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Abstract. This study focused on simulating incompressible viscous flow using the finite element method. 

This study used velocity and pressure as unknowns known as primitive variable formulations. Simulation 

of incompressible fluid flow poses numerical challenges due to the presence of nonlinear convective terms 

in Navier-Stokes equations and the incompressible nature of the fluid. If the connection between velocities 

and pressure is not discretized correctly, the stable and convergent velocities might be gained, but the 

obtained pressure will be oscillatory. To avoid these difficulties, continuous quadratic and additional cubic 

bubble functions will be used for the velocity field and linear functions for the pressure field. This kind of 

discretization satisfies the Ladyzhenskaya-Babuška-Brezzi (LBB) stability condition. Two cases of different 

Reynolds numbers were used to test the formulation's effectiveness. In the case of Reynolds number 0.12, 

no vortices were formed, suggesting that the flow is primarily governed by fluid friction, and fluid inertia 

has minimal effect. In the case of Reynolds number 120, the vortex formation, which is known as Von 

Kármán vortex street, appeared. These results concluded that the formulation using the finite element 

method is correct.

1 Introduction 

The study of incompressible fluid flow plays an important 

role in many applications of civil engineering such as the 

distribution of pollutants, water quality flow, floodplain 

inundation, and flowing streams of water in sea waves. 

Incompressible fluid flows can be classified based on 

various criteria such as internal or external flows, laminar 

or turbulent flows, and single-phase or multiphase flows 

[1]. Almost every type of flow is governed by the same 

equations, namely the Navier-Stokes equations [2]. 

Incompressible fluid flow can be studied in three 

approaches, namely experimental, analytical, and 

numerical approaches. This work employed a numerical 

method to study incompressible flow. 

Computational simulations are pivotal in understanding 

complex incompressible fluid flow phenomena since the 

simulations can mimic real and ideal conditions and give 

comprehensive information at a relatively low cost in a 

short period.  

Among various numerical methods such as finite 

difference and finite volume methods, the finite element 

method (FEM) has proven to be a valuable tool, since 

FEM can easily handle complex regions and complicated 

boundary conditions in real-world problems. The FEM is 

a generalization of the classical Ritz and Galerkin 

weighted-residual methods.  

However, the FEM method for analyzing incompressible 

fluid flows has some challenges, which do not occur in 
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analyzing solid mechanics problems. In solid mechanics, 

the classical Ritz and Galerkin methods are the same as 

the problem of minimizing an unconstrained convex 

quadratic functional. Meanwhile, Galerkin weighted-

residual formulations of Navier-Stokes equations are not 

equivalent to the minimization of unconstrained convex 

quadratic functionals. Other challenges of the simulation 

of incompressible fluid flows are the presence of 

nonlinear convective terms in the Navier-Stokes 

equations and the incompressibility of the fluid. These 

problems lead to stability issues, i.e. the convective terms 

will create spurious oscillations (wiggles) solutions. 

Therefore, the standard Galerkin formulations have to be 

modified.  

This study used the Galerkin mixed method, in that 

velocities and pressure variables were approximated as 

fundamental unknowns. The word mixed indicates that 

velocities variables are used together with the force-like 

variable, pressure, in a single formulation. Through this 

formulation, the original minimization problem converts 

to a saddle-point problem. The sufficient condition for a 

saddle-point problem to have a unique solution is 

Ladyzhenskaya-Babuška-Brezzi (LBB) condition. The 

LBB condition guarantees that the discretization of a 

saddle point problem is stable. To satisfy the LBB 

condition, this study used higher-order velocities 

elements and lower-order pressure elements. 

Since the Galerkin mixed method is not robust for 

numerical modeling of incompressible viscous flow past 
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the rigid surface of an immersed body or along a fixed 

impermeable wall. To make the Galerkin method robust, 

bubble functions are introduced.  

Bubble functions are functions located on the 

elements' interiors and vanish on the element boundaries. 

With the help of the bubble function, the solution to the 

boundary value problem will be broken down into the sum 

of the coarse-scale and fine-scale solutions. The classical 

Galerkin finite element will obtain the coarse-scale 

solution, meanwhile, the bubble function will take care of 

the fine-scale solution. 

This study will employ the finite element code which 

was developed by Matuttis and his coworker of the 

Department of Mechanical and Control Engineering, 

University of Electro-Communications (UEC), Tokyo [3-

7]. The code employed a second-order polynomial for 

velocities and a linear function for pressure. Taking into 

account the bubble function the second-order element 

becomes the third-order element [7].  This development 

eliminates the need for a genuine third-order element, 

streamlining the computational process while ensuring 

LBB stability conditions.  

To demonstrate the formulations’ effectiveness, the 

code will be used to simulate the incompressible viscous 

flow of different velocities past a sphere. This viscous 

flow will create a thin boundary layer adjacent to the 

sphere's surface; then a trailing wake will exist in the flow 

behind the cylinder. 

Specifically, the focus lies on simulating a two-

dimensional Von Kármán vortex street, a well-known 

flow phenomenon characterized by the formation of 

alternating vortices in the wake of a body. This 

phenomenon has been extensively studied and validated 

in various flow situations [3]. The Von Kármán vortex 

street will be simulated under different flow conditions, 

i.e. by varying Reynolds numbers (Re). 

2 Underlying basic equations 

Two-dimensional flow can be modeled under the 

following assumptions: 

1. One of the dimensions (z-direction) is very long, and 

no flow exists along that direction. 

2. The velocities in the other two directions do not vary 

with the z-directions. 

With these assumptions, the governing basic equation 

for such incompressible flow can be summarized as 

follows. Comprehensive treatment can be found in 

standard continuum mechanics books such as [8-10]. 

2.1 Mass equation  

The conservation of mass can be written as Equation 1. 

 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣𝑥)

𝜕𝑥
+
𝜕(𝜌𝑣𝑦)

𝜕𝑦
= 0 (1) 

where 𝜌 is the fluid density, 𝑣𝑥 and 𝑣𝑦 are the fluid 

velocities in the 𝑥-direction and 𝑦-direction, respectively. 

In the case of incompressible flow, the conservation of 

mass Equation 1 reduces to Equation 2. 

 
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
= 0 (2) 

  

Equation 2 states that no volume change during the 

deformation of incompressible fluid.  

2.2 Momentum equation 

Equations 3-4 shows the conservation of linear 

momentum. 

 

 𝜌
𝜕𝑣𝑥
𝜕𝑡

−
𝜕𝜎𝑥𝑥
𝜕𝑥

−
𝜕𝜎𝑥𝑦

𝜕𝑦
− 𝑓𝑥 = 0 (3) 

 𝜌
𝜕𝑣𝑦

𝜕𝑡
−
𝜕𝜎𝑥𝑦

𝜕𝑥
−
𝜕𝜎𝑦𝑦

𝜕𝑦
− 𝑓𝑦 = 0 (4) 

where 𝜎𝑥𝑥, 𝜎𝑥𝑦 and 𝜎𝑦𝑦 are the Cartesian components of 

the total stress tensor 𝝈, while 𝑓𝑥 and 𝑓𝑦 are the body 

forces in the 𝑥-direction and 𝑦-direction, respectively. 

2.3 Constitutive equation 

Equations 5-6 describe the constitutive equations for 

viscous fluid. 

 

 

𝜎𝑥𝑥 = 𝜏𝑥𝑥 − 𝑃 
𝜎𝑥𝑦 = 𝜏𝑥𝑦 

𝜎𝑦𝑦 = 𝜏𝑦𝑦 − 𝑃 

(5) 

 

𝜏𝑥𝑥 = 2𝜇
𝜕𝑣𝑥
𝜕𝑥

 

𝜏𝑥𝑦 = 𝜇 (
𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
) 

 𝜏𝑦𝑦 = 2𝜇
𝜕𝑣𝑦

𝜕𝑦
 

(6) 

where 𝜇 is the viscosity, 𝑃 is the pressure, and 𝜏𝑥𝑥, 𝜏𝑥𝑦 

and 𝜏𝑦𝑦 are the Cartesian components of the viscous stress 

tensor 𝝉. 

2.4 Navier-Stokes equations 

Substituting the constitutive Equations 5-6 into linear 

momentum Equations 3-4 gives Equations 7-8. 

 

 

𝜌
𝜕𝑣𝑥
𝜕𝑡

−
𝜕

𝜕𝑥
(2𝜇 

𝜕𝑣𝑥
𝜕𝑥

) − 

𝜕

𝜕𝑦
[𝜇 (

𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
)] +

𝜕𝑃

𝜕𝑥
− 𝑓𝑥 = 0 

(7) 

   

 

𝜌
𝜕𝑣𝑦

𝜕𝑡
−
𝜕

𝜕𝑥
[𝜇 (

𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
)] − 

𝜕

𝜕𝑦
(2𝜇 

𝜕𝑣𝑦

𝜕𝑥
) +

𝜕𝑃

𝜕𝑦
− 𝑓𝑦 = 0 

(8) 

2.5 Closure of the initial boundary value problem 

Appropriate boundary and initial conditions should be 

prescribed to close the problem. Here the primitive 

variables are velocities and pressure and the Dirichlet 

boundary conditions are given in the means that a 
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prescribed velocity profile 𝑣0 is imposed to represent the 

incoming flow. At the outlet, a pressure boundary 

condition is prescribed. The top and bottom walls of the 

channel are considered as no-slip boundaries, where the 

velocity is set to zero. 

3 Galerkin formulation 

The discretization of the Navier-Stokes equations will be 

done by formulating the weak form of Equations 2 and 7-

8. To do that, Equation 7 is multiplied by the test function 

𝜂1, then is integrated over the element Ω𝑒. The integration 

by parts gives Equations 9-11. 

 

 

∫

[
 
 
 
 𝜚𝜂1

𝜕𝑣𝑥
𝜕𝑡

+
𝜕𝜂1
𝜕𝑥

(2𝜇 
𝜕𝑣𝑥
𝜕𝑥

− 𝑃)

+𝜇
𝜕𝜂1
𝜕𝑦

(
𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
) − 𝜂1𝑓𝑥

]
 
 
 
 

𝑑𝑥 𝑑𝑦

Ω𝑒

− ∮ 𝜂1𝑡𝑥 𝑑𝑠 = 0

Υ𝑒

 

(9) 

 

∫

[
 
 
 
 𝜚𝜂2

𝜕𝑣𝑦

𝜕𝑡
+ 𝜇

𝜕𝜂2
𝜕𝑥

(
𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
)

+
𝜕𝜂2
𝜕𝑦

(2𝜇 
𝜕𝑣𝑦

𝜕𝑦
− 𝑃) − 𝜂2𝑓𝑦

]
 
 
 
 

𝑑𝑥 𝑑𝑦

Ω𝑒

− ∮ 𝜂2𝑡𝑦 𝑑𝑠 = 0

Υ𝑒

 

(10) 

 ∫ 𝜂3
Ω𝑒

(
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
) = 0 (11) 

4 Shape functions 

The next step is to assume that 𝑣𝑥, 𝑣𝑦 and 𝑃  can be 

approximated by Equations 12-14. 

 

 𝑣𝑥(𝑥, 𝑦, 𝑡) ≈ 𝑣𝑥
ℎ =∑𝑣𝑥

𝑖 (𝑡)∅𝑖(𝑥, 𝑦)

6

𝑖=1

 (12) 

 𝑣𝑦(𝑥, 𝑦, 𝑡) ≈ 𝑣𝑦
ℎ =∑𝑣𝑦

𝑖 (𝑡)∅𝑖(𝑥, 𝑦)

6

𝑖=1

 (13) 

 𝑃(𝑥, 𝑦, 𝑡) ≈ 𝑃ℎ =∑𝑃ℎ(𝑡)𝜑𝑖(𝑥, 𝑦)

3

𝑖=1

 (14) 

 

The functions 𝜙𝑖 and 𝜑𝑖 are called the shape functions. 

The importance of FEM is that it provides a 

continuous solution function over the whole 

computational domain. This is achieved by associating a 

shape function with each node of each element. In fluid 

dynamics, selection of the shape function is constrained 

by a condition, namely the Ladyzhenskaya- Babuška-

Brezzi (LBB) stability condition. The LBB states that the 

order of elements for the velocities must be one order 

higher than for the pressures, as the Navier-Stokes 

equations also contains the velocities must be one order 

higher than for the pressures [5]. 

Gresho and Sani [11] presented options of different 

order of polynomials to be used as shape functions, some 

of which are shown in Fig.  1. To take the LBB condition 

into account, third order elements are necessary. 

However, increasing the number of elements between 

particles would increase the computational effort 

considerable. The P2+ combines the second order P2 

element and the bubble function of the third order P3 

element. Thus, using the P2+ element for the velocity and 

P1 element for the pressure (P2+ P1 element) still 

guarantees the LBB stability without the need for a full 

third order P3 element. 

The barycentric coordinates of point 𝑃 can be obtained 

by drawing a line connecting 𝑃 and each of the triangle’s 

corner points 𝐴, 𝐵, and 𝐶. Each barycentric coordinate 

corresponds to the fraction of area of the sub-triangle 

(Equation 15). Since all sub-triangles combined is the area 

of the whole triangle, the sum of all barycentric 

coordinates is 𝜓𝐴 + 𝜓𝐵 + 𝜓𝐶 = 1 (Fig. 2). 

 𝜓𝐴 =
𝑃𝐵𝐶

𝐴𝐵𝐶
, 𝜓𝐵 =

𝑃𝐶𝐴

𝐵𝐶𝐴
 and 𝜓𝐶 =

𝑃𝐴𝐵

𝐶𝐴𝐵
 (15) 

 

Fig. 1. Different triangular finite elements, defined by their polynomial order P [6,7]. 

5 Methodology 

The simulation is done using the code that was built on 

MATLAB programming environment. The code used in 

this research is a modified version of the original FEM 

code by Matuttis Laboratory, University of Electro-

Communications, Tokyo. 

5.1 Geometry and mesh generation 

Two channels with different geometries are configured 

for the simulation. The first channel is configured as a 
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microfluidic channel with a length of 8 mm, a width of 1 

mm. A particle with a diameter of 0.1 mm is placed in the 

centerline of the channel acting as an obstacle to the flow. 

The second channel is similarly constructed but with 

bigger scales, which are the length of 500 mm, width of 

200 mm and 100 mm diameter particle. The characteristic 

length 𝑙𝑐ℎ𝑎𝑟  of the system is based on the diameter of the 

particle. Therefore, the first channel has 𝑙𝑐ℎ𝑎𝑟 = 0.1 𝑚𝑚 

while the second channel has 𝑙𝑐ℎ𝑎𝑟 = 100 𝑚𝑚. 

 

Fig. 2. FEM element with barycentric coordinates 𝜓𝐴, 𝜓𝐵, and 

𝜓𝐶. 

The geometry is discretized using a graded mesh 

technique (Fig. 3) to create a computational grid for the 

simulation [8]. The mesh is refined in the region near the 

particle and to the rear of the particle where vortices are 

expected to appear. The use of graded mesh allows to 

capture the flow features accurately while giving 

reasonable computing time. 

 

 

Fig. 1. Mesh if the simulation domain. 

5.2 Fluid properties 

The fluid used in the simulation is water. The properties 

of water, such as density and viscosity, are specified to 

accurately model the flow behavior. Fluid density is set to 

𝜌 = 1000 𝑘𝑔/𝑚3 and the dynamic viscosity is set to 𝜂 =
10−3 𝑃𝑎 ⋅ 𝑠. 

5.3 Numerical solver 

The Newton-Raphson method is employed as the 

numerical solver to solve the discretized Navier-Stokes 

equations. The Newton-Raphson method is an iterative 

technique that allows for the efficient solution of 

nonlinear systems of equations. Since the Navier-Stokes 

equations are not possible to solve analytically, an 

iterative approach to calculate the flow field at each 

timestep is needed. This is possible with the Newton-

Raphson method, an iterative method to calculate the 

roots of equations where an initial guess 𝑥0 is refined 

through iterations 𝜉 until it approaches 𝑓(𝑥𝜉) = 0 + 𝑅 

with small enough residual 𝑅 (Equation 16) [12]. 

 

 𝑥𝜉+1 = 𝑥𝜉 −
𝑓(𝑥𝜉)

𝑓′(𝑥𝜉)
 (16) 

5.4 Simulation parameter 

The simulation is started with a low Reynolds number 𝑅𝑒 

(Equation 17) and is increased over time until it reached 

maximum 𝑅𝑒𝑚𝑎𝑥 . This is done to ensure that the onset of 

the vortex is produced properly. The adjustment of 𝑅𝑒 is 

done by changing the prescribed inflow velocity 𝑣0 (Table 

1). 

 

 𝑅𝑒 =
𝜌𝑙𝑐ℎ𝑎𝑟𝑣0

η
 (17) 

Table 1. Variation of inflow velocity 𝑣0 over time. 

Time, 𝒕 [𝒔] Inflow velocity, 𝒗𝟎 [𝒎/𝒔] 
𝑡 < 3 0.008 

3 ≤ 𝑡 ≤ 5 0.008 + 0.002(𝑡 − 3) 
5 < 𝑡 0.012 

 

The channels simulated have different characteristic 

length 𝑙𝑐ℎ𝑎𝑟 , the first channel has 𝑙𝑐ℎ𝑎𝑟1 = 0.1 𝑚𝑚 while 

the smaller channel has 𝑙𝑐ℎ𝑎𝑟2 = 100 𝑚𝑚. This means 

that the first channel has maximum 𝑅𝑒max1 = 0.12 and 

the smaller channel has 𝑅𝑒𝑚𝑎𝑥2 = 120.  

The simulation is performed with specific time step 

sizes and total simulation time (Equation 18). The time 

step size is computed via time-adaptive backward 

differentiation formula of second order (BDF2) predictor-

corrector [6, 10]. To control the timestep size 𝜏, the 

deviation between 𝑔𝑝𝑟𝑒𝑑 and 𝑔𝑐𝑜𝑟𝑟 . 

 

𝜏𝑛+1 = 𝜏 ⋅

√
  
  
  
  
  
  
  
  
  
  
  
  
  
 10−3

max

[
 
 
 
 
 
 
 
 
 
 

𝑎𝑏𝑠

(

 
 
 
 
 
 
 
 
 

(1 +
𝜏𝑛−1
𝜏
)
2

1 + 3
𝜏𝑛−1
𝜏

+4 (
𝜏𝑛−1
𝜏
)
2

+2(
𝜏𝑛−1
𝜏
)
3

⋅ (
𝑔𝑐𝑜𝑟𝑟
−𝑔𝑝𝑟𝑒𝑑

)

)

 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 

3

 

(18) 

 

The indices 𝑛 − 1 and 𝑛 + 1 denote the previous and 

new timestep size. The maximum allowed timestep in the 

simulation is set to 𝜏𝑚𝑎𝑥 = 0.02 seconds. The total 

simulation time is limited to 120 seconds. 

 

 

(a) 𝑙𝑐ℎ𝑎𝑟 = 0.1 𝑚𝑚  

(b) 𝑙𝑐ℎ𝑎𝑟 = 100 𝑚𝑚  
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6 Results 

After the simulation, post-processing and analysis of the 

results are conducted. The flow field variables, such as 

velocity and pressure, are extracted from the simulation 

data. Quiver plots are used to visualize the velocity field. 

While the vortices can be seen from the arrows of quiver 

plot (Fig. 4), the vorticity can be better visualized by 

calculating the curl which then is plotted as a colormap 

(Fig. 5). 

 

 

Fig. 2. Velocity field of the fluid flow near the particle at 

maximum 𝑹𝒆 for each channel. 

 

 

Fig. 3. Vorticity field of the fluid flow showing trails of 

vortices. 

Trail of vortices is apparent in the larger channel with 

𝑅𝑒 = 120. The formation of vortices indicates that the 

flow is in the transient state where the inertia of fluid has 

substantial effect to the flow. The obstacle in the channel 

caused disturbance to the flow which initiated the 

formation of vortices. Note that while there are vortices, 

the flow is still in the laminar region which is confirmed 

by the shapes of vortices that are relatively regular shaped 

and not turbulent. 

On the contrary, there are no vortices formed in small 

channel with 𝑅𝑒 = 0.12 although the flow is also being 

obstructed by a particle. The low Reynolds number (𝑅𝑒 <
1) indicates that the flow is largely govern by the fluid 

friction and the fluid inertia has minimal to no effect. This 

means that even when the flow is disturbed by the 

obstacle, the fluid inertia is not strong enough to start the 

formation of vortices. 

7 Conclusion 

In conclusion, the simulation results have successfully 

verified the accuracy of the developed Finite Element 

Method (FEM) code for incompressible fluid flow. The 

presence of vortices in the channel with a Reynolds 

number (Re) of 120 indicates the influence of fluid inertia 

on the transient flow state, while the absence of vortices 

in the small channel with a Re of 0.12 highlights the 

dominance of fluid friction. These findings align well 

with existing observations, validating the FEM code's 

capability to effectively model complex flow phenomena. 
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