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Abstract. This paper presents a comparative study of the implementation of all-to-all pairs shortest path 
algorithms, specifically Floyd-Warshall, Johnson’s, and Dijkstra’s. It contributes to a better understanding 
of their strengths and weaknesses in different types of applications (real-world scenarios). The research 
demonstrates the use of these algorithms in finding the shortest path between multiple locations using a 
Google Maps plotter and the Google Maps API. Older research papers have shown a comparison that shows 
that the Floyd-Warshall algorithm is faster than the other two algorithms in certain scenarios; however, none 
have brought up the real-world application of such an algorithm. The null hypothesis of this study is that the 
Floyd-Warshall algorithm is not suitable for use in a real-life application for finding the shortest path 
compared to Johnson’s algorithm. The results of this study have potential applications in transportation and 
logistics and will provide useful insights for future work in this field.

1 Introduction 
In the field of graph theory, the problem of finding the 
optimal route between multiple locations has been well 
researched, with various algorithms such as Floyd-
Warshall, Johnson’s algorithms, and running Dijkstra’s 
algorithm multiple times being developed to solve this 
problem. However, previous research has primarily 
focused on comparing the efficiency of these algorithms 
in theoretical settings. Studies such as Abu-Ryash and 
Tamimi (2015) [1], Pandika et al. (2019) [2], and 
Amaliah et al. (2016) [3] have compared the runtime of 
these algorithms on different types of graphs and 
scenarios. However, there is a gap in research on the 
performance of these algorithms in practical, real-world 
scenarios. 

This research aims to fill this gap by conducting a 
comparative study of the Floyd-Warshall and Johnson’s 
algorithms in a real-world scenario using the Google 
Maps API and GMplot library in python. The unique 
approach performed is using these algorithms in a 
Google Maps plotter, providing a set of longitudes and 
latitudes that represent locations, and demonstrating 
how these algorithms can be used to find the shortest 
path to all locations at the same time in a real-life 
application. Additionally, a comparison will be made 
from the usage of the two graph representations, 
adjacency matrix and list, as well as modifying the 
algorithm to return extra values regarding the path the 
algorithm took to calculate the shortest path so that the 
main application can draw it on the map.  

The null hypothesis of this test, with an alpha value 
of 0.05, is to determine if there is a difference in the 
mean runtime of the two algorithms. The research used 
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an alpha value of 0.05 in their null hypothesis test to 
determine if there is a difference in the mean runtime of 
the two algorithms. Alpha is a threshold value used in 
statistics to determine the level of significance of a test. 
In this case, an alpha value of 0.05 indicates that the 
researchers are willing to accept a 5% chance of a false 
positive in their results. This means that if the null 
hypothesis is true (there is no significant difference in 
the mean runtime of the two algorithms), there is a 5% 
chance that the test will incorrectly reject the null 
hypothesis and find a significant difference. This is a 
commonly used alpha value in many statistical tests. 
The research will provide valuable insight into the 
performance of these algorithms in a practical, real-
world scenario and contribute to a better understanding 
of their strengths and weaknesses in different types of 
applications. 

2 Related Works  
The comparison of results from using the Floyd-
Warshall, Johnson and Dijkstra’s algorithms have been 
well researched. In a 2015 study by Abu-ryash and 
Tamimi [1] they conducted an investigation and 
comparison of a variety of shortest path algorithms. The 
purpose was to discover the efficiency of each 
algorithm, highlighting the best use case for each 
algorithm. The Johnson’s algorithm is claimed to be 
faster than Floyd-Warshall on sparse graph, but on the 
contrary, Floyd-Warshall algorithm is faster when the 
graph is dense. On a side note, Dijkstra’s algorithm is 
more memory efficient for sparse graph as it doesn’t 
need distance matrix to be represented as dense matrix. 
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Pandika et al. [2] mentioned that Floyd-Warshall 
algorithm works effectively and efficiently in providing 
optimal routes affected by severe congestion, which in 
their scenario was in the area of Bandung where there 
are many tourists can get contribute to the traffic 
congestion in that area. As a result, they designed an 
Android application where they implemented Floyd-
Warshall algorithm to help tourists get the optimal route
to their destination and proved to have impressive 
runtime and had effective results.

A study conducted by Amaliah et al. [3] in 2016 
demonstrated that Dijkstra algorithm is able to reach an 
accuracy of 92.88 using Google Maps as the reference. 
Both studies indicates that both algorithms work 
effectively. Mahmoud et al. [4] in their study compared 
Haversine and Vincenty formulas for a location based 
recommender system by stating that pathfinding 
algorithms like Dijkstra work well in graphs but 
something like the Haversine formula is more effective 
for getting the distance between two points on the Earth 
as it is neither a perfect sphere no ellipse. Afser et al. [5] 
implemented several path finding algorithms such as
Dijkstra, Floyd-Warshall, Bellman Ford, Johnson 
algorithm for comparison using Genetic Algorithm.

These studies provide good insight into the research 
that has been done on Floyd Warshall and Johnson’s 
algorithm. However, researchers have not extensively 
compared the runtimes of the Floyd-Warshall and 
Johnson’s algorithms in real-world applications. While 
the algorithms have been studied and analyzed in 
theoretical settings, there is a lack of research on how 
they perform in practical scenarios. This gap in 
knowledge makes it difficult to determine which 
algorithm would be more efficient for a specific real-
world problem. Further research is needed to determine 
the performance of these algorithms in real-world 
scenarios and to understand their strengths and
weaknesses in different types of applications.

3 Methodology

3.1 Graph algorithm and analysis

Graph theory is a mathematical framework for 
modelling relationships between objects [5-6]. In the 
context of this research, This research is interested in 
finding the shortest path between different locations on 
a map. An adjacency matrix and an adjacency list are 
two common ways to represent a graph, where a graph 
is a set of vertices (also called nodes) and edges 
connecting them [7].

Graphs can be classified into 4 types: directed 
weighted, directed unweighted, undirected weighted, 
and undirected unweighted. Directed weighted graphs 
have edges with direction and weight, represented by 
arrows with tail indicating starting vertex and head 
indicating ending vertex. The weight represents cost or 
distance. The directed weighted graph is the one that the 
paper will mostly be using as examples as it is the one 
that is used most commonly in applications.

Directed weighted graphs are important in the real-
life application of graph algorithms because they can be 

used to model a wide range of problems. For example, 
they can be used to model transportation networks, 
where the edges represent roads or flights, and the 
weights represent the distance or cost of traveling along 
that edge.

Fig. 1. An example of an adjacency matrix on a directed 
graph [8]

An adjacency matrix (Fig. 1) is a square matrix with 
the size of VxV, where V is the number of nodes in the 
graph. The element in the i-th row and j-th column of 
the matrix represents the weight of the edge between the 
i-th node and the j-th node. If there is no edge between 
nodes i and j, the corresponding element in the matrix is 
set to a special value such as infinity or null. Adjacency 
matrix representation is useful when the graph is dense, 
meaning that there are many edges between the nodes.

Fig. 2. An example of an adjacency list [9]

An adjacency list (Fig. 2), on the other hand, 
represents a graph as an array of linked lists. Each node 
in the graph is represented by an index in the array, and 
the linked list associated with that index contains the 
nodes that are adjacent to it. The edges are represented 
by the pointers in the linked lists. Adjacency list 
representation is useful when the graph is sparse, 
meaning that there are very few edges between the 
nodes.

Negative weight edges and cycles in graphs refer to 
edges or sequences of edges that have a negative cost or 
weight. They can be used in transportation networks, 
such as public transportation systems, to represent 
transfer points or alternative routes with lower costs 
[10]. In traffic engineering, they can represent 
alternative routes with lower travel time or fuel 
consumption or sequences of roads that form a loop with 
lower total travel time for emergency vehicles. They can 
also be used in traffic simulation to model and predict 
traffic flow by considering traffic demand and road 
network capacity. For example, a negative weight edge 
in a transportation network could represent a transfer 
point between two forms of transportation, where the 
cost of transferring is less than continuing on the same 
mode of transportation. In traffic engineering, a negative 
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weight edge could be assigned to a secondary road that 
has less traffic, fewer stop signs, and fewer traffic lights 
than the primary road, resulting in a shorter travel time. 
Negative weight cycles can also be used to represent a 
sequence of roads that form a loop and have a lower total 
travel time than taking the primary road. This could be 
useful for finding efficient routes for emergency 
vehicles such as ambulances or fire trucks.

Dijkstra’s algorithm, a popular algorithm for finding 
the shortest path in a graph, is based on the principle of 
relaxation, where the algorithm repeatedly updates the 
shortest distance from the source vertex to each vertex 
in the graph [6]. The algorithm is not able to handle 
negative weight edges properly, because it can lead to 
the creation of negative weight cycles, which would 
result in an infinite loop.

Negative weight edges are problematic for Dijkstra’s 
algorithm because they can be used to ”reverse” the 
direction of an edge [10], making it possible for the 
algorithm to travel along a path that would increase the 
total distance, rather than decrease it. This can result in 
the algorithm returning an incorrect or sub-optimal 
solution.

In this research, a decision was made to exclude 
Dijkstra’s algorithm and focus on other algorithms that 
are able to handle negative weight edges and cycles 
properly. This is because the paper is studying graphs 
that may have negative weight edges and cycles, and the 
research wants to ensure that the analysis and results are 
accurate and reliable. By using an algorithm that can 
handle negative weights and cycles, this research can 
avoid the risk of returning incorrect solutions and have 
a better understanding of the graph structure and 
behavior.

A dense graph is a graph in which the number of 
edges is close to the maximum possible number of 
edges. In other words, the ratio of the number of edges 
to the number of vertices is close to 1. Dense graphs 
have a high degree of connectivity, meaning that there 
are many edges between the vertices, which makes it 
relatively easy to navigate and traverse the graph. Below
(Fig. 3) is an example of dense graph for visualization 
[11].

Fig. 3. An Example of a Dense Graph [12]

A sparse graph, on the other hand, is a graph in 
which the number of edges is relatively low compared 
to the maximum possible number of edges. In other 
words, the ratio of the number of edges to the number of 
vertices is relatively small. Sparse graphs have a low 

degree of connectivity, meaning that there are relatively 
few edges between the vertices, which makes it 
relatively difficult to navigate and traverse the graph.

Fig. 4. An example of a sparse graph [13].

Graph density can have a significant impact on 
algorithm performance; dense graphs (Fig. 4) are more 
computationally expensive and require more memory as 
per [11], while sparse graphs are more efficient and 
require less memory. However, sparse graphs can make 
it more difficult to find specific paths or minimum 
spanning tree. Different algorithms, like Floyd-Warshall 
and Johnson’s, can be used to find shortest path in 
graphs with negative edges and cycles, each with their 
own characteristics and suitability for different types of 
graphs [14-16].

3.2 Implementation

This research’s methodology included implementing 2 
algorithms (Floyd-Warshall and Johnson’s) on a Google 
Maps plotter using longitudes, latitudes and Google 
Maps API, using Python and GMplot library to create 
graphs and calculate shortest paths. The research team 
has also created a custom implementation of the 
algorithms to find the exact path of the shortest path 
calculation. The paper will evaluate the performance of 
the algorithms using runtime, memory usag and 
accuracy with test cases.

Table 1. Example of dataset.

ID Loc (lat. & 
long.) Type Dest. Dist. Chain

0 -6.224494.., 
106.804436.. street 1, 9 4.7, 4 3, 8, 21

1 -6.224072.., 
106.804085.. street 2 4 3, 8

2 -6.223906.., 
106.803957..

restaur
ant 3, 4 3.2, 3 3, 8

The data used to represent the nodes in the graph was 
stored in a csv file that was manually created by the 
team. The researchers also used the Google Maps API 
to obtain the latitude and longitude of various locations. 
These coordinates were then inputted into an Excel 
spreadsheet and saved in a CSVformat. The file 
included information about the identification of each 
node and its direct destination, as well as the distance 
from one node to another. Additionally, a column was 
included to store the latitude and longitude of each node 
as well as what type of node it was (e.g. street or 
restaurant) which will define the paths that the research 
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is interested in and actually want to show. Table 1 
shown the example of the dataset in the research.

The researchers inputted several coordinates and 
locations in the Sudirman area around BINUS FX 
campus (Jakarta) and created several labels that gave 
users places to go for recreational activities, places to 
eat, malls and other universities in the area.

The research was done using Python by converting 
the csv file into an adjacency list and matrix for the 
research, which consisted of 500 vertices. This allowed 
for efficient storage and manipulation of the node data. 
In addition to finding the shortest path distance between 
two vertices, these modified Floyd-Warshall and 
Johnson’s algorithms also return the exact path taken to 
calculate the distance. This is done by using a 
predecessor matrix, which is updated during the 
algorithm’s execution and used to reconstruct the path. 
This modification can make the algorithm slower and 
use more memory, but it is important for real-life 
applications such as transportation systems, logistics, 
and telecommunication networks.

Fig. 5. The implementation.

4 Results and Discussions
The research tested the two algorithms over a series of
different amount of nodes within a graph ranging from 
10 to 500. The algorithm’s mean (average) run time was 
measured (in seconds) and the memory usage of each 
algorithm was also tested. Both an adjacency list and 
adjacency matrix were used when conducting the 
measurements and thus the results of both will be 
shown. Table 2 and Table 3 show the results of the 
comparisons.

Table 2. Comparison of runtime and space complexity 
between Floyd-Warshall and Johnson algorithm on adjacency 

matrix

Input 
size 

(verti
ces)

Avg. 
Floyd-

Warshall 
time (sec)

Floyd-
Warshall 

space 
(byte)

Avg. 
Johnson

time 
(sec)

Johnso
n space 
(byte)

10 0.005 184 0.0005 184
25 0.002 312 0.003 312
55 0.017 568 0.03 568
100 0.103 920 0.175 920
250 1.503 2200 2.912 2200
500 12.439 4216 20.024 4216

Table 3. Comparison of runtime and space complexity 
between Floyd-Warshall and Johnson algorithm

on adjacency list.

Input 
size 

(verti
ces)

Avg. 
Floyd-

Warshall 
time (sec)

Floyd-
Warshall 

space 
(byte)

Avg. 
Johnson 

time 
(sec)

Johnso
n space 
(byte)

10 0.002 184 0.0005 184
25 0.004 312 0.001 312
55 0.027 568 0.011 568

100 0.109 920 0.05 920
250 1.58 2200 0.663 2200
500 12.415 4216 5.359 4216

The research study has found that the Floyd-
Warshall algorithm had the best performance in terms of 
runtime and memory usage compared to Johnson’s 
algorithm when using an adjacency matrix. However, 
Johnson’s had better runtime for a smaller number of 
nodes and also performs better overal when using an 
adjacency list over matrix.

There are a few reasons why Johnson’s algorithm 
might run much faster than Floyd-Warshall algorithm 
when the graph has a lot of vertices and is represented 
as an adjacency list. The time complexity of Johnson’s 
algorithm is O(VE + V2logV), which is better than 
Floyd-Warshall algorithm’s O(V3) for sparse graphs 
where E is the number of edges. Sparse graphs are just 
graphs that are not close to having the same amount of 
edges as vertices. Adjacency list representation is more 
memory efficient than an adjacency matrix 
representation when the graph is sparse, as it only stores 
the edges that actually exist, whereas an adjacency 
matrix would require storage for all potential edges.

Johnson’s algorithm uses the Bellman-Ford 
algorithm to find the shortest path between all pairs of 
vertices, which is more efficient than Floyd-Warshall 
algorithm, especially when the graph is sparse, as it can 
stop early if it detects that there are no negative weight
cycles. The second batch of graphs above show that the 
input representation (adjacency list) may not have a 
significant impact on the performance of the algorithm 
if the graph is sparse. In a sparse graph, the number of 
edges is much smaller than the number of nodes and thus 
the representation does not affect the algorithm’s 
performance.

Continuing on as to why the Floyd-Warshall 
algorithm does not seem different on the differing input 
representations. An answer as to why the Floyd-
Warshall algorithm might not show a significant 
difference in performance when comparing input as an 
adjacency list versus input as an adjacency matrix could 
be some of the following reasons.

The time complexity of the Floyd-Warshall 
algorithm is O(V3) regardless of the input 
representation. This means that the algorithm itself takes 
the same amount of time to run regardless of whether 
the input is an adjacency list or an adjacency matrix.

The space complexity of the Floyd-Warshall 
algorithm is also the same regardless of the input 
representation. The algorithm requires a VxV matrix to 
store the shortest path between all pairs of nodes. The 
reason for this is that the Floyd-Warshall algorithm 
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considers all possible paths between every pair of 
vertices, including paths that may pass through other 
intermediate vertices. In order to keep track of these 
different paths and the corresponding distances, a v x v 
matrix is used to store the shortest path tree (SPT). Each 
element in the matrix represents the shortest distance 
between a given pair of vertices, and can be updated as 
the algorithm progresses. 

Additionally, the algorithm uses the matrix to check 
if there exists an edge from vertex i to vertex k and k to 
j. If it finds that the path from i to j passing through k is 
shorter than the present shortest path from i to j, it 
updates the shortest distance from i to j. This is done for 
all possible combinations of vertices i, j and k, which is 
why the algorithm requires a v x v matrix to store the 
SPT. 

The number of edges in the graph does not affect the 
time complexity of the Floyd-Warshall algorithm. The 
algorithm looks at all possible paths between all pairs of 
nodes, which is why the time complexity is O(V3) 
regardless of the number of edges in the graph. The 
input representation may not have a significant impact 
on the performance of the algorithm if the graph is not 
very dense. In a sparse graph, the number of edges is 
much smaller than the number of nodes and thus the 
representation does not affect the algorithm’s 
performance. 

In summary, the Floyd-Warshall algorithm is not 
affected by the input representation (adjacency list or 
adjacency matrix) as its time and space complexity is the 
same regardless of the input representation and the input 
representation does not affect the algorithm’s 
performance in sparse graph. It’s always best to test both 
of these input representation on the graph that you are 
working on and choose the one that gives better results. 

A two-sample t-test was conducted, with one sample 
being the values of the run-times of Johnson’s algorithm 
that was used to calculate the average on an adjacency 
list and the other sample being the values of the run-time 
of Floyd’s algorithm on an adjacency list. The t-value 
and p-value was calculated. A small p-value (typically 
less than 0.05) would indicate strong evidence against 
the null hypothesis and in favor of the alternative 
hypothesis, which would suggest that the runtime of the 
two algorithms is not the same. The equation below 
describes the t-test formula [17-19]. 
 

               =      (1) 

 
This study has shown that the Johnson’s algorithm is 

the best choice for finding the shortest path between 
multiple locations in a Google Maps plotter using the 
Google Maps API when the graph is sparse and 
represented using an adjacency list. This is supported by 
the two-sample t-test, which showed that the p-value 
between the sample of Johnson’s run-time and the 
sample of Floyd-Warshall’s runtime is 
2.776757786919472e-54, which is below the chosen 
alpha value (significance level) and allows us to reject 
the null hypothesis that the two algorithms have the 
same mean runtime. 

Table 4. Results of T-test for the two runtimes of the 
algorithms. 

 Floyd-Warshall Johnson 

Runtimes 

12.86 
12.45 
12.63 
12.59 
12.25 
12.53 
12.25 
12.12 
12.25 
12.49 
12.54 
12.34 
12.13 
12.26 
12.27 
12.35 
12.33 
12.53 
12.29 
12.45 

5.51 
5.50 
5.35 
5.33 
5.43 
5.37 
5.24 
5.36 
5.42 
5.35 
5.37 
5.33 
5.17 
5.17 
5.28 
5.20 
5.19 
5.31 
5.18 
5.32 

Statistics t-value 
p-value 

149.79 
2.78e-54  

 
The results of this research demonstrate that the 

Johnson’s algorithm is faster and requires less memory 
than the Floyd-Warshall algorithm, which makes it a 
more suitable choice for finding the shortest path 
between multiple locations in a sparse graph when there 
is a large number of vertices. However, it is important 
to note that the Dijkstra’s algorithm is still a suitable 
choice for small number of nodes and when there are no 
negative edge weights. Negative edge weights can be 
used to represent things such as beneficial routes or 
traffic and congestion. Therefore, it is essential to 
consider whether or not your application will need the 
use of negative edge weights in the future. 

5 Conclusion and Recommendation  
In this paper, the research presented a comparative study 
of the implementation of all-to-all pairs shortest path 
algorithms, specifically Floyd-Warshall and Johnson’s. 
This paper demonstrated the use of these algorithms in 
finding the shortest path between multiple locations 
using a Google Maps plotter and the Google Maps API.  

The research’s results show that the Johnson’s 
algorithm had the best performance in terms of runtime 
and memory usage when compared to Floyd-Warshall’s 
algorithm. The research has also figured out that using 
an adjacency list is better when the graph is sparse as it 
usually is in real life than using an adjacency matrix. 
However, Floyd-Warshall still has a number of use 
cases as it is considerably faster when using an 
adjacency matrix as input which might be a hurdle that 
some have. It is also worth noting that the Floyd-
Warshall algorithm is generally much easier to 
implement than the Johnson’s algorithm and can cut 
down on time if the time it takes for the algorithm to 
complete is not important, for example if the number of 
vertices in the graph stay small then the Floyd-Warshall 
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algorithm might be a better idea to use instead even if 
the Johnson’s algorithm is slightly faster. 

Based on the findings of this study, this paper 
recommends the use of these algorithms in optimizing 
routes for transportation and logistics. For example, the 
algorithms can be used to find the shortest path between 
multiple locations, which can be used to plan efficient 
routes for delivery vehicles. It can also be used to deal 
with specific constraints such as traffic. 

Further research can be done to improve the 
scalability and performance of the algorithms. 
Additionally, research can be done to explore the use of 
these algorithms in other real-world scenarios, such as 
in the case of social networks or in the field of computer 
science. 

Overall, the use of the Floyd-Warshall and 
Johnson’s algorithms in real-world scenarios has the 
potential to greatly improve efficiency and optimize 
various processes. Researchers and practitioners can 
easily apply these algorithms in a realworld setting and 
gain valuable insights. 
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