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Abstract. The validation of the conformity of parts according to the ISO 98-4 standard, cannot be achieved
without an accurate estimation of the measurement uncertainty, which can become difficult when it comes to a
complex measurement strategy to control a geometrical specification of a mechanical part using a Coordinate
Measuring Machine (CMM). The purpose of the study in this paper is to analyze the measurement strategy
following the Geometric Product Specification (GPS) Standard, to estimate the associated uncertainty of the
different parameters of each step, to be able to achieve the uncertainty of the measurement of a given specification
(perpendicularity error inour study)using theGuide to the expressionofuncertainty inmeasurement (GUM).This
uncertainty will be thereafter validated by a Monte Carlo simulation, and an interlaboratory comparison will be
conductedtocomparetheobtainedresultsaccordingtothe ISO13528standard.Ourcontribution isbasedonamore
accurate estimation of the measurement strategy’s parameters uncertainties. This approach can also be used by
accredited calibration laboratories (ISO17025) or in the general case in the control of perpendicularity specification
of mechanical parts using a coordinate measuring machine. A case study has been conducted, controlling a
perpendicularity specification with a tolerance limit of 15 mm, after the calibration of the CMM to obtain the
variance-covariance matrices. The mechanical part perpendicularity error (12.55mm) was below the limit,
however, was judged “not conform”when considering the estimated uncertainty (4.06mm) and the interlaboratory
comparison was satisfactory despite the difference of the acceptance criterion.

Keywords: Measurement strategy / coordinate measuring machine (CMM) / ISO/IEC Guide 98-4 /
perpendicularity error uncertainty / Geometric Product Specification (GPS / ISO 1101)
guide to the expression of uncertainty in measurement (GUM) / Interlaboratory Comparison (ISO 13528) /
Monte Carlo simulation (MCS) / ISO 17025
1 Introduction

Coordinate measuring machines are very popular in the
industrial field; it allows controlling dimensional and
geometrical specifications of complex mechanical parts
with great accuracy and precision of less than 1mm. Both
hardware and software work simultaneously to collect and
process data to generate measurement reports, hence the
importance of estimating the uncertainty associated with
the measurement. Equipped with a probing system, and
following a specific measurement strategy, it collects the
coordinates of the tolerance features, then proceeds to the
surface fitting according to a given criterion, least-squares
method in our case, then proceeds to the verification of a
dimensional or geometrical specification. This succession of
steps is subject to a propagation of uncertainties, and if not
estimated correctly, can lead to aberrant decisions.
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Evaluating the CMM’s measurement-associated uncer-
tainty is a challenging task, especially when examining
geometrical error specifications, mainly due to the large
number of factors that influence the measurement (Fig. 1).

Several studies have been made to estimate the
influence of these parameters on the coordinate measuring
machine’s measurement uncertainty, such as geometric
errors that goes up to 5.63 arcsec following the Y axis for
Zeiss Opton CMM with a maximum permissible error of
1.3mmþ L

350 [1], measuring probe errors estimated around
almost±0.9mm for TP2 Renishaw probe head [2,3],
thermal influence errors [4,5] that should be reduced by
regulating the temperature homogeneously to 20±1 °C,
with a variation less than 0.5 °C per hour and less than
0.5 °C/m height, measurement strategy and fitting criteri-
on [6] that are proven to showminimal influence by probing
every 1/10 of the dimension of the surface feature, position,
size and shape for point cloud data [7,8]. Rosenda et al. [9]
proposed a simplified model, considering these parameters,
to estimate the circularity and cylindricity measurement
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Fig. 1. CMM uncertainty sources.

2 N. Habibi et al.: Int. J. Metrol. Qual. Eng. 14, 12 (2023)
uncertainty using a coordinate measuring machine. Other
studies have been oriented toward estimating the uncer-
tainty of geometrical specifications. Wojciech et al. [10,11]
developed different models for size, distance, angle, and
geometrical deviation measurement uncertainty, including
perpendicularity, fully consistent with the GPS [12] norm.
Our contribution is positioned in this context, we seek to
estimate the uncertainty of the orientation error following
a measurement strategy that respects the normative
guidelines.

The GUM and the Monte Carlo method are generally
used to estimate the measurement uncertainty. Balasu-
bramanian et al. [13] estimated uncertainty in angle
measurement using the GUM considering the geometrical
errors, temperature, vibrations, and measuring strategy.
Moona et al. [14] developed a model using the Monte Carlo
method to estimate the uncertainty for length measure-
ment errors using an articulated arm coordinate measuring
machine. Using a comparison between the GUM [15]
approach and aMonte Carlo simulation [16] as a validation
method has proven to give consistent results, it’s within
this framework that Jalid [17,18] proposed a comparison of
these two methods estimating flatness uncertainty which
showed satisfactory results with a gap less than 10�4mm,
then studied the influence that sample size has on it.

In this paper, we aim to review the process of validating
the conformity of the mechanical parts inspected using
CMM, by introducing and considering the measurement
uncertainty as stated in the ISO/IEC Guide 98-4 [19]. Our
model combines the experimental and the analytical
methods to estimate the measurement associated uncer-
tainty. The advantage of this approach is that the
perpendicularity uncertainty can be estimated directly
from the set of measured points and the calibration of the
CMM. It is important to mention too that the uncertainty
varies according to the number and position of the
measured points and the chosen fitting criterion. To
estimate the measurement-associated uncertainty, a
deconstruction of the process has been realized, by
identifying the different steps of the measurement strategy
following the ISO 1101 [12] standard (GPS), and by
estimating the variance-covariance matrices at the level of
each step by considering the parameters which influence
the results, to be able to estimate the final uncertainty of
the measurement. This uncertainty will be thereafter
validated by a Monte Carlo simulation, before finally
proceeding to an inter-laboratory comparison to compare
the obtained results. Our contribution is based on a more
accurate estimation of the measurement strategy’s param-
eters uncertainties. This approach can be used by ISO
17025 [20] laboratories in the control of perpendicularity
specification of mechanical parts using a CMM.

2 Materials and methods

To validate the conformity of a mechanical part using a
coordinate measuring machine according to the ISO 98-4
standard, an estimation of the measurement-associated
uncertainty is necessary, which can be particularly
problematic considering the measurement strategy, mainly
due to the number of unknown parameters that can
influence the measurement. To do so, we studied a
perpendicularity case following this approach:

–
 Setting a perpendicularity error equation according to
the ISO 1101 standard (GPS).
–
 Estimation of the perpendicularity error associated
uncertainty.
–
 Validation of the proposed method.

–
 Declaration of conformity according to the ISO 98-4
standard.

A verification of our results through an inter-laboratory
comparison according to the ISO 13528 standard will be
accomplished in the results and discussion section.
2.1 Perpendicularity error modeling

Based on the Geometric Product Specification (ISO 1101
standard) [12], perpendicularity is an orientation tolerance;
and can be defined as the minimum distance between two
theoretical parallel elements, both perpendicular to the
datum, within which all measured points lie inside, whether
it is a plane or axis (Fig. 2).



Fig. 2. Perpendicularity error.

Fig. 3. Measurement strategy steps.
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We have studied a plane-to-plane perpendicularity
case, the geometrical specification was summarized as
follows:

–
 Tolerance feature: probed points that belong to the
tolerance surface.
–
 Datum: theorical fitted plane P0.

–
 Tolerance zone: Volume between two theorical parallel
planes P1 and P2, both perpendicular to the datum.
–

Fig. 4. Construction of the tolerance zone.
Condition: all probed points must lie inside the tolerance
zone.

2.1.1 Measurement strategy

The measurement strategy using CMM should be carefully
planned and executed to achieve the desired level of
accuracy and comply with the GPS norm. In order to
measure the perpendicularity error, we applied the
following strategy (Fig. 3).

Probing the datum surface then fitting a theorical plane
using the least-squares method, the choice of the number of
measured points and fitting criterion has been chosen to
represent the best the surface [6], then extracting the
datum’s associated plane normal vector nd

�!. Probing the
tolerance element using the same method and extracting
the measured points coordinates as well as the tolerance
surface associated plane normal vector nt

!. It is important
to mention that nd

�! and nt
! are not necessarily perfectly

perpendicular, hence the need to calculate the vector np
�!.

Calculating the datum and tolerance planes intersection

vector ni
! ¼ nd

�!∧nt
!

nd
�!∧nt

! to be able to calculate the vector

np
�! ¼ nd

�!∧ni
!. Calculating the two most distant measured

points pmax and pmin along the vector np
�!, allowing us to set

the planes P1 (pmax; np
�!Þ and P2(pmin; np

�!Þ, and deducting
the perpendicularity error (Fig. 4).
This succession of steps is subject to a propagation of
uncertainties, and if not estimated correctly, can lead to a
false conformity declaration. According to equation (1),
and following this measurement strategy, the main sources
of the perpendicularity measurement uncertainty are the
probed points, the associated datum normal vector and the
intersection vector. In the following Section, we will
quantify the uncertainties associated with these parame-
ters for each step of the measurement strategy. Forbes
[21,22] conducted other studies on the estimation of the
variance-covariance matrix of the features with a finite set
of points dispersed evenly over the surface being sampled,
allowing to estimate uncertainties using the GUM method
without knowing the measurement strategy, and reducing
the effect of form effort, considering only the number of
data points and geometry of the area being sampled.
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2.1.2 Perpendicularity error

Let pi be the coordinates of the ith probed point, such as
pmax (xmax, ymax, zmax)∈P1 and pmin (xmin, ymin, zmin)∈P2
the twomost distantmeasured points, the perpendicularity
error can be expressed as follows:

dp ¼ j ~pmaxpmin : ~nd∧~neð Þj: ð1Þ
where np

�! ¼ nd
�!∧ ne

�!represents the theorical parallel
plane’s P1 and P2 normal vector, nd

�!(ndx, ndy, ndz) the
datum plane’s normal vector, and ne

�!(nex, ney, nez) the
vector of the intersection between the datum and tolerance
surface (unit vectors). Hence the final expression of the
parallelism error:

dp ¼
xpmin

� xpmax

ypmin
� ypmax

zpmin
� zpmax

0
@

1
A ndynez � ndzney

ndznex � ndxnez

ndxney � ndynex

0
@

1
A

������
������

¼
xpmin

� xpmax

� �
ndynez � ndzney

� �
þ ypmin

� ypmax

� �
ndznex � ndxnezð Þ

þ zpmin
� zpmax

� �
ndxney � ndynex

� �

���������

���������
: ð2Þ

2.2 Estimation of the perpendicularity error associated
uncertainty

In order to estimate the perpendicularity error associated
uncertainty using the GUM uncertainty propagation
model, we applied the following procedure:

–
 Applying the GUM method to the perpendicularity
equation (1).
–
 Estimating the parameters and their associated variance-
covariance matrix.
–
 Validation of the GUM results through a Monte Carlo
simulation.

2.2.1 GUM uncertainty propagation model

The GUM (Guide to the Expression of Uncertainty in
Measurement [15]) variance propagation method is widely
used in different fields, especially in metrology, it provides an
analytic approach for quantifying and expressing the
uncertainty of measurement based on a first-order Taylor
expansion of a function through a linear approximation. To
estimate the perpendicularity error default uncertainty, the
GUMmethod is applied to the perpendicularity model dp ¼
fðndx;ndy;ndz;nex;ney;nez;xpmin

; ypmin
; zpmin

;xpmax
;

ypmax
; zpmax

Þ in equation (1):

u2
c dpð Þ ¼

XN
i¼1

∂dp
∂Xi

� 	
 �2
var Xið Þ

þ 2
XN�1

i¼1

XN
j¼iþ1

∂dp
∂Xi

� 	
∂dp
∂Xj

� 	
cov Xi;Xj

� �
¼

XN
i¼1

XN
j¼1

∂dp
∂Xi

� 	
∂dp
∂Xj

� 	
cov Xi;Xj

� �¼ JMJT : ð3Þ
The modeling in matrix form will allow us thereafter to
implement the calculations on Matlab, where J represents
the Jacobian matrix:

J ¼
"
∂dp
∂ndx

∂dp
∂ndy

∂dp
∂ndz

∂dp
∂nex

∂dp
∂ney

∂dp
∂xez

∂dp
∂xpmin

∂dp
∂ypmin

∂dp
∂zpmin

∂dp
∂xpmax

∂dp
∂ypmax

∂dp
∂zpmax

#
ð4Þ

And M represents the uncertainty variance-covariance
associated matrix:

M ¼

nd
�!� 


⋯ ⋯ 0½ �
..
.

ne
�!� 


⋱ ..
.

..

.
⋱ pmin½ � ..

.

0½ � ⋯ ⋯ pmax½ �

0
BBBB@

1
CCCCA ð5Þ

where the terms nd
�!� 


; ne
�!� 


; pmin½ �; pmax½ � are respectively
the associated variance-covariance matrix of the variables
nd
�!; ne

�!; pmin; pmax.

2.2.2 Estimation of the parameters associated
variance-covariance matrix

Coordinate measuring machines are precise and accurate.
However, various factors influence the measurement
uncertainty (Fig. 1), and it is very difficult to quantify
the influence of each of these parameters independently of
the others. Several approaches have been made, Bahassou
et al. [23,24] proposed an estimation of the variances
according to the ISO 10360 standard [25]. We will assume
that the errors along the axes are independent and linear:

pmin½ � ¼ pmax½ � ¼
ux 0 0
0 uy 0
0 0 uz

0
@

1
A: ð6Þ

Thereby measuring 5 gauge blocks, each block for 3
repetitions, along 3 of the 7 directions (Fig. 5), then
calculating the error equations along each direction
Ex=Axx+Bx (error following the direction X for example),
Then applying the law of propagation of uncertainties to
estimate the associated uncertainty ux.

Surface fitting is a critical step. To estimate the
variance-covariance matrix associated to the datum
normal vector, we must first select a mathematical model
to associate the set of probed points to an ideal plane,
representing the measured surface without overfitting or
underfitting. It may be done using a variety of techniques,
such as polynomial fitting, radial basis functions, and
splines, each method has advantages and disadvantages.
Several criteria [6] of surface fitting are commonly used and
comply with the norms, of which we can mention: The
least-squares method, it consists of minimizing the sum of

squared residuals: min
XN
i¼1

e2i where ei ¼ Api
!
: n
→ such as



Fig. 5. The ISO 10360 directions.
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(A, n→) are the substitute plane parameters and Pi are the
measured points.. And the Chebyshev criterion, minimiz-
ing the maximum absolute difference from the data points

to the fitted surface:min
pi

max
1� i�N

ei

� 	
(Fig. 6).

The least-squares method tends to be more sensitive to
outliers in the data because it squares the errors. Large
errors have a more significant impact which provides a
good overall fit to the data but may not guarantee the
smallest maximum error across the entire data range.
While the Chebyshev approximation method is less
sensitive to outliers because it focuses on the maximum
absolute error providing a more accurate fit in terms of the
worst-case scenario but potentially sacrificing the overall
fit. The choice between these methods depends on the
specific requirements of the problem, the characteristics of
the data, and the desired trade-off between overall fit and
worst-case accuracy. For the rest of this study, we will refer
to the least-squares consisting of minimizing equation (7):

e2i ¼
xpi � xA

ypi � yA
zpi � zA

0
@

1
A nx

ny

nz

0
@

1
A

2
4

3
52

¼ xpi � xA

� �
nx þ ypi � yA

� �
ny þ zpi � zA

� �
nz

h i2
: ð7Þ

To solve this equation, we used the “nlinfit” function in
Matlab, which requires starting parameters (A0 ;n0

�!Þ. To
achieve a stable result and avoid local solutions, we have
chosen the center of mass of the measured points

A0

P
xpi
n ;

P
ypi

n ;

P
zpi

n

� 	
and an initial normal vector

n0
�! ¼ ab

�!
ac!��ab!ac!j
�� based on the most distant probed point

apart a, b and c.
Once the associated plane (A, n
→) is estimated, we

proceed to the estimation of the variance-covariance
matrix associated with a n

!
→

xo; yo; zoð Þ. The objective of
the introduction of this matrix, is to highlight the influence
of the measurement strategy parameters: the chosen fitting
criterion (LSM) as well as the number and distribution of
the probed points, based on the principle that the greater
the number and of points probed and the larger their
coverage, the more we converge to the normal that better
represents the real surface, assuming that it follows a
normal distribution of the form:

F ni
!� � ¼ 1

s
ffiffiffiffiffiffi
2p

p e
ni�no

sð Þ2 : ð8Þ

We will not consider the influence of the uncertainty
associated with the probed points, being already taken
into account in the matrix [Pi] above (Eq. (6)). The
feature is measured for N repetitions, and we then
estimate the normal vector for each sample using the
least-squares algorithm coded above, before calculating
their variance-covariance referring to the following
equations:

cov y; zð Þ ¼ 1
N�1

Xn
i¼1

yi � yoð Þ zi � zoð Þ

var xð Þ ¼ 1
N�1

Xn
i¼1

xi � xoð Þ2

8>>>><
>>>>:

Following this procedure above, we developed an
algorithm on Matlab, starting from a set of data points,
proceeding to the fitting process using the least-squares
method then giving us the fitted datum plane parameters
(A, nd

�!) and its variance-covariance matrix associated



Fig. 6. Surface fitting.
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with the associated measurement strategy:

nd
�!� 
 ¼ var ndxð Þ cov ndx;ndy

� �
cov ndx;ndzð Þ

cov ndy;ndx

� �
var ndy

� �
cov ndy;ndz

� �
cov ndz;ndxð Þ cov ndz;ndy

� �
var ndzð Þ

0
@

1
A:

ð9Þ
Regarding the intersection vector ni

!, representing the
direction of the intersection between the datum and
tolerance planes, expressed as follows:

ne
�!� 
 ¼ 1

jj nd
�!∧nt

!jj
ndyntz � ndznty

ndzntx � ndxntz

ndxnty � ndyntx

0
@

1
A: ð10Þ

We will assume that sin nd
�!; nt

!� �
≃ 1, and we apply the

law of propagation of uncertainties on each term of the
vector:

u2
c ne;x

� � ¼ ndy
2var ntzð Þ þ ntz

2var ndy

� �
þ ndz

2var nty

� �þ nty
2var ndzð Þ

þ 2ndyndzcov nty;ntz

� �
þ 2ntyntzcov ndyndz

� �
: ð11Þ

Similarly, for u2
c ne;y

� �
and u2

c ne;z

� �
, to reach the final

form of the variance-covariance matrix:

ni
!� 
 ¼ vx;ne 0 0

0 vy;ne 0
0 0 vz;ne

0
@

1
A: ð12Þ

Once the estimation of the variance-covariance matrix
of each parameter is done, respectively
pmin½ �; pmax½ �; nd

�!� 

; ne
�!� 


, we will obtain the final form
of the matrix [M] (Eq. (5)).
2.2.3 Monte Carlo simulation

The estimation of measurement uncertainty using a Monte
Carlo simulation [16] is a great alternative especially when
other methods present some difficulties such as an
inadequate linearization of the model resulting in unrealis-
tic confidence intervals. It’s a statistical propagation of
distributions that uses random sampling through a
mathematical model to determine the range of possible
outcomes allowing us therefore to estimate the model’s
uncertainty. A Monte Carlo simulation could also be used
to compare and validate the results using the GUMmethod
following this procedure.

Calculating the limits of the confidence interval
dplowGUM

and dphighGUM
resulting from the application of

the GUMmethod, where “dp” represents the nominal value
of the perpendicularity error and U(dp) it’s associated
uncertainty:

dplowGUM
¼ dp� U dpð Þ

dphighGUM
¼ dpþ U dpð Þ

�

Running a Monte Carlo Simulation and extracting from
the generated distribution both perpendicularity error mean
value and its deviation, to be able to calculate dplowMCS

and
dphighMCS

as they represent the limits for a 95.45% confidence
interval (dp ± 2s), then comparing the GUM and Monte
Carlo confidence interval limits:

dlow ¼ jdplowGUM
� dplowMCS

j
dhigh ¼ jdphighGUM

� dphighMCS
j

�

Setting the numerical tolerance z=0.5x10rwhere “r” is
expressing the necessary number of accurate decimal
digits. Then if the condition z≥max (dlow, dhigh) is verified,
the comparison is favorable, meaning that GUM frame-
work has been validated in this instance.

2.3 Declaration of the conformity

The conformity assessment is a critical step, it can decide
whether the mechanical part conforms to the given
specification. If the measurement uncertainty is not
considered, it can lead to aberrant decisions, especially
if the measurement result is close to the specification limit.
CMMs can automatically generate a conformity report
based on the specification tolerance interval. If we
take the perpendicularity as an example, the CMM
validity assessment follows this procedure:
ifdp � TL validation
ifdp > TL rejection

�
where TL represents the specifi-

cation/tolerance limit (Fig. 7).
If we consider the uncertainty, two forms of incorrect

decisions would appear inside the uncertainty zone. False
acceptance, which is validating the non-conform specification
part, known as consumer’s risk. And false rejection, which is
rejecting a conform specification part, also known as
producer’s risk (respectively Type I (a) and Type II (b)
errors). The decision-making process was significantly
impacted by the development of a probabilistic approach,
introducing measurement uncertainty as a conformity
parameter (Fig. 8).

To establish a conformity validation procedure associat-
ed with the measured dimensional or geometrical specifica-
tions, it will be necessary to calculate the risk zone, assuming
that the uncertainty follows a normal distribution:

Ø xð Þ ¼ ∫
þ∞

x
F Zð ÞdZ: ð13Þ



Fig. 7. Conformity assessment.

Fig. 8. Perpendicularity error uncertainty distribution.
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According to the ISO/IEC Guide 98-4 [17], if the
tolerated risk limit is not specified by the customer, the risk
pa={dp> zi}=1�Ø(zi) should not exceed 2.3%.Where zi
is the Gaussian coefficient using the standard normal
distribution expressed as follows: zi ¼ Ts�dp

U=2 :
3 Results and discussion

This experimental study aims to bring the previously
developed theoretical model into practice. The tests were
carried out in the PCMT metrology laboratory where the
temperature is regulated at around 20±2 °C, the coordinate
measuringmachineused isaMitutoyoEuro-C544coupledto
a TP2 type probing head on which is mounted a Tungsten
Carbidestylusof effectiveworking lengthEWL=14mmand
D=2mm ruby ball diameter, altogether driven by Geopak
software. The maximum permissible error is EL,MPE =
±(4mm+L/200) with L in mm. The geometrical specifica-
tionbeingstudied isaperpendicularity errorwitha tolerance
limit of 15 mm:

We started by estimating the variance-covariance
matrix associated to this CMM’s measured points by
applying the GUMmethod to the error equations following
the ISO 10360 directions [23,24]:

pi½ � ¼ 10�6
6:6125 0 0

0 7:812 0
0 0 4:052

0
@

1
Amm:

Most of researchers use uncertainties based on the
MPE. The main purpose of the variance matrix proposed,
is to make good use of the ISO 10360 calibration results of
the CMM, generating a correction matrix and a plausible
variance matrix consistent with the MPE statement
(Fig. 9).

To control the mechanical part, we referred to the steps
described in Section 2.2, we probed the reference plane,
then the specified plane, it is important to note that in
order to minimize probing error, the probe must be
oriented in the same orientation as the normal vector while
measuring all the data points (Tab. 1).

After extracting the cloud of points, we then proceeded
to the construction of the required vectors as shown in
Table 2:



Fig. 9. Used CMM.
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Then constructing the tolerance zone between

9995
0 1 ~�0:99999997

0 10
B

1
C

P1 ¼ 9998
50001

@ A; �2:4263E� 05
1:0181E� 04

@ A@ A

10003

0 1 ~�0:99999997
0 10

B
1
C
and P2 ¼ 30001

10001

@ A; �2:4263E� 05
1:0181E� 04

@ A@ A
to be able to evaluate the perpendicularity error:

dp ¼ j ~pmaxpmin : ~nd∧~neð Þj ¼ 12:55mm:

It is important tomention that he problemwith the ISO
1101 definition of perpendicularity is that the uncertainty
associated with the measurement is directly related to the
measurement strategy and form error, which influence on
the parallelism error considerably.



m:

Table 1. Tolerance plane measured points (inmm).

x y z

9. 993
9. 996
9. 995
9. 997

10. 003
10. 004
10. 003
9. 997

10. 001
9. 998

9. 999
9. 999
9. 998
29. 997
29. 996
29. 999
30. 001
50. 001
50. 001
49. 997

9. 999
25. 001
50. 001
50. 003
37. 003
22. 999
10. 001
9. 999
25. 002
50. 004

Table 2. Construction of the vectors (in mm).

...

.

.

.

.

.

.

.

.

.

Table 3. Sample of datum plane normal vectors for 10
repetitions (inmm).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 4. Results comparison.

.

. .

.

.

.

.

.

.

.

Table 5. Conformity assessment.

.

.

.

.
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3.1 GUM application

The perpendicularity error associated uncertainty is
obtained by propagating the parameters uncertainty
across the measurement strategy process through a linear
approximation. By that means, we started by estimating
the variance covariance matrix associated to the datum
normal vector, which evaluates the influence of the number
of probed points and their distribution as a result of the
randomization of the measured points to generate the
different possible combinations (Tab. 3).

Therefore, allowing us to set the datum normal vector
associated variance-covariance matrix:

nd
�!� 
¼ 1:6611E�09 �2:1262E�10 �2:7379E�14

�2:1262E�10 9:2049E�10 �2:29181E�14
�2:7379E�14 �2:2918E�14 4:0111E�18

0
@

1
Am

However, it is important to mention that the probing error
influence the matrix being based on a repeatability model.
An interesting alternative approach to estimate the normal
vector associated variance-covariance matrix would be for
each “N” probed points p1; p2 . . . :pNf g, we proceed to a
Monte Carlo randomization of the measured points to
generate the different possible combinations, representing
the same feature plane, with varied distributions and
number of points N with 3 � n < N. We then estimate the
normal vector for each sample using a specific fitting
criterion, before calculating their variance covariance.

Similarly, we estimated ~nt½ � associated with the
tolerance plane’s normal vector, to be able to assess the
intermediate vector’s variance-covariance matrix, repre-
senting the direction of the intersection of the two
measured planes:

~ne½ � ¼
1:6612E�09 0 0

0 2:5028E�17 0
0 0 9:2048E�10

0
@

1
Amm:
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The Jacobian matrix (Eq. (4)) is calculated with the
following simplifications:

Consequently, we can estimate the perpendicularity
error associated uncertainty using the GUM method
developed in Section 2.2.

Udp ¼ kuc dpð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JMJT

p
¼ 4:06mm:

The uncertainty may seem relatively big compared to
the error U dpð Þ

dp ≃ 32%, but it is mainly due to the low
perpendicularity default compared to the capability of
CMMs used.

3.2 Monte Carlo simulation

Wereferred to a comparison between theGUMresults and a
Monte Carlo simulation to validate the perpendicularity
uncertainty estimation. The Monte Carlo method can cope
with non-smooth input-output models and can be used to
evaluate the uncertainty associated with the perpendicular-
ity error. Supposing that the parameters follow a normal law
distribution, thesimulationwascarriedout in twostages, the
first being to randomize the cloud of probed points, with
known mean values and standard deviations s=U/k
extracted from their respective variance matrices with
k=2 as coverage factor, to determine the maximum and
minimum points for each sample, followed by a second
randomization of the ~nd½ �and ~ne½ � vectors, in order to obtain
the perpendicularity error output estimated referring to the
(npx;npy;npz;nex;ney;nez;xpmin

; ypmin
; zpmin

;xpmax
; ypmax

; zpmax
Þ

parameters.
Figure 10 shows the distribution function obtained

when generating a 105 sample and 103 classes of 0.02 mm:
We extract the following results (Tab. 4).
The numerical tolerance is z=0, 5.10�3mm, and (dlow,

dhigh) represent the difference of the limits for a 95.45%
confidence interval (ymean±2sMCM) of the generated distri-
bution and the GUM method results calculated as follows:

dlow ¼ jdp� Udp � ylowMCS
j

0:791:10�4mm � z
dhigh ¼ jdpþ Udp � yhighMCS

j
¼ j0:812:10�4mm � z

8>><
>>:



Fig. 10. Distribution Law of MCM.
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The validation criterion max (dlow, dhigh)� z is verified,
meaning that the comparison is favorable, and that the
GUM framework estimating the perpendicularity uncer-
tainty has been validated in this instance.
3.3 Conformity assessment

In order to control the perpendicularity specification
(15mm tolerance limit), we calculated the consumer risk:
pa={dp> zi}=1�Ø(zi) where zi ¼ Ts�dp

U=2 (Tab. 5).
The risk alpha pa=11.3% is significantly higher than

the 2.3% limit specified by the standard ISO/IEC Guide
98-4. We can then conclude that the part is “not conform”
to the perpendicularity specification. However, it is
important to note that the conformity assessment could
show different results measuring the same part and
estimating the uncertainty referring to the same model,
using a more performant and precise CMM, hence the
necessity of an inter-laboratory comparison.
3.4 Inter-laboratory comparison

Inter-laboratory comparison (ILC) is a procedure usually
used to evaluate the accuracy and the consistency of results
obtained by different laboratories realizing the same
measurement or test on the same sample, it can also be
used in our case to validate our perpendicularity assess-
ment model. Although there are several evaluation
techniques, the calculation of the normalized error is the
most often used [26,27]:

En ¼ jdp� dpLjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U dpð Þ2 þ UL2

q ð14Þ

where dpL and UL are respectively the perpendicularity
error and its associated uncertainty measured by the
participant laboratory. The comparison would show
satisfactory results if |En|� 1.

The ILC was realized with the Measurement Control
Center (MCC) laboratory where the temperature is
regulated around 20 °±2 °C, the coordinate measuring
machine used is a Zeiss Duramax coupled to a Vast-xxt-tl3
type probing head on which is mounted a Tungsten
Carbide stylus of effective working length EWL=14mm
and D=2mm ruby ball diameter, altogether driven by
Calypso software. The same industrial part was controlled
under the same conditions and following the same
measurement strategy, resulting in a perpendicularity
error dpMCC = 11.9mm, and the mechanical part was
judged to be compliant with the given specification. The
CMM-associated measurement uncertainty is UMCC =
3.3mm estimated by manufacturer calibration. The
normalized error is significantly inferior to 1:

En ¼ j0:0125�0:0119jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00402þ0:00332

p ¼ 0:115 < 1.

The ILC showed very satisfactory results (|En|≪ 1), we
can then conclude that our CMM is accurate and that our
uncertainty estimation is suitable for perpendicularity
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measurement. Both laboratories evaluated the that the
part is “not conform” to the given specification, however,
the MCC laboratory judgment was based on the applica-
tion of the acceptance criterion: dpL+UL<Ts, which in
this case, did not alter the decision.

4 Conclusion

The proposed article presents a different approach for the
perpendicularity conformity validation of mechanical parts
using the coordinate measuring machine, by estimating the
measurement uncertainty and including it in the assess-
ment as stated in the ISO/IEC 98-4 standard. The main
purpose is to provide the perpendicularity error, its
associated uncertainty, and the conformity risk, directly
from the set of data points.

In order to evaluate the perpendicularity error, a
measuring strategy was set according to the ISO 1101
specifications, then the error mathematical model was
developed (Eq. 2). To estimate it’s associated uncertainty,
a deconstruction of the process has been realized and the
GUM propagation of uncertainties was applied, then put
together in matrix form (Eq. 3). The uncertainty variance-
covariance matrices were then estimated in Section 2.3,
highlighting the influence of the measurement strategy
parameters: the chosen fitting criterion as well as the
distribution and number of the measured points. Then a
Monte Carlo simulation was used to compare and validate
the uncertainty estimation and showed complying results
(gap less than 10�4mm) which validates our developed
model.Theuncertaintymay seemrelativelybig compared to
the error U dpð Þ

dp ≃ 32%, but it is mainly due to the low
perpendicularity default compared to the capability of
CMMs used.

The interlaboratory comparison was satisfactory, the
normalized error confirms the concordance between
the perpendicularity error and its associated uncertainty
of the measured mechanical part for both laboratories.
However, despite the difference of the acceptance criterion,
the conformity assessment was the same.
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