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Abstract. The development and implementation of an innovative system 
applying digital aerospace technologies in pastoralism constitute one of the 
current trends in agricultural development designed to solve numerous 
problems associated with soil fertility restoration in grazing pastures. Here, 
a promising line of research is to explore the feasibility of using satellite 
systems for an overall nutrient yield assessment per hectare of grazing 
land. The present article describes a comprehensive approach to the 
optimization of pastoralism that is based on remote methods for assessing 
pasture fertility using unmanned aerial vehicles (UAVs) and artificial Earth 
satellites. An analysis of existing methodological approaches reveals that 
the formalization of prediction processes is complicated by the lack of a 
theoretical basis for creating appropriate model-algorithmic support. The 
data on vegetation index dynamics and the nutritional values of forage 
plants obtained by interpreting imagery from a UAV camera and the 
multispectral cameras of a satellite service, as well as data from a portable 
handheld nitrogen sensor, were compared with the actual nutritional values 
of pasture plants. The study results provide a means to optimize the 
grouping of grazing animals, taking into account the actual possibility of 
achieving an increase in live weight. The provided findings indicate the 
possibility of achieving an additional 11.06% increase in daily live weight 
gain in young sheep (Jalgin Merino) when keeping them in pasture areas 
having a vegetation index of at least 0.5. Remote monitoring based on 
satellite service allows more efficient use of pastures. Study shows a 
positive relationship between remote sensing NDVI and feed nutritional 
value. Animal grazing optimization provides an additional 11.06% increase 
in live weight gain. 

1 Introduction 
The development and implementation of innovative agricultural production technologies in 
pastoralism aimed at achieving the fifth and sixth technological paradigms involve the use 
of remote methods for monitoring production processes, the most developed of which 
employ unmanned aerial vehicles (UAVs), space satellite systems, monitoring of air 
parameters, etc [44, 39]. 
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In order to justify the structure of the system for monitoring the state of forage crops in 
cultivated pastures on the basis of remote sensing data, it is necessary to perform all 
procedures as per the algorithm of the assessment problem. The algorithm can only be 
implemented when an electronic digital map of the field is generated. In this case, the 
surface area of the field is virtually (on an electronic map) divided into elementary sections 
of a given spatial discreteness [26, 27, 3]. 

A modern, innovative approach to the development of animal husbandry should provide 
high end-result predictability, information support in making informed managerial 
decisions, reduction in weighted average risks, and, ultimately, increased labor 
productivity, which is of great importance in agriculture [44, 40]. 

Data on the state parameters of forage phytomass can be used to identify pasture 
degradation areas and areas of dry grass, as well as to track and monitor the movement of 
livestock along paddock ks [36]. 

Modern information-measurement systems for aerospace monitoring of pastures, as well 
as associated information technologies, require further improvement of predictive 
mathematical models of both pasture productivity and the productive qualities of grazing 
animals [32, 16]. 

For example, the Chinese High-Resolution Earth Observation Systems are successfully 
implemented in China obtaining excellent high-resolution remote sensing images (GF 
series), i.e., of the same or even higher quality in terms of scanning width, spatial 
resolution, and revisit period than similar foreign satellite imagery [41, 45, 35, 2]. 

According to Shuang Li et al., satellite-derived NDVI (Normalized Difference 
Vegetation Index) data are widely used to analyze vegetation dynamics and its relationship 
to climate extremes [20]. 

However, Xiangyi Li et al. argue that the amount of data increasing on regional and 
global scales indicates a complex and heterogeneous relationship between the NDVI and 
climate variability due to differences in the characteristics of plant biomass. For example, 
Sergio Vicente-Serrano et al. show that vegetation is affected by droughts worldwide, while 
Qiang Zhang et al. report positive effects of drought on vegetation in most regions of China 
[21, 42, 37, 40, 4, 10]. 

Given that the issue associated with using remote methods for assessing the quality of 
pasture areas is not yet fully understood, thus leaving room for debate, the present article 
aims to study the relationship of vegetation indices obtained using the methods of remote 
digital aerospace technologies with the grazing capacity of pastures and the live weight of 
sheep. 

2 Materials and methods 
In order to achieve the specified aim, we studied the pasture areas of a breeding farm used 
in the breeding and rearing of fine-wool Jalgin Merino sheep. This farm is located in an arid 
region of Stavropol Territory in the south of Russia. 

2.1 Climatic conditions 

On the territory of the farm, the climate is distinctly continental with temperatures ranging 
from the minimum of −34°C in winter up to the maximum of +42°C in summer. Average 
annual precipitation amounts to 320–412 mm increasing from northeast to southwest. 

The farm is located in an arid area where summers are long, hot, and dry with an 
average July temperature of +28 °C. Despite frequent frosts, autumn is warm and long. In 
summer, an east wind carries hot air from Central Asian deserts, which results in droughts 
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and dust storms occurring at wind speeds of 15–20 m/s. Droughts and hot dry winds of 
varying intensity are typical for the pastures of southern Russia, with 85–100 dry days 
observed each summer. 

2.2 Data collection and processing 

Multispectral images from Copernicus Sentinel-2 remote sensing satellites of the European 
Space Agency (European Space Agency) were used as objectively observable data on the 
current state of pastures. 

The set of data constitutes a by-product of data editing conducted by the National 
Geospatial-Intelligence Agency (NGA) to obtain the final Shuttle Radar Topographic 
Mission (SRTM) data (DTED® 2). The data have been edited to map water bodies 
satisfying the minimum capture criteria, such as oceans, lakes, and watercourses. Ocean 
elevations were set to zero, while lake elevations were set to a constant value. The 
elevations of water surfaces (e.g., lakes) were constant. Rivers were monotonically stepped 
down in order to maintain proper flow. The data were edited on the basis of matrices having 
a resolution of 30 m. The coordinate system for data was used in accordance with the 
World Geodetic System (WGS) 84, i.e., the generally accepted Earth-fixed global astro-
geodetic and gravimetric reference frame. Horizontal and vertical accuracy values 
amounted to 20 m (90%) and 16 m (90%), respectively. 

The studies used files in the PLY format (Polygon Model File), i.e., a format that is 
known as the Stanford Triangle Format or the Polygon File Format primarily developed to 
store three-dimensional data from 3D scanners. The format supports a relatively simple 
object description in the form of a list of flat polygons. Moreover, PLY can store various 
object properties, including color and transparency, texture coordinates, surface normals, 
etc. This format allows for different properties of the front and back of a polygon [45]. 

In the present work, we studied the Normalized Difference Vegetation Index (NDVI), i. 
e., a standardized index indicating the presence and state of green vegetation (relative 
biomass). The specified index employs the contrast of characteristics between red and near-
infrared (NIR) bands from a multispectral raster dataset: chlorophyll pigment absorption 
and high vegetation reflectance, respectively. 

NDVI is determined as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁)                                   (1) 

In order to determine the moisture content, the Normalized Difference Moisture Index 
(NDMI) was used, which is sensitive to moisture levels in vegetation. This index used to 
monitor droughts and fuel levels in fire-prone areas employs NIR and SWIR bands to 
produce a ratio intended to mitigate the effects of illumination and atmosphere. 

NDMI is determined by the formula: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1
𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1

                                    (2) 

Also of interest is the study of the Soil-Adjusted Vegetation Index (SAVI), which 
attempts to minimize the effect of soil brightness using a soil brightness correction factor. It 
is often applied to desert areas exhibiting a lack of vegetation, with values ranging from 
−1.0 to 1.0. This index is determined as follows: 

𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 = � 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅+𝐿𝐿

� ∗ (1 + 𝐿𝐿)                                  (3) 
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2.3 Formation of experimental animal groups 

In order to determine the effect of pasture forages characterized by different vegetation 
indices on the productive qualities of animals, two groups of Jalgin Merino sheep were 
formed. 

All animals for the study were selected from young sheep in fattening by identifying 
relatively similar pairs of animals for the compared groups. The first group of sheep was 
grazed on a pasture whose NDVI varied from 0.5 to 0.6, while the second group was grazed 
on a pasture having an index of 0.3–0.35. 

The number of young (6-month-old) sheep in fattening in each group amounted to 20. 
The selected animals were kept under observation for 60 days, during which period the live 
weight of animals was determined by means of a livestock scale having an accuracy of 
±0.10 kg. 

The formed groups of sheep were grazed on pastures primarily comprising legumes and 
grasses (25:75%): Onobrychis arenaria, Medicago falcata, Festuca pratensis, and Lolium 
perenne. 

2.4 Zootechnical analysis of forages 

In order to validate data obtained using a remote method, vegetation samples were collected 
from pasture areas via the contact method to be subjected to a zootechnical analysis in the 
laboratory. Sampled during the main vegetation period (June–July), pasture forages were 
studied using standard laboratory methods. The chemical composition of forages (crude 
protein, crude fiber, crude fat, crude ash, calcium, phosphorus, and amino acid 
composition) and moisture content were determined using the equipment of such 
companies as INGOS (Czech Republic), FIBRETHERM (Germany), and VELP 
SCIENTIFICA (Italy) at a specialized accredited laboratory Feed and Metabolism of the 
Stavropol State Agrarian University (Certificate of Accreditation No. ROSS 
RU.0001.21PU12 of 10/28/2014). 

Free amino acids in forages (sum of cystine and cysteine; methionine; lysine; threonine; 
alanine; aspartic acid; glutamic acid; glycine; histidine; isoleucine; leucine; phenylalanine; 
proline; serine; tyrosine; valine) were determined via extraction in dilute hydrochloric acid. 
Nitrogenous macromolecules extracted together with amino acids were precipitated using 
sulfosalicylic acid to be filtered out. To this end, the acidity of the filter medium was 
brought to 2.20 pH. The amino acids were separated using ion exchange chromatography; 
then, a reaction with ninhydrin was used to determine their concentrations via photometric 
detection at a wavelength of 570 nm. The total content (sum of free and bound forms) of 
individual amino acids was ascertained via hydrolysis depending on the individual amino 
acids to be determined. Prior to hydrolysis, cystine (cysteine) and methionine were oxidized 
to cysteic acid and methionine sulfone, respectively. The tyrosine content was determined 
in the hydrolysates of unoxidized samples. All the other amino acids specified above were 
detected in both oxidized and unoxidized samples. Oxidation was carried out at 0℃ in a 
mixture of performic acid and phenol. The excess oxidant was decomposed with sodium 
disulfide. Oxidized or unoxidized samples were subjected to hydrolysis in hydrochloric 
acid having a molar concentration of 6 mol/dm for 23 h. The acidity of the hydrolysate 
medium was brought to 2.20 pH. The amino acids were separated using ion exchange 
chromatography and derivatized with ninhydrin to be detected at a wavelength of 570 nm 
(440 nm for proline). 

The obtained data were processed using IBM SPSS Statistics 26 software. 
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3 Results 
Field contours are estimated and refined according to remote sensing data (panchromatic, 
color, and multispectral Earth surface images) using a program for automatic interpretation 
and vectorization. Following processing, the raster orthomosaic is converted into a set of 
vector linear objects, i. e., field contours. In addition to topographic interpretation, 
multispectral classification can be carried out. For these purposes, it is possible to use 
statistical and texture characteristics in any raster band or virtual bands, drawing on the 
formula for NDVI. 

3.1 Construction of a 3D model of the considered pasture area 
The geographic coordinates of points (in other words, spatial data components) can serve as 
another effective predictor of forage biomass productivity [9, 5]. 

Figure 1 presents a digital elevation model, i.e., a representation of elevations, in which 
darker areas correspond to lower elevations relative to the reference (e.g., sea level), while 
light areas correspond to hills and high ground. The present figure exhibits a low spatial 
resolution, i.e., large rectangles indicating elevations. 

 
Fig. 1. Color interpretation of elevations (cell width in meters) 

To build a 3D model of the pasture under study, these data comprise the longitude 
(degrees), latitude (degrees), and elevation (m) of the considered pasture area. 

The accompanying SRTM Water Body Data (SWBD) are distributed in separate layers 
in the 3D Shapefile format, i.e., containing data on the elevation coordinate. 

Several scientists note that the application of image-based modeling process using SfM 
algorithms, which is particularly common in “classical topics for photogrammetry,” is also 
becoming increasingly widespread in such fields as forestry and agriculture [23, 33, 13, 1, 
28]. 

Digital photogrammetry paired with multi-view stereo algorithms using computer vision 
has significantly improved the acquisition of data on the state of plant biomass.   

The obtained space imagery helped to construct a 3D model of the pasture under study. 
This model enables the estimation of surface topography, moisture accumulation, as well as 
the accumulation forage and pasture plant biomass. 
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The Earth Observation-based Anomaly Detection (EOAD) approach presented in an 
article by Liliana Castillo-Villamor et al. was able to map plot-level anomalies in rice crops 
in Colombia, while providing a plan for their elimination [5]. 

In a study by Yang Liu, Hongxing Liu, et al. a new method was presented combining 
object-based image analysis and DEM-based stream network analysis to map and quantify 
lentic habitats with the use of readily available ESA Sentinel-2 multispectral images and 
USGS DEMs. This integrated method was applied to the entire Mobile River Basin (USA), 
with lentic habitats at the basin scale delineated and inventoried at a spatial resolution of 10 
m [23]. 

Multispectral and hyperspectral imaging technologies have become powerful tools in 
detecting and monitoring vegetation along with their productivity indices. These 
technologies provide both spatial and spectral information about vegetation, with the 
spectral region spanning wavelengths from 400 to 2500 nm [14, 7, 21].  

Despite a considerable amount of current research on the quality of vegetation cover for 
grazing animals, namely the impact of vegetation quality on their productivity, this issue 
remains understudied. 

3.2 Representativeness of the main vegetation indices 

Given the NDVI consistency with the drought index classification, several scientists 
demonstrated the effectiveness of NDVI application [30, 31, 6, 24]. 

German scientists primarily focused their research on the field observations of 
aboveground pasture biomass, since it is problematic to monitor the quality of vegetation 
cover on a large scale in terms of time and labor intensity. In this connection, it seems 
relevant to apply remote methods for studying the vegetation index. One of these involves 
the use of satellite surveillance systems providing data over the required period while 
enabling lower labor-intensity [18].  

A satellite image of the Stavropol Territory (26th district) serves as an example showing 
a surface colored according to the vegetation index scale (NDVI). 

In order to identify pasture areas having preferred and stunted vegetation, a 
multispectral camera was used to perform a survey, followed by the construction of a 
NDVI-based surface. Areas exhibiting the lowest NDVI value indicate stunted vegetation 
or plants having damaged leaves (Figs. 2 and 2). 

, 090 (2023)BIO Web of Conferences

AgriScience2023
https://doi.org/10.1051/bioconf/2023660900707 66

6



 
 

 
Fig. 2. Distribution of vegetation in pasture No. 1 depending on the NDVI. 

Stunted vegetation areas exhibit low NDVI values. The obtained data were used to 
construct a histogram showing the distribution of vegetation depending on the NDVI value 
required to identify pasture areas suitable for livestock to graze on [47, 6, 26, 13]. 

 
Fig. 3. Distribution of vegetation in pasture No. 2 depending on the NDVI. 

Haoyu Jin et al. note that the main factor affecting the NDVI in most areas of China is 
surface soil moisture (SSM), followed by temperature, whereas in arid areas, the primary 
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influencing factors include profile soil moisture (PSM) and root zone soil moisture (RZSM) 
[19]. 

However, it should be taken into account that NDVI time series contain a lot of 
contamination due to atmospheric phenomena, cloud cover, sensor failure, etc. It is of 
utmost importance to eliminate noise prior to any further procedures [39, 35, 44, 16]. 

In this work, we studied two pastures (47.5 ha each) used for Jalgin Merino sheep to 
graze on. The presented graphs indicate that 78% (35.6 ha) of the vegetation area in the 
pastures under study has the NDVI: 0.5 to 0.6 – pasture No. 1; 0.3 to 0.35 – pasture No. 2. 

Since the considered pasture areas are located in an arid region of Stavropol Territory, 
NDMI and SAVI data are of interest here (Figs. 4 and 5). 

 
Fig. 4. Distribution of NDMI values. 

 
Fig. 5. Distribution of SAVI values 

The paper examines the representativeness of the main indices, such as NDVI, SAVI, 
and NDMI, as well as pasture productivity indicators. The figures presented above show 
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that all corresponding distributions of index values according to the pixels of a raster image 
tend to be close to normal, varying in sample means and standard deviations. 

Figure 6 displays normal distributions exhibiting the parameters of the corresponding 
index distributions. 

In order to compare data obtained using remote and contact methods, forage samples 
selected from the pastures under study were subjected to a chemical analysis. 

 
Fig. 6. Distributions of the main indices. 

Further research will be aimed at establishing a statistical relationship over time 
between the distribution parameters of the specified indices and pasture productivity 
indicators. The study of this relationship will enable construction of the statistical 
regression models of pasture productivity indicators, which can be used as a basis for 
clustering pastures on the map. 

3.3 Chemical composition of pasture forages 

Once grass was mowed and weighed, ten samples were collected from each considered 
pasture and placed in a polyethylene bag having clips, which were then combined to obtain 
an average value and spread out evenly. An average grass sample (small tufts from over 20 
spots) was collected from it. Labeled samples were placed in specialized containers in an 
amount of 1 kg. Then the samples were promptly sent to the laboratory. 
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Fig. 7. Nutritional value of pasture forages, % 

As compared to forages from pasture No. 2, forages from pasture No. 1 have a higher 
crude protein content (by 1.65), total moisture content (by 11.48), crude fat (by 0.36), crude 
ash (by 0.48), calcium (by 0.02), phosphorus (by 0.03), while their crude fiber content is 
lower by 7.65. 

Thus, the pasture forages in group No. 1 exhibit higher values of crude protein, total 
moisture content, crude fat, crude ash, and calcium, on average, exceeding those of group 
No. 2 by 5.0–57.0%. Therefore, an inverse correlation is observed between the vegetation 
index and the content of crude fiber and phosphorus. 

Animal feed, specifically protein feed, cannot be regarded as nutritious without 
considering the role of individual amino acids. Even in the case of a positive protein 
balance, an animal’s body may be deficient in protein. This deficiency may be attributed to 
the poor absorption of individual interrelated amino acids; the lack or excess of one amino 
acid can lead to the deficiency of another amino acid. Therefore, it was decided to study the 
amino acid composition of pasture forages during their contact evaluation, while analyzing 
the obtained data against the vegetation index. 

Figure 9 presents the results of studying the amino acid composition of pasture forages 
along with the vegetation index observed when rearing Jalgin Merino sheep in the steppes 
of Stavropol Territory. 

 

0

10

20

30

40

50

60

70

80

Pasture No. 2

Pasture No. 1

, 090 (2023)BIO Web of Conferences

AgriScience2023
https://doi.org/10.1051/bioconf/2023660900707 66

10



 
 

 
Fig. 8. Amino acid composition of pasture forages, % 

According to the data obtained for the second group whose vegetation index of pasture 
forages is higher, its content of essential and nonessential amino acids exceeds that of the 
first group by an average of 7.7–47.6%. Thus, the content of aspartic acid (Asp) in the 
second group (NDVI of 0.61) exceeds that in the first group (NDVI of 0.41) by 47.6%. A 
similar situation can be observed for other amino acids: threonine (Thr) – by 23.1%; serine 
(Ser) – by 33.3%; glutamic acid (Glu) – by 17.5%; proline (Pro) – by 37.5%; glycine (Gly) 
– by 35.7%; alanine (Ala) – by 24.4%; valine (Val) – by 11.8%; isoleucine (Ile) – by 8.3%; 
leucine (Leu) – by 17.4%; tyrosine (Tyr) – by 20.0%; phenylalanine (Phe) – by 21.4%; 
histidine (His) – by 33.3%; lysine (Lys) – by 7.7%; arginine (Arg) – by 13.3%. 

By taking into account the actual data on the state of pasture vegetation obtained during 
histogram construction, as well as by combining remote methods for estimating the 
vegetation index and in-depth nutritional analysis of forages, it becomes possible to 
optimize the use of pasture plots, which in turn enables an additional 11.06 % increase in 
daily live weight gain in young merino sheep. Thus, the level of daily live weight gain in 
the experimental control group formed employing traditional selection procedures amounts 
to 145 ± 5 g, while the optimization, which allows areas characterized by the highest NDVI 
value to be used, yields a daily live weight gain of 161 ± 6 g in the young sheep from the 
experimental group. 

The optimized use of pasture areas acquires particular importance in summer and 
autumn, when the grazing season, in the classical sense, is no longer possible in the arid 
climate of southern Russia under present-day conditions due to excessively plowed (up to 
80%) agricultural land. 

The 3D modeling of a pasture plot enables remote estimation of surface topography 
affecting moisture accumulation, as well as the accumulation of forage and pasture plant 
biomass. The 3D remote modeling can be employed in combination with NDVI estimation 
to make production plans for the use of agricultural plots, including for grazing animals. 
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4 Discussion 
The study results indicate that livestock should graze on pasture plots having a vegetation 
index of at least 0.5. These findings are also confirmed in the study by Md Lokman Hossain 
and Jianfeng Li, according to which the NDVI varied considerably across regions. As 
compared to the “base-mean,” the NDVI index was significantly higher in a moderately 
humid region, while in a temperate dry steppe region, a considerably lower NDVI value 
was observed. Although the NDVI index exhibited a wide variation across plots in cold 
steppe, no significant variations were observed relative to the base-mean. The following 
mean NDVI values were obtained for the regions: 0.60 in cold steppe; 0.75 in a moderately 
humid region; 0.46 in temperate dry steppe [31]. Thus, humid regions exhibit the highest 
vegetation indices, which corresponds to the data obtained in this study. 

X. Chuai et al. describe in their study a relationship between changes in the NDVI index 
and climatic factors, as well as the potential influence of human activity on the observed 
changes in the NDVI index in the north of the Loess Plateau. The spatial distribution of the 
annual NDVI maximum in the north of the Loess Plateau exhibits distinct nonuniformity. It 
is noted that the NDVI parameters gradually decrease from east to west, while the annual 
NDVI maximum amounts to 0.44, increasing at a rate of 0.09 in a decade [8, 23, 31]. 

In the work by Qing Lu et al. precipitation was found to have a greater effect on the 
NDVI parameters than temperature in Inner Mongolia. The coefficients of correlation 
between the NDVI values and annual precipitation in the western, central, and eastern 
districts amounted to about 0.5, which indicates an average correlation, with the lowest 
correlations observed in the eastern district. The correlations between the NDVI parameters 
and temperature in Inner Mongolia were generally negative; only some areas in the western 
region exhibited a positive correlation, passing the significance test [25]. 

A higher NDVI suggests better vegetation productivity in pasture areas. The obtained 
data are also consistent with the study by Haoyu Jin et al., which found that more 
productive vegetation exhibits lower resilience than less productive vegetation (i.e., 
temperate dry steppe indicates lower NDVI) [19].  

Thus, the application of various remote methods for monitoring pasture plots proves to 
be the most efficient way to use data derived from space satellite systems. Through the 
simultaneous observation of large pasture plots, it becomes possible to analytically select 
those that are characterized by the best NDVI parameters, as well as other spectral indices. 
Systematic observations relying on the interpretation of archived satellite images enable 
estimation of moisture accumulation in pasture plots throughout the year, including winter. 
A specific feature of pastoralism consists in organizing the grazing of animals on the basis 
of the cheapest pasture forages, which can be used by animals for a relatively short period 
of 5–7 months during the vegetation of various grasses and legumes (at their ratio of 75:25 
as established in this study). The presence of legumes having a higher concentration of 
plant protein generally results in higher live weight gains as compared to plots primarily 
comprising grasses. 

5 Conclusions 
1. The application of remote monitoring on the basis of a satellite service enables the 
construction of 3D mathematical models of agricultural lands, resulting in a more efficient 
use of pastures. 

, 090 (2023)BIO Web of Conferences

AgriScience2023
https://doi.org/10.1051/bioconf/2023660900707 66

12



 
 

2. The studies carried out using contact methods confirmed the positive relationship 
between the vegetation index obtained via the remote method and the nutritional value of 
forages. 
3.  The optimization of pasture area selection provides an additional 11.06% (p<0.05) 
increase in live weight gain in young merino sheep. 
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