

Comparative research on all to all pairs path finding algorithms
in a real-world scenario

Peter Nelson Subrata1, Philipus Adriel Tandra1, Christopher Owen1, Arvin Yuwono1, and Maria Seraphina Astriani1*
1Computer Science Department, School of Computing and Media, 11480 Bina Nusantara University, Jakarta, Indonesia

Abstract. This paper presents a comparative study of the implementation of all-to-all pairs shortest path
algorithms, specifically Floyd-Warshall, Johnson’s, and Dijkstra’s. It contributes to a better understanding
of their strengths and weaknesses in different types of applications (real-world scenarios). The research
demonstrates the use of these algorithms in finding the shortest path between multiple locations using a
Google Maps plotter and the Google Maps API. Older research papers have shown a comparison that shows
that the Floyd-Warshall algorithm is faster than the other two algorithms in certain scenarios; however, none
have brought up the real-world application of such an algorithm. The null hypothesis of this study is that the
Floyd-Warshall algorithm is not suitable for use in a real-life application for finding the shortest path
compared to Johnson’s algorithm. The results of this study have potential applications in transportation and
logistics and will provide useful insights for future work in this field.

1 Introduction
In the field of graph theory, the problem of finding the
optimal route between multiple locations has been well
researched, with various algorithms such as Floyd-
Warshall, Johnson’s algorithms, and running Dijkstra’s
algorithm multiple times being developed to solve this
problem. However, previous research has primarily
focused on comparing the efficiency of these algorithms
in theoretical settings. Studies such as Abu-Ryash and
Tamimi (2015) [1], Pandika et al. (2019) [2], and
Amaliah et al. (2016) [3] have compared the runtime of
these algorithms on different types of graphs and
scenarios. However, there is a gap in research on the
performance of these algorithms in practical, real-world
scenarios.

This research aims to fill this gap by conducting a
comparative study of the Floyd-Warshall and Johnson’s
algorithms in a real-world scenario using the Google
Maps API and GMplot library in python. The unique
approach performed is using these algorithms in a
Google Maps plotter, providing a set of longitudes and
latitudes that represent locations, and demonstrating
how these algorithms can be used to find the shortest
path to all locations at the same time in a real-life
application. Additionally, a comparison will be made
from the usage of the two graph representations,
adjacency matrix and list, as well as modifying the
algorithm to return extra values regarding the path the
algorithm took to calculate the shortest path so that the
main application can draw it on the map.

The null hypothesis of this test, with an alpha value
of 0.05, is to determine if there is a difference in the
mean runtime of the two algorithms. The research used

* Corresponding author: seraphina@binus.ac.id

an alpha value of 0.05 in their null hypothesis test to
determine if there is a difference in the mean runtime of
the two algorithms. Alpha is a threshold value used in
statistics to determine the level of significance of a test.
In this case, an alpha value of 0.05 indicates that the
researchers are willing to accept a 5% chance of a false
positive in their results. This means that if the null
hypothesis is true (there is no significant difference in
the mean runtime of the two algorithms), there is a 5%
chance that the test will incorrectly reject the null
hypothesis and find a significant difference. This is a
commonly used alpha value in many statistical tests.
The research will provide valuable insight into the
performance of these algorithms in a practical, real-
world scenario and contribute to a better understanding
of their strengths and weaknesses in different types of
applications.

2 Related Works
The comparison of results from using the Floyd-
Warshall, Johnson and Dijkstra’s algorithms have been
well researched. In a 2015 study by Abu-ryash and
Tamimi [1] they conducted an investigation and
comparison of a variety of shortest path algorithms. The
purpose was to discover the efficiency of each
algorithm, highlighting the best use case for each
algorithm. The Johnson’s algorithm is claimed to be
faster than Floyd-Warshall on sparse graph, but on the
contrary, Floyd-Warshall algorithm is faster when the
graph is dense. On a side note, Dijkstra’s algorithm is
more memory efficient for sparse graph as it doesn’t
need distance matrix to be represented as dense matrix.

E3S Web of Conferences 426, 01024 (2023) https://doi.org/10.1051/e3sconf/202342601024
ICOBAR 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http ://creativecommons.org/licenses/by/4.0/). s

Pandika et al. [2] mentioned that Floyd-Warshall
algorithm works effectively and efficiently in providing
optimal routes affected by severe congestion, which in
their scenario was in the area of Bandung where there
are many tourists can get contribute to the traffic
congestion in that area. As a result, they designed an
Android application where they implemented Floyd-
Warshall algorithm to help tourists get the optimal route
to their destination and proved to have impressive
runtime and had effective results.

A study conducted by Amaliah et al. [3] in 2016
demonstrated that Dijkstra algorithm is able to reach an
accuracy of 92.88 using Google Maps as the reference.
Both studies indicates that both algorithms work
effectively. Mahmoud et al. [4] in their study compared
Haversine and Vincenty formulas for a location based
recommender system by stating that pathfinding
algorithms like Dijkstra work well in graphs but
something like the Haversine formula is more effective
for getting the distance between two points on the Earth
as it is neither a perfect sphere no ellipse. Afser et al. [5]
implemented several path finding algorithms such as
Dijkstra, Floyd-Warshall, Bellman Ford, Johnson
algorithm for comparison using Genetic Algorithm.

These studies provide good insight into the research
that has been done on Floyd Warshall and Johnson’s
algorithm. However, researchers have not extensively
compared the runtimes of the Floyd-Warshall and
Johnson’s algorithms in real-world applications. While
the algorithms have been studied and analyzed in
theoretical settings, there is a lack of research on how
they perform in practical scenarios. This gap in
knowledge makes it difficult to determine which
algorithm would be more efficient for a specific real-
world problem. Further research is needed to determine
the performance of these algorithms in real-world
scenarios and to understand their strengths and
weaknesses in different types of applications.

3 Methodology

3.1 Graph algorithm and analysis

Graph theory is a mathematical framework for
modelling relationships between objects [5-6]. In the
context of this research, This research is interested in
finding the shortest path between different locations on
a map. An adjacency matrix and an adjacency list are
two common ways to represent a graph, where a graph
is a set of vertices (also called nodes) and edges
connecting them [7].

Graphs can be classified into 4 types: directed
weighted, directed unweighted, undirected weighted,
and undirected unweighted. Directed weighted graphs
have edges with direction and weight, represented by
arrows with tail indicating starting vertex and head
indicating ending vertex. The weight represents cost or
distance. The directed weighted graph is the one that the
paper will mostly be using as examples as it is the one
that is used most commonly in applications.

Directed weighted graphs are important in the real-
life application of graph algorithms because they can be

used to model a wide range of problems. For example,
they can be used to model transportation networks,
where the edges represent roads or flights, and the
weights represent the distance or cost of traveling along
that edge.

Fig. 1. An example of an adjacency matrix on a directed
graph [8]

An adjacency matrix (Fig. 1) is a square matrix with
the size of VxV, where V is the number of nodes in the
graph. The element in the i-th row and j-th column of
the matrix represents the weight of the edge between the
i-th node and the j-th node. If there is no edge between
nodes i and j, the corresponding element in the matrix is
set to a special value such as infinity or null. Adjacency
matrix representation is useful when the graph is dense,
meaning that there are many edges between the nodes.

Fig. 2. An example of an adjacency list [9]

An adjacency list (Fig. 2), on the other hand,
represents a graph as an array of linked lists. Each node
in the graph is represented by an index in the array, and
the linked list associated with that index contains the
nodes that are adjacent to it. The edges are represented
by the pointers in the linked lists. Adjacency list
representation is useful when the graph is sparse,
meaning that there are very few edges between the
nodes.

Negative weight edges and cycles in graphs refer to
edges or sequences of edges that have a negative cost or
weight. They can be used in transportation networks,
such as public transportation systems, to represent
transfer points or alternative routes with lower costs
[10]. In traffic engineering, they can represent
alternative routes with lower travel time or fuel
consumption or sequences of roads that form a loop with
lower total travel time for emergency vehicles. They can
also be used in traffic simulation to model and predict
traffic flow by considering traffic demand and road
network capacity. For example, a negative weight edge
in a transportation network could represent a transfer
point between two forms of transportation, where the
cost of transferring is less than continuing on the same
mode of transportation. In traffic engineering, a negative

E3S Web of Conferences 426, 01024 (2023) https://doi.org/10.1051/e3sconf/202342601024
ICOBAR 2023

2

weight edge could be assigned to a secondary road that
has less traffic, fewer stop signs, and fewer traffic lights
than the primary road, resulting in a shorter travel time.
Negative weight cycles can also be used to represent a
sequence of roads that form a loop and have a lower total
travel time than taking the primary road. This could be
useful for finding efficient routes for emergency
vehicles such as ambulances or fire trucks.

Dijkstra’s algorithm, a popular algorithm for finding
the shortest path in a graph, is based on the principle of
relaxation, where the algorithm repeatedly updates the
shortest distance from the source vertex to each vertex
in the graph [6]. The algorithm is not able to handle
negative weight edges properly, because it can lead to
the creation of negative weight cycles, which would
result in an infinite loop.

Negative weight edges are problematic for Dijkstra’s
algorithm because they can be used to ”reverse” the
direction of an edge [10], making it possible for the
algorithm to travel along a path that would increase the
total distance, rather than decrease it. This can result in
the algorithm returning an incorrect or sub-optimal
solution.

In this research, a decision was made to exclude
Dijkstra’s algorithm and focus on other algorithms that
are able to handle negative weight edges and cycles
properly. This is because the paper is studying graphs
that may have negative weight edges and cycles, and the
research wants to ensure that the analysis and results are
accurate and reliable. By using an algorithm that can
handle negative weights and cycles, this research can
avoid the risk of returning incorrect solutions and have
a better understanding of the graph structure and
behavior.

A dense graph is a graph in which the number of
edges is close to the maximum possible number of
edges. In other words, the ratio of the number of edges
to the number of vertices is close to 1. Dense graphs
have a high degree of connectivity, meaning that there
are many edges between the vertices, which makes it
relatively easy to navigate and traverse the graph. Below
(Fig. 3) is an example of dense graph for visualization
[11].

Fig. 3. An Example of a Dense Graph [12]

A sparse graph, on the other hand, is a graph in
which the number of edges is relatively low compared
to the maximum possible number of edges. In other
words, the ratio of the number of edges to the number of
vertices is relatively small. Sparse graphs have a low

degree of connectivity, meaning that there are relatively
few edges between the vertices, which makes it
relatively difficult to navigate and traverse the graph.

Fig. 4. An example of a sparse graph [13].

Graph density can have a significant impact on
algorithm performance; dense graphs (Fig. 4) are more
computationally expensive and require more memory as
per [11], while sparse graphs are more efficient and
require less memory. However, sparse graphs can make
it more difficult to find specific paths or minimum
spanning tree. Different algorithms, like Floyd-Warshall
and Johnson’s, can be used to find shortest path in
graphs with negative edges and cycles, each with their
own characteristics and suitability for different types of
graphs [14-16].

3.2 Implementation

This research’s methodology included implementing 2
algorithms (Floyd-Warshall and Johnson’s) on a Google
Maps plotter using longitudes, latitudes and Google
Maps API, using Python and GMplot library to create
graphs and calculate shortest paths. The research team
has also created a custom implementation of the
algorithms to find the exact path of the shortest path
calculation. The paper will evaluate the performance of
the algorithms using runtime, memory usag and
accuracy with test cases.

Table 1. Example of dataset.

ID Loc (lat. &
long.) Type Dest. Dist. Chain

0 -6.224494..,
106.804436.. street 1, 9 4.7, 4 3, 8, 21

1 -6.224072..,
106.804085.. street 2 4 3, 8

2 -6.223906..,
106.803957..

restaur
ant 3, 4 3.2, 3 3, 8

The data used to represent the nodes in the graph was
stored in a csv file that was manually created by the
team. The researchers also used the Google Maps API
to obtain the latitude and longitude of various locations.
These coordinates were then inputted into an Excel
spreadsheet and saved in a CSVformat. The file
included information about the identification of each
node and its direct destination, as well as the distance
from one node to another. Additionally, a column was
included to store the latitude and longitude of each node
as well as what type of node it was (e.g. street or
restaurant) which will define the paths that the research

E3S Web of Conferences 426, 01024 (2023) https://doi.org/10.1051/e3sconf/202342601024
ICOBAR 2023

3

is interested in and actually want to show. Table 1
shown the example of the dataset in the research.

The researchers inputted several coordinates and
locations in the Sudirman area around BINUS FX
campus (Jakarta) and created several labels that gave
users places to go for recreational activities, places to
eat, malls and other universities in the area.

The research was done using Python by converting
the csv file into an adjacency list and matrix for the
research, which consisted of 500 vertices. This allowed
for efficient storage and manipulation of the node data.
In addition to finding the shortest path distance between
two vertices, these modified Floyd-Warshall and
Johnson’s algorithms also return the exact path taken to
calculate the distance. This is done by using a
predecessor matrix, which is updated during the
algorithm’s execution and used to reconstruct the path.
This modification can make the algorithm slower and
use more memory, but it is important for real-life
applications such as transportation systems, logistics,
and telecommunication networks.

Fig. 5. The implementation.

4 Results and Discussions
The research tested the two algorithms over a series of
different amount of nodes within a graph ranging from
10 to 500. The algorithm’s mean (average) run time was
measured (in seconds) and the memory usage of each
algorithm was also tested. Both an adjacency list and
adjacency matrix were used when conducting the
measurements and thus the results of both will be
shown. Table 2 and Table 3 show the results of the
comparisons.

Table 2. Comparison of runtime and space complexity
between Floyd-Warshall and Johnson algorithm on adjacency

matrix

Input
size

(verti
ces)

Avg.
Floyd-

Warshall
time (sec)

Floyd-
Warshall

space
(byte)

Avg.
Johnson

time
(sec)

Johnso
n space
(byte)

10 0.005 184 0.0005 184
25 0.002 312 0.003 312
55 0.017 568 0.03 568
100 0.103 920 0.175 920
250 1.503 2200 2.912 2200
500 12.439 4216 20.024 4216

Table 3. Comparison of runtime and space complexity
between Floyd-Warshall and Johnson algorithm

on adjacency list.

Input
size

(verti
ces)

Avg.
Floyd-

Warshall
time (sec)

Floyd-
Warshall

space
(byte)

Avg.
Johnson

time
(sec)

Johnso
n space
(byte)

10 0.002 184 0.0005 184
25 0.004 312 0.001 312
55 0.027 568 0.011 568

100 0.109 920 0.05 920
250 1.58 2200 0.663 2200
500 12.415 4216 5.359 4216

The research study has found that the Floyd-
Warshall algorithm had the best performance in terms of
runtime and memory usage compared to Johnson’s
algorithm when using an adjacency matrix. However,
Johnson’s had better runtime for a smaller number of
nodes and also performs better overal when using an
adjacency list over matrix.

There are a few reasons why Johnson’s algorithm
might run much faster than Floyd-Warshall algorithm
when the graph has a lot of vertices and is represented
as an adjacency list. The time complexity of Johnson’s
algorithm is O(VE + V2logV), which is better than
Floyd-Warshall algorithm’s O(V3) for sparse graphs
where E is the number of edges. Sparse graphs are just
graphs that are not close to having the same amount of
edges as vertices. Adjacency list representation is more
memory efficient than an adjacency matrix
representation when the graph is sparse, as it only stores
the edges that actually exist, whereas an adjacency
matrix would require storage for all potential edges.

Johnson’s algorithm uses the Bellman-Ford
algorithm to find the shortest path between all pairs of
vertices, which is more efficient than Floyd-Warshall
algorithm, especially when the graph is sparse, as it can
stop early if it detects that there are no negative weight
cycles. The second batch of graphs above show that the
input representation (adjacency list) may not have a
significant impact on the performance of the algorithm
if the graph is sparse. In a sparse graph, the number of
edges is much smaller than the number of nodes and thus
the representation does not affect the algorithm’s
performance.

Continuing on as to why the Floyd-Warshall
algorithm does not seem different on the differing input
representations. An answer as to why the Floyd-
Warshall algorithm might not show a significant
difference in performance when comparing input as an
adjacency list versus input as an adjacency matrix could
be some of the following reasons.

The time complexity of the Floyd-Warshall
algorithm is O(V3) regardless of the input
representation. This means that the algorithm itself takes
the same amount of time to run regardless of whether
the input is an adjacency list or an adjacency matrix.

The space complexity of the Floyd-Warshall
algorithm is also the same regardless of the input
representation. The algorithm requires a VxV matrix to
store the shortest path between all pairs of nodes. The
reason for this is that the Floyd-Warshall algorithm

E3S Web of Conferences 426, 01024 (2023) https://doi.org/10.1051/e3sconf/202342601024
ICOBAR 2023

4

considers all possible paths between every pair of
vertices, including paths that may pass through other
intermediate vertices. In order to keep track of these
different paths and the corresponding distances, a v x v
matrix is used to store the shortest path tree (SPT). Each
element in the matrix represents the shortest distance
between a given pair of vertices, and can be updated as
the algorithm progresses.

Additionally, the algorithm uses the matrix to check
if there exists an edge from vertex i to vertex k and k to
j. If it finds that the path from i to j passing through k is
shorter than the present shortest path from i to j, it
updates the shortest distance from i to j. This is done for
all possible combinations of vertices i, j and k, which is
why the algorithm requires a v x v matrix to store the
SPT.

The number of edges in the graph does not affect the
time complexity of the Floyd-Warshall algorithm. The
algorithm looks at all possible paths between all pairs of
nodes, which is why the time complexity is O(V3)
regardless of the number of edges in the graph. The
input representation may not have a significant impact
on the performance of the algorithm if the graph is not
very dense. In a sparse graph, the number of edges is
much smaller than the number of nodes and thus the
representation does not affect the algorithm’s
performance.

In summary, the Floyd-Warshall algorithm is not
affected by the input representation (adjacency list or
adjacency matrix) as its time and space complexity is the
same regardless of the input representation and the input
representation does not affect the algorithm’s
performance in sparse graph. It’s always best to test both
of these input representation on the graph that you are
working on and choose the one that gives better results.

A two-sample t-test was conducted, with one sample
being the values of the run-times of Johnson’s algorithm
that was used to calculate the average on an adjacency
list and the other sample being the values of the run-time
of Floyd’s algorithm on an adjacency list. The t-value
and p-value was calculated. A small p-value (typically
less than 0.05) would indicate strong evidence against
the null hypothesis and in favor of the alternative
hypothesis, which would suggest that the runtime of the
two algorithms is not the same. The equation below
describes the t-test formula [17-19].

 = (1)

This study has shown that the Johnson’s algorithm is

the best choice for finding the shortest path between
multiple locations in a Google Maps plotter using the
Google Maps API when the graph is sparse and
represented using an adjacency list. This is supported by
the two-sample t-test, which showed that the p-value
between the sample of Johnson’s run-time and the
sample of Floyd-Warshall’s runtime is
2.776757786919472e-54, which is below the chosen
alpha value (significance level) and allows us to reject
the null hypothesis that the two algorithms have the
same mean runtime.

Table 4. Results of T-test for the two runtimes of the
algorithms.

 Floyd-Warshall Johnson

Runtimes

12.86
12.45
12.63
12.59
12.25
12.53
12.25
12.12
12.25
12.49
12.54
12.34
12.13
12.26
12.27
12.35
12.33
12.53
12.29
12.45

5.51
5.50
5.35
5.33
5.43
5.37
5.24
5.36
5.42
5.35
5.37
5.33
5.17
5.17
5.28
5.20
5.19
5.31
5.18
5.32

Statistics t-value
p-value

149.79
2.78e-54

The results of this research demonstrate that the

Johnson’s algorithm is faster and requires less memory
than the Floyd-Warshall algorithm, which makes it a
more suitable choice for finding the shortest path
between multiple locations in a sparse graph when there
is a large number of vertices. However, it is important
to note that the Dijkstra’s algorithm is still a suitable
choice for small number of nodes and when there are no
negative edge weights. Negative edge weights can be
used to represent things such as beneficial routes or
traffic and congestion. Therefore, it is essential to
consider whether or not your application will need the
use of negative edge weights in the future.

5 Conclusion and Recommendation
In this paper, the research presented a comparative study
of the implementation of all-to-all pairs shortest path
algorithms, specifically Floyd-Warshall and Johnson’s.
This paper demonstrated the use of these algorithms in
finding the shortest path between multiple locations
using a Google Maps plotter and the Google Maps API.

The research’s results show that the Johnson’s
algorithm had the best performance in terms of runtime
and memory usage when compared to Floyd-Warshall’s
algorithm. The research has also figured out that using
an adjacency list is better when the graph is sparse as it
usually is in real life than using an adjacency matrix.
However, Floyd-Warshall still has a number of use
cases as it is considerably faster when using an
adjacency matrix as input which might be a hurdle that
some have. It is also worth noting that the Floyd-
Warshall algorithm is generally much easier to
implement than the Johnson’s algorithm and can cut
down on time if the time it takes for the algorithm to
complete is not important, for example if the number of
vertices in the graph stay small then the Floyd-Warshall

E3S Web of Conferences 426, 01024 (2023) https://doi.org/10.1051/e3sconf/202342601024
ICOBAR 2023

5

algorithm might be a better idea to use instead even if
the Johnson’s algorithm is slightly faster.

Based on the findings of this study, this paper
recommends the use of these algorithms in optimizing
routes for transportation and logistics. For example, the
algorithms can be used to find the shortest path between
multiple locations, which can be used to plan efficient
routes for delivery vehicles. It can also be used to deal
with specific constraints such as traffic.

Further research can be done to improve the
scalability and performance of the algorithms.
Additionally, research can be done to explore the use of
these algorithms in other real-world scenarios, such as
in the case of social networks or in the field of computer
science.

Overall, the use of the Floyd-Warshall and
Johnson’s algorithms in real-world scenarios has the
potential to greatly improve efficiency and optimize
various processes. Researchers and practitioners can
easily apply these algorithms in a realworld setting and
gain valuable insights.

References
1. H. Abu-Ryash, A. Tamimi, Comparison Studies

for Different Shortest path Algorithms, Int. J.
Comp. Appl. 14, 8, 5979-5986 (2015)

2. I. K. Laga Dwi Pandika, B. Irawan, C.
Setianingsih, Application of optimization heavy
traffic path with floyd-warshall algorithm, in
Proceedings of the International Conference on
Control, Electronics, Renewable Energy and
Communications, ICCEREC, 5-7 Dec 2018,
Bandung, Indonesia (2018)

3. B. Amaliah, C. Fatichah, O. Riptianingdyah,
Finding the Shortest Paths Among Cities in Java
Island Using Node Combination Based on Dijkstra
Algorithm, Int. J. Smart Sens. Intell. Syst. 9, 4,
2219-2236 (2016)

4. H. Mahmoud, N. Akkari, Shortest path
calculation: a comparative study for location-
based recommender system, in in 2016 world
symposium on computer applications & research,
WSCAR, 12-14 Mar 2016, Cairo, Egypt (2016)

5. M. Afser, M. U. Shameem, J. Ferdous, M. Milon,
M. Hossain, Study on single source shortest path
algorithms, Ph.D. dissertation, United
International University (2017)

6. N. Biggs, E. K. Lloyd, R. J. Wilson, Graph theory,
Oxford University Press, 1736-1936 (1986)

7. H. Singh, R. Sharma, Int. J. Comp. Tech. 3, 1,
179-183 (2012)

8. X. Yang, Adjacent matrix,
https://www.cs.mtsu.edu/~xyang/3080/adjacency
Matrix.html (n.d)

9. GeeksforGeeks, Graphs and its representations,
https://www.geeksforgeeks.org/graph-and-its-
representations/ (n.d)

10. X. Huang, Negative-weight cycle algorithms, in
FCS, pp. 109-115 (2006)

11. G. Melancon, Just how dense are dense graphs in
the real world? a methodological note, in
Proceedings of the 2006 AVI workshop on
BEyond time and errors: novel evaluation methods
for information visualization, AVI06, 23 May
2006, Venice, Italy (2006)

12. Math.stackexchange, Maximally dense unit
distance graphs,
https://math.stackexchange.com/questions/257526
8/maximally-dense-unit-distance-graphs (2019)

13. Stackoverflow, Find center of a sparse graph,
https://stackoverflow.com/questions/18285998/fin
d-center-of-a-sparse-graph (2013)

14. R. Risald, A. E. Mirino, S. Suyoto, Best routes
selection using Dijkstra and Floyd-Warshall
algorithm, in 2017 11th International Conference
on Information & Communication Technology and
System, ICTS, pp. 155-158 (2017)

15. M. A. Samosir, Formosa J. Sci. Tech. 2, 2, 453-
474 (2023)

16. R. Johner, A. Lanaia, R. Dornberger, T. Hanne,
Comparing the Pathfinding Algorithms A,
Dijkstra’s, Bellman-Ford, Floyd-Warshall, and
Best First Search for the Paparazzi Problem, in
Congress on Intelligent Systems: Proceedings of
CIS 2021, 2, pp. 561-576 (2022)

17. T. K. Kim, T test as a parametric statistic Korean,
J. Anesthesiol. 68, 6, 540-546 (2015)

18. T. K. Kim, J. H. Park, More about the basic
assumptions of t-test: normality and sample size,
Korean J. Anesthesiol, 72, 4, 331-335 (2019)

19. P. Mishra, U. Singh, C. M. Pandey, P. Mishra, G.
Pandey, Application of Student's t-test, Analysis of
Variance, and Covariance, Anaesth. 22, 4, 407
(2019)

E3S Web of Conferences 426, 01024 (2023) https://doi.org/10.1051/e3sconf/202342601024
ICOBAR 2023

6

