10.3389/fonc.2021.657466

27. Calvisi DF, Pinna F, Ladu S, Pellegrino R, Simile MM, Frau M, et al. Forkhead
box m1b is a determinant of rat susceptibility to hepatocarcinogenesis and sustains erk
activity in human hcc. Gut (2009) 58(5):679–87. doi: 10.1136/gut.2008.152652

28. Ren BJ, Zhou ZW, Zhu DJ, Ju YL, Wu JH, Ouyang MZ, et al. Alisertib induces
cell cycle arrest, apoptosis, autophagy and suppresses emt in ht29 and caco-2 cells. Int J
Mol Sci (2015) 17(1). doi: 10.3390/ijms17010041

29. O'Shaughnessy J, McIntyre K, Wilks S, Ma L, Block M, Andorsky D, et al.
Efficacy and safety of weekly paclitaxel with or without oral alisertib in patients with
metastatic breast cancer: a randomized clinical trial. JAMA Netw Open (2021) 4(4):
e214103. doi: 10.1001/jamanetworkopen.2021.4103

30. Chen H, Yao J, Bao R, Dong Y, Zhang T, Du Y, et al. Cross-talk of four types of
rna modification writers defines tumor microenvironment and pharmacogenomic
landscape in colorectal cancer. Mol Cancer (2021) 20(1):29. doi: 10.1186/s12943-021-
01322-w
Frontiers in Endocrinology 13
31. Zhang C, Jia G. Reversible rna modification n(1)-methyladenosine (m(1)a) in
mrna and trna. Genomics Proteomics Bioinf (2018) 16(3):155–61. doi: 10.1016/
j.gpb.2018.03.003

32. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res (2013) 41(Database issue):D955–61.
doi: 10.1093/nar/gks1111

33. Danni X, Jiangzheng Z, Huamao S, Yinglian P, Changcheng Y, Yanda L.
Chaperonin containing tcp1 subunit 3 (cct3) promotes cisplatin resistance of lung
adenocarcinoma cells through targeting the janus kinase 2/signal transducers and
activators of transcription 3 (jak2/stat3) pathway. Bioengineered (2021) 12(1):7335–47.
doi: 10.1080/21655979.2021.1971030

34. Chen X, Chen X, Huang Y, Lin J, Wu Y, Chen Y. Tcp1 increases drug resistance
in acute myeloid leukemia by suppressing autophagy via activating akt/mtor signaling.
Cell Death Dis (2021) 12(11):1058. doi: 10.1038/s41419-021-04336-w

35. Nieto MA. Epithelial-mesenchymal transitions in development and disease: old
views and new perspectives. Int J Dev Biol (2009) 53(8-10):1541–7. doi: 10.1387/
ijdb.072410mn

36. Xiao P, Long X, Zhang L, Ye Y, Guo J, Liu P, et al. Neurotensin/Il-8 pathway
orchestrates local inflammatory response and tumor invasion by inducing m2
polarization of tumor-associated macrophages and epithelial-mesenchymal transition
of hepatocellular carcinoma cells. OncoImmunology (2018) 7(7). doi: 10.1080/
2162402x.2018.1440166

37. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of
naive cd4(+) t cells reverses immunosuppression in breast cancer. Cell Res (2017) 27
(4):461–82. doi: 10.1038/cr.2017.34

38. Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint
inhibitors. Cancer Cell (2020) 37(4):443–55. doi: 10.1016/j.ccell.2020.03.017

39. Bach EA, Aguet M, Schreiber RD. The ifn gamma receptor: a paradigm for
cytokine receptor signaling. Annu Rev Immunol (1997) 15:563–91. doi: 10.1146/
annurev.immunol.15.1.563

40. Liu J, Zhou Z, Ma L, Li C, Lin Y, Yu T, et al. Effects of rna methylation n6-
methyladenosine regulators on malignant progression and prognosis of melanoma.
Cancer Cell Int (2021) 21(1):453. doi: 10.1186/s12935-021-02163-9

41. Zhang Y, Zeng F, Zeng M, Han X, Cai L, Zhang J, et al. Identification and
characterization of alcohol-related hepatocellular carcinoma prognostic subtypes based
on an integrative n6-methyladenosine methylation model. Int J Biol Sci (2021) 17
(13):3554–72. doi: 10.7150/ijbs.62168

42. Zhang Z, Zhang C, Luo Y, Wu P, Zhang G, Zeng Q, et al. M(6)a regulator
expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and
response to anti-pd-1 immunotherapy in patients with small-cell lung cancer. BMC
Med (2021) 19(1):284. doi: 10.1186/s12916-021-02148-5

43. Iqbal Z, Absar M, Akhtar T, Aleem A, Jameel A, Basit S, et al. Integrated
genomic analysis identifies ankrd36 gene as a novel and common biomarker of disease
progression in chronic myeloid leukemia. Biol (Basel) (2021) 10(11). doi: 10.3390/
biology10111182

44. Tang N, Cai X, Peng L, Liu H, Chen Y. Tcp1 regulates wnt7b/beta-catenin
pathway through p53 to influence the proliferation and migration of hepatocellular
carcinoma cells. Signal Transduct Target Ther (2020) 5(1):169. doi: 10.1038/s41392-
020-00278-5

45. Hu Q, Hong Y, Qi P, Lu G, Mai X, Xu S, et al. Atlas of breast cancer infiltrated b-
lymphocytes revealed by paired single-cell rna-sequencing and antigen receptor
profiling. Nat Commun (2021) 12(1):2186. doi: 10.1038/s41467-021-22300-2

46. Garaud S, Buisseret L, Solinas C, Gu-Trantien C, de Wind A, Van den Eynden
G, et al. Tumor infiltrating b-cells signal functional humoral immune responses in
breast cancer. JCI Insight (2019) 5. doi: 10.1172/jci.insight.129641

47. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative
phosphorylation as an emerging target in cancer therapy. Clin Cancer Res (2018) 24
(11):2482–90. doi: 10.1158/1078-0432.CCR-17-3070

48. Raninga PV, Lee A, Sinha D, Dong LF, Datta KK, Lu X, et al. Marizomib
suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation
inhibition. Theranostics (2020) 10(12):5259–75. doi: 10.7150/thno.42705

49. Weng H, Feng X, Lan Y, Zheng Z. Tcp1 regulates pi3k/akt/mtor signaling
pathway to promote proliferation of ovarian cancer cells. J Ovarian Res (2021) 14(1):82.
doi: 10.1186/s13048-021-00832-x

50. Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R, Ethier SP. Two members of
the tric chaperonin complex, cct2 and tcp1 are essential for survival of breast cancer
cells and are linked to driving oncogenes. Exp Cell Res (2015) 332(2):223–35.
doi: 10.1016/j.yexcr.2015.02.005
frontiersin.org

https://doi.org/10.1016/j.semcancer.2017.11.003
https://doi.org/10.1016/j.semcancer.2017.11.003
https://doi.org/10.1016/j.ctrv.2017.12.008
https://doi.org/10.1016/j.ctrv.2017.12.008
https://doi.org/10.1016/j.semcancer.2019.12.018
https://doi.org/10.1016/j.cell.2017.05.045
https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.1016/j.biopha.2020.110731
https://doi.org/10.1016/j.molcel.2019.04.025
https://doi.org/10.1016/j.molcel.2019.04.025
https://doi.org/10.1038/cr.2017.55
https://doi.org/10.1038/nature16998
https://doi.org/10.1186/s12943-019-1109-9
https://doi.org/10.1016/j.molcel.2018.06.001
https://doi.org/10.1016/j.molcel.2019.05.030
https://doi.org/10.1038/nature21022
https://doi.org/10.1186/s12943-020-01263-w
https://doi.org/10.1016/j.molcel.2020.10.026
https://doi.org/10.1016/j.ymthe.2021.04.009
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.1186/s12943-020-01170-0
https://doi.org/10.3389/fonc.2021.657466
https://doi.org/10.1136/gut.2008.152652
https://doi.org/10.3390/ijms17010041
https://doi.org/10.1001/jamanetworkopen.2021.4103
https://doi.org/10.1186/s12943-021-01322-w
https://doi.org/10.1186/s12943-021-01322-w
https://doi.org/10.1016/j.gpb.2018.03.003
https://doi.org/10.1016/j.gpb.2018.03.003
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1080/21655979.2021.1971030
https://doi.org/10.1038/s41419-021-04336-w
https://doi.org/10.1387/ijdb.072410mn
https://doi.org/10.1387/ijdb.072410mn
https://doi.org/10.1080/2162402x.2018.1440166
https://doi.org/10.1080/2162402x.2018.1440166
https://doi.org/10.1038/cr.2017.34
https://doi.org/10.1016/j.ccell.2020.03.017
https://doi.org/10.1146/annurev.immunol.15.1.563
https://doi.org/10.1146/annurev.immunol.15.1.563
https://doi.org/10.1186/s12935-021-02163-9
https://doi.org/10.7150/ijbs.62168
https://doi.org/10.1186/s12916-021-02148-5
https://doi.org/10.3390/biology10111182
https://doi.org/10.3390/biology10111182
https://doi.org/10.1038/s41392-020-00278-5
https://doi.org/10.1038/s41392-020-00278-5
https://doi.org/10.1038/s41467-021-22300-2
https://doi.org/10.1172/jci.insight.129641
https://doi.org/10.1158/1078-0432.CCR-17-3070
https://doi.org/10.7150/thno.42705
https://doi.org/10.1186/s13048-021-00832-x
https://doi.org/10.1016/j.yexcr.2015.02.005
https://doi.org/10.3389/fendo.2023.1166939
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Crosstalk of RNA methylation writers defines tumor microenvironment and alisertib resistance in breast cancer
	1 Introduction
	2 Materials and methods
	2.1 Data collection and processing
	2.2 Clustering pattern
	2.3 Enrichment analysis
	2.4 Immune infiltration
	2.5 Construction of the RMW_Score and drug sensitivity
	2.6 Cell culture and cell transfection
	2.7 Alisertib-sensitive assay
	2.8 Quantitative reverse transcription polymerase reaction
	2.9 EdU assay
	2.10 Cell proliferation assay
	2.11 Transwell assay
	2.12 Colony formation assay
	2.13 Western blotting
	2.14 Cell cycle arrest and apoptosis measurement by flow cytometry
	2.15 Statistical analysis

	3 Results
	3.1 Consensus clustering for BC patients in TCGA cohort
	3.2 Investigation of five types of RNA methylation modification “writers”
	3.3 Construction and validation of a prognostic signature for BC
	3.4 Immune landscapes of RMW_Score signature
	3.5 Mutation status associated with RMW_Score signature
	3.6 RMW_Score signature for nomogram construction
	3.7 External validation and potential therapeutic value for RMW_Score signature
	3.8 TCP1 expression positively correlated with alisertib resistance
	3.9 The effects of TCP1 knockdown in MDA-MB-231/alisertib

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


