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Abstract. During the operation of the vibrating mechanism, the push-shaking camellia fruit picking
manipulator needs to ensure a constant force output of the clamping hydraulic motor in order to make sure that
the camellia fruit tree trunk wouldn’t loosen or damage, which may affect its later growth, during the picking
process. In this regard, this paper derived the state spacemodel of the valve-controlled clamping hydraulic motor
system of the push-shaking camellia fruit picking manipulator, and the fuzzy wavelet neural network (FWNN)
was designed on the basis of the traditional incremental PID control principle and the parameters of the neural
network were optimized by the improved grey wolf optimizer (GWO). And then, the control system was
simulated with the MATLAB/Simulink software without and with external interference, and compared and
analyzed it with traditional PID controller and fuzzy PID (FPID) controller. The results show that the
traditional PID controller and the FPID control have slow response and poor robustness, while the improved
fuzzy wavelet neural network PID (IFWNN PID) controller possesses the characteristics of fast response and
strong robustness, which can well meet the requirement of the constant clamping force of hydraulic motors.
Finally, the field clamping test was carried out on the picking manipulator. The results show that the
manipulator controlled by the IFWNN PID controller shortens the clamping time by 20.0% and reduces the
clamping damage by 13.6% compared with the PID controller, which is verified that the designed controller can
meet the clamping operation requirements of the camellia fruit picking machine.

Keywords: Camellia fruit picking manipulator / clamping force PID control / fuzzy wavelet neural network /
improved grey wolf optimization algorithm
1 Introduction
–
 The constant clamping force control of the electrome-
chanical-hydraulic integrated manipulator requires not
only to avoid too small clamping force to prevent
clamping loose during vibration picking, but also to avoid
excessive clamping force of the clamping jaws to avoid
excessive damage to the trunk.
–
 The electro-hydraulic proportional directional valve and
the electro-hydraulic proportional relief valve are used to
control the pressure and flow of the hydraulic system of the
clamping jaws at the same time. The relief valve is used to
roughly adjust the clamping force, and the directional
valve is used to finely adjust the clamping force.
–
 The learning algorithm of fuzzy wavelet neural network
is optimized by using the improved gray wolf optimiza-
tion algorithm, which improves the efficiency of the
neural network.
–
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The field test verifies that manipulator controlled by the
IWNNPID controller controls shorted the clamping jaw
movement time in 20%, and reduced the clamping
damage in 13.6%.

Camellia is an important oil crop in China, which has
high edible and medicinal value [1]. Studies have shown
that using camellia tomake food can effectively lower blood
pressure and avoid the occurrence of cardiovascular and
cerebrovascular diseases. In addition, camellia is also
widely used to make high-end cosmetics. According to the
statistics of the State Forestry and Grassland Administra-
tion of China, the planting area of camellia in China has
reached 45.34 billion square meters in 2020, with a total
output value of $17.97 billion, which has driven nearly
2 million people in rural areas to lift themselves out of
poverty. However, manual picking is the current main
picking method of camellia fruit, and with the development
of China’s economy, the labor cost is getting higher and
higher with low picking efficiency, which has led to the fact
that manual picking is gradually becoming a negative
factor hindering the development of the camellia industry.
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At present, the research on mechanized picking of
camellia fruit is in its infancy. The basic research directions
are mainly divided into comb picking [2], vibration picking,
rubber roller picking [3] and clamp picking [4]. Among
them, vibration picking has become the current main-
stream mechanized picking operation due to its high
picking efficiency [5]. The vibrating camellia fruit picking
machine mainly fixes and clamps the camellia fruit tree
branches that need to be shaken by adjusting the moving
clamping mechanism, and then vibrates by driving the
picking actuator. When the exciting force generated by the
vibration exceeds the binding force between the camellia
fruit and the branch, the camellia fruit automatically falls
off the branch which realizes mechanized picking [6]. It is
critical to maintain the clamping force of the camellia tree
in the vibration for the vibrating picking machine. If the
clamping force is too small, the clamping jaws will loosen
during vibration picking, which will cause the failure of the
picking operation, while the clamping force is too large,
the camellia branches will be seriously damaged, affecting
the growth and future yield of the camellia tree. Therefore,
it is of great significance to study the control of the
clamping force of the camellia fruit picking manipulator.

At present, the classic control method in the control
field is to use the PID controller to carry out closed-loop
control of the force control system, that is, to realize the
control of the system by adjusting the three links of
proportional, differential and integral [7–10]. However, the
traditional PID controller is difficult to achieve an ideal
control effect for such a complex valve-controlled hydraulic
motor system. According to the opinions of references [11–
13], fuzzy control doesn’t require precise mathematical
models of the controlled object and has strong robustness
[14–16]. According to references [17,18], fuzzy PID control
has been widely used in the field of robot control in complex
environments. Its control effect on PID controller depends
on the richness of experts’ experience in this area, because
fuzzy control needs to rely on expert experience to compile
control rules, which becomes a disadvantage of fuzzy PID
controllers. Lou and the other researchers [19] took the lead
in introducing fuzzy neural network PID control into the
field of fluid control in 2012, and designed a gate flow
control system. This controller has both advantages of PID
controller and fuzzy neural network self-learning and
processing quantitative data [20], and has better control
accuracy and effect. Gong andYang [21] began to introduce
fuzzy neural network PID control into the field of hydraulic
control, and designed an oil pump control system suitable
for outdoor operations in complex mountainous areas. The
controller proved to have good anti-interference ability and
good adaptability. However, the electromechanical-hy-
draulic integrated robots in agricultural and forestry
mainly use the hydraulic valve control system for its
operation control, and the flow control system of the
variable pump is less used due to its high cost. Therefore,
this paper uses the fuzzy neural network to control the flow
of the valve-controlled hydraulic motor system.

This paper firstly analyzed the clamping hydraulic
system of camellia fruit picking manipulator, clarified its
working principle, and established a mathematical model
of the system on this basis. Then a FWNN PID controller
was designed combined with the basic principles of PID
control, fuzzy control and wavelet neural networks.
Finally, MATLAB/Simulink was used to simulate and
analyze the control system under different working
conditions, and field tests were carried out to verify the
effectiveness of the control method.

2 The working principle and mathematical
model of the picking manipulator

2.1 Introduction of the picking manipulator

Figure 1 shows the structure of the push-shaking camellia
fruit picking manipulator, which consists of a clamping
mechanism and a vibration picking mechanism. The
clamping mechanism is composed of a clamping hydraulic
motor 7, a bevel gear pair 9, a clamping spline screw 10, a
clamping nut 11, clamping links 12 and clamping jaws 13.
During clamping operation, the clamping hydraulic motor
7 drives the clamping spline screw 10 to rotate through the
bevel gear pair 9, and drives the clamping nut 11 to rotate
on the screw 10 to realize the clamping and loosening of the
jaws. The vibration picking mechanism is composed of a
vibration hydraulic motor 4, a vibration crank disk 6 and a
vibration connecting link 7. The vibrating hydraulic motor
4 drives the vibrating crank disk 6 to generate eccentric
rotation, and drives the vibrating connecting link 7 to
generate reciprocating vibration during picking operation.
The monocular camera 2 is installed at the front end of the
picking manipulator to identify the camellia trunk to be
clamped and picked.

2.2 Mathematical model of the clamping mechanism
2.2.1 Mathematical model of clamping hydraulic motor

The flow continuity equation for the clamping hydraulic
motor is:

QL ¼ D
du

dt
þKcmPL þ V m

E

dPL

dt
ð1Þ

Where:
E —— the elastic modulus of hydraulic oil;
Kcm —— the hydraulic motor leakage coefficient;
PL —— the hydraulic motor inlet pressure;
QL —— the hydraulic motor oil inlet flow;
D —— the theoretical displacement of the hydraulic

motor;
Vm —— the volume of the hydraulic motor oil inlet

chamber;
u —— the rotation angle of the output shaft of the

hydraulic motor.
The balance equation for the force on the clamping

hydraulic motor shaft is:

DPL

2p
¼ Jt

d2u

dt2
þ cm

du

dt
þGu ð2Þ

where:
Jt —— the total moment of inertia of the hydraulic

motor shaft;



Fig. 1. Structure of picking manipulator: 1. Housing, 2. monocular camera, 3. vibrating head bracket, 4. vibrating hydraulic motor, 5.
guide link, 6. vibrating crank disk, 7. clamping hydraulic motor, 8. vibrating connecting link, 9. clamping bevel gear pair, 10. clamping
spline screw, 11. clamping nut, 12. clamping link, 13. clamping jaw.
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cm—— the viscous damping coefficient of the hydraulic
motor and the load;

G —— the torsional spring stiffness of the load.

The output shaft torque of the hydraulic motor is:

T 0 ¼ DPL

2p
: ð3Þ

2.2.2 Mathematical model of clamping mechanism

The driving torque T1 transmitted by the clamping
hydraulic motor 7 to the spline screw 10 through the bevel
gear pair 9 is:

T 1 ¼ h1iT 0 ð4Þ
where:

h1 —— the transmission efficiency of the gear pair;
i —— the transmission ratio of the gear pair.

The transmission relationship between the spline screw
10 and the clamping nut 11 can be expressed as:

FA ¼ 2pT 1h2
L

ð5Þ
where:
FA —— the thrust of the clamping nut 11;
h2 —— the transmission efficiency of the nut screw;
L —— the lead of the screw.
The mechanism movement relationship between 11, 12

and 13 can be simplified as a rocker-slider mechanism, of
which the schematic diagram is shown in Figure 2.

The clamping links and the clamping jaws are taken as
the force analysis objects, of which the gravity is ignored.
The force analysis diagram is shown in Figure 3.

According to Figure 3, the equation of the output
clamping force at the end of the clamping jaws is:

FA ¼ 2FB cosa
FDdCD � FBdBC ¼ 0

�
ð6Þ

where:
FB—— the thrust of the clamping links to the clamping

jaw;
FC —— the support reaction force of the manipulator;
FD —— the reaction force of camellia trees to the

clamping jaw;
a —— the horizontal angle between the clamping links

and the screw shaft;



Fig. 2. Schematic diagram of the movement of the clamping
mechanism.

Fig. 3. Force analysis diagram of clamping jaws.

Fig. 4. Kinematic analysis diagram of clamping jaws.
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dBC —— the vertical distance between the clamping
jaw BC;

dCD —— the vertical distance between the clamping
jaw CD.

Due to the symmetry of the clamping jaws, only half of
it needs to be modeled and analyzed when exploring the
kinematic relationship between its joint angle and the
clamping nut displacement s. As shown in Figure 4, a plane
rectangular coordinate system is established with the
projection of point B0 on the horizontal axis of the spline
screw when the jaws open and close at the maximum as the
origin O. When the moving distance of the jaws in the
horizontal direction is s, the kinematics relationship of each
link of the clamping jaws is:

s ¼ lAB cosaþ lBC 1� _cos gð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2AB � e2

q
ð7Þ
where:
lAB—— the projected length of the clamping linkAB to

the ground;
lBC—— the projected length of the clamping jaw BC to

the ground;
g —— the rotation angle of the clamping jaw aroundC;
e —— the vertical distance from C to the spline screw.

Then according to the plane geometric relationship:

b ¼ aþ g ð8Þ

lABsinaþ lBC sin g ¼ e: ð9Þ
Then the relationship between the vertical distance dBC

between the jaws B&C and the links length clamping links
lAB is:

dBC ¼ lBC sinb: ð10Þ
The relationship between the moving distance s of the

clamping jaws in the horizontal direction and the output
shaft angle u of the hydraulic motor is:

s ¼ Lu

2pi
: ð11Þ

The force transmission ratio between the output torque
T0 of the hydraulic motor and the clamping force FD is
defined as:

j0 ¼
FD

T 0
: ð12Þ

Bring the above equations (4)–(11) into equation (12),
and get:

j0 ¼ k1u þ k2: ð13Þ
In the formula: k1 and k2 are constants related to the jaw

structure, transmission ratio and transmission efficiency.



Fig. 5. Simplified hydraulic schematic of the clamping hydraulic motor: 1. tank, 2. pump oil filter, 3. Pump, 4. electro-hydraulic
proportional direction valve, 5. bidirectional hydraulic lock, 6. clamping hydraulic motor, 7. pilot-operated relief valve, 8. electro-
hydraulic proportional relief valve, 9. one-way oil filter, 10.cooler.
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Equation (13) shows that there is a linear function
relationship between the designed jaw force transmission
ratio and the rotation angle u of the hydraulic motor.When
the hydraulic motor rotation angle u reaches the maximum
value, that is, the moving distance s of the clamping jaws in
the horizontal direction just reaches the end of the
clamping spline screw, the output clamping force of the
clamping jaw reaches the maximum value at this time. It
can be analyzed that the size of the clamping forceFD at the
end of the clamping jaw can be controlled by controlling the
output shaft angle u and the output pressure of the
hydraulic motor combined with formula (3).

In summary, the output clamping force and the opening
angle of the hydraulic manipulator can be achieved by
controlling the pressure and flow rate of the hydraulic oil
input to the clamping hydraulic motor.

2.2.3 Electro-hydraulic control scheme and mathematical
modeling of components

According to the analysis above, the hydraulic principle
diagram of the picking manipulator was designed as shown
in Figure 5.
When the camellia tree clamping operation is realized,
the right electromagnet of the reversing valve 4 is
energized, the hydraulic pump 3 supplies oil to the
clamping hydraulic motor 6, and the motor 6 rotates
forwardly, so that the clamping jaws are closed to grip the
camellia tree. Bidirectional hydraulic locks 5 are designed
at both ends of the clamping hydraulic motor 7 to lock the
oil circuit of the clamping hydraulic motor 6 in order to
prevent the gripped camellia branches from loosening
during the vibration picking process. After the vibration
harvesting is completed, the left electromagnet of the valve
4 is energized, and the clamping hydraulic motor 6 is
reversed, so that the clamping jaws can release the camellia
tree.

According to the above analysis of equation (13), it can
be seen that the control of the clamping force of the
manipulator needs to ensure the constant rotation angle of
the hydraulic motor and the pressure of the oil inlet. Therefore,
anelectro-hydraulicproportional directionvalve4 isdesignedto
control theflowof thehydraulicmotor, andanelectro-hydraulic
proportional relief valve 8 is installed on the pilot valve of the
pilot-operatedreliefvalve7toflexiblyadjustthesystempressure
inputtothehydraulicmotor.Thecontrolsystemflexiblyadjusts
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the pressure of the relief valve 8 according to the data of the
camelliatrunktobeclampedmeasuredbythevisionsystem,and
then controls the pressure of the hydraulic system to determine
themaximumclamping force output by the clamping jaws.The
control system controls the input current of the valve 4 and
changes its valve opening, thereby realizing the control of the
rotation angle and output torque of the clamping hydraulic
motor, and realizing the stable and flexible gripping of the
clamping jaws.

The following is the mathematical modeling process of
electro-hydraulic proportional direction valve.

The displacement xv of the electro-hydraulic propor-
tional direction valve spool is proportional to the input
current I, namely:

xv ¼ KiI ð14Þ
where:

Ki —— the constant coefficient of proportionality.
Assuming that the oil supply pressure ps is constant and

the oil return pressure po is zero, the dynamic flow equation
of the electro-hydraulic proportional direction valve is:

QL ¼ CdvWvxv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pv1 � pv2ð Þ

r

s
ð15Þ

where:
Cdv —— the flow coefficient;
Wv —— the area gradient, that is, the width of the

valve port in the circumferential direction;
pv1 —— the oil pressure of the oil inlet of the electro-

hydraulic proportional direction valve;
pv2 —— the oil pressure at the outlet of the electro-

hydraulic proportional direction valve;
r —— the hydraulic oil density.

By linearizing the above formula, the linearized flow
increment equation of the electro-hydraulic proportional
direction valve can be obtained as:

QL ¼ Kqxv �KcPL ð16Þ
where:

Kq ¼ ∂QL

∂xv
—— the flow gain;

Kc ¼ ∂QL

∂ðpv1 � pv2Þ
—— the coefficient of flowpressure:

In summary, The hydraulic motor output shaft rotation
angle u, hydraulic motor output shaft speed du/dt, and
hydraulicmotor oil inlet pressurePL are selected as the state
variables x1, x2, x3, the current i is takenas the inputvariable,
and the output angle u and torqueT0 of the hydraulic motor
are taken as the output variables combined with the above
equations (1)∼(3) and (14)∼(16). The state space model of
the system is constructed as follows:

x ¼ A1xþB1uy ¼ C1xf ð17Þ
where:

A1 ¼

0 1 0

� G

Jt
� cm

Jt

D

2pJt

0 �DE

Vm
�ðKc �KcmÞE

Vm

2
6664

3
7775

B1 ¼ 0 0
kqkiE

V m

� �T

C1 ¼ 0 0
D

2p
1 0 0

" #
:

According to the above state equation, it can be seen that
theopeningandclosingangleu of thegripperandtheclamping
forceFDwouldbecontrolledbyadjustingthe inputcurrentIof
the electro-hydraulic proportional direction valve.

3 Design of fuzzy neural network PID
controller

3.1 Design of PID controller

The control law of incremental digital PID is as follows:

DuðkÞ ¼ uðkÞ � uðk� 1Þ
¼ Kp eðkÞ � eðk� 1Þ½ � þKIeðkÞ þKD

eðkÞ�2eðk�1Þ
þeðk� 2Þ
� �

In the formula: u(k) and u(k�1) are the kth and (k�1)th
output values of the controller; Kp is the proportional
coefficient; KI is the integral coefficient; KD is the
differential coefficient; e(k), e(k�1) and e(k�2) are the
kth, (k�1)th, and (k�2)th input error values.

It is difficult to achieve the optimal control effect,
when the control system of the clamping hydraulic motor
adopts PID controller to adjust the three parameters of
proportional, integral and differential. Therefore, the
fuzzy neural network is used to adaptively adjust these
three parameters in PID. The input and output function
relationship of the fuzzy neural network is shown in the
following formula(18), and the control flow chart of the
fuzzy neural network PID controller is presented in
Figure 6.

KP ¼ f1ðe; · e ÞKI ¼ f2ðe; · eÞKD ¼ f3ðe; · eÞf ð18Þ

3.2 Design of fuzzy wavelet neural network

According to the above, this paper needs to design a fuzzy
neural network to adjust the three parameters of the PID
system, and the FWNN has the dual advantages of wavelet
neural network and fuzzy control system which concludes
fast speed, strong learning ability and robustness that can
well meet the working conditions of the Camellia fruit
picking manipulator. Therefore, this paper chooses the



Fig. 6. Flow chart of PID control of fuzzy wavelet neural network.

Z. Fan et al.: Mechanics & Industry 24, 30 (2023) 7
FWNN as the fuzzy neural network for PID control. The
FWNN designed in this paper is divided into 6 layers,
which are input layer, fuzzification layer, fuzzy inference
layer, wavelet layer, wavelet product layer, and output
layer. Its structure is listed in the Figure 7.

1) Input layer. The input layer uses two neuron nodes,
representing the deviation e and the deviation change rate
de/dt of the control system. Its input activation function is
f1(xi)=xi.

2)Fuzzification layer. The role of this layer is to fuzzify
the two inputs. Take and the fuzzy subset of deviation e
and deviation change rate de/dt as {NB, NM, NS, ZO, PS,
PM, PB}, namely {negative big, negative medium,
negative small, zero, positive small, positive medium,
positive big}, a total of 7 neuron nodes. The designed
fuzzy neural network PID controller adopts incremental
PID control. The fuzzy neural network is used to locally
fine-tune the three parameters of Kp, Ki and Kd on the
basis of determining the basic range of PID controller
parameters. Therefore, the range of the fuzzy set can be
set to be very small. In this paper, the value range of the
fuzzy set is set to [�6, 6] according to the reference [22]. Its
input can be expressed as:

rij ¼ xi þ mijn�1aij

where:
n —— number of iterations
aij —— weight of recursive feedback connection
mijn-1 —— Gaussian membership function.
The output signal of the second layer is:

f2ði; jÞ ¼ exp � ri � cij
� �2

bj
� �2

 !

In the formula: i=1, 2; j=1, 2, ..., n; cij and bj represent
the center value and width value of the membership
function, respectively.

3) Fuzzy inference layer. Themain function of this layer
is to perform fuzzy reasoning according to the set fuzzy rule
table to determine the changing trend of PID parameters.
This layer completes the matching of fuzzy rules through
the connection with the fuzzification layer, and performs
fuzzy operations between nodes. The calculation formula
used in this layer is:

f3ðjÞ ¼ ∏
N

j¼1

mijðf2ði; jÞÞ

where:

N ¼ ∏
n

i¼1

ni—— sumof neurons

4) Wavelet layer. Each input signal f3(j) from layer 3 is
passed through the activation function of the wavelet node.
The activation function is:

f4 jð Þ ¼ 1�kf3ðjÞ � tjk2
d2j

 !
exp �kf3ðjÞ � tjk2

2d2j

 !

where:
dj —— scaling parameters of wavelet nodes
tj —— translation parameters for wavelet nodes
wj —— weight of the jth node of neural network
5)Waveletproduct layer.This layer is similar tothe third

layer of fuzzy inference, which completes the matching of
fuzzy rules through the connection with the wavelet layer
and performs fuzzy operations between nodes. The main
purpose of designing this layer is to perform fuzzy
reasoning on the results after waveletization to deter-
mine a more precise adjustment range of PID parame-
ters. The calculation formula used in this layer is:

f5ðjÞ ¼ ∏
N

j¼1

ðf4ðjÞÞ

where:

N ¼ ∏
n

i¼1

ni —— sumof neurons

6) Output layer. The role of this layer is to output the
three control parameters of the PID controller. Its
calculation formula is:

f6ðiÞ ¼ w⋅f5 ¼
XN
j¼1

wði; jÞ⋅f5ðjÞ



Fig. 7. Structure of the fuzzy wavelet neural network.
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which is:

KP ¼
XN
j¼1

wð1; jÞ⋅f5ðjÞ

Ki ¼
XN
j¼1

wð2; jÞ⋅f5ðjÞ

Kd ¼
XN
j¼1

wð3; jÞ⋅f5ðjÞ

where:
Among them, w is the connection weight matrix

between the fuzzy inference layer and the output layer.
The traditional FWNN neural network uses gradient

descent method for training, but the disadvantage of this
training method is that the training speed is slow with huge
training samples, which cannot meet the real-time require-
ments of Camellia fruit picking. Therefore, the training
methods of neural network need to be optimized by the
modern optimization methods.

4 Improved learning algorithm of GWO-
optimized neural network

4.1 Introduction to hybrid learning algorithms

The learning process of the traditional fuzzy wavelet neural
network (FWNN) is to obtain the optimal weights and
parameters by continuously adjusting the network param-
eters. However, the initial value of the traditional neural
network parameters is random, which makes the network
optimization easy to fall into the local minimum value, and
the convergence is slow. The Grey Wolf Optimization
Algorithm is a swarm intelligent optimization algorithm
with strong global search ability, which is beneficial for
accelerating the speed of neural network learning process
and compensating for the problem of slow training speed
caused by simply using gradient descent method. There-
fore, this paper proposes to train the parameters dij, tj andw
of the neural network by using the method of mixing the
improved grey wolf optimizer and the gradient descent
method. The approximate optimal solution of the network
weight parameters is obtained by improving the global
search ability of the GWO, and then the gradient descent
method is used to adjust the accuracy.

4.2 Gradient descent method

The gradient descent method is used to adjust the
parameters of the neural network to determine the network
weights. The performance indicators of the neural network
are selected as:

E ¼ 1

2
eðkÞ½ �2 ¼ 1

2
rðkÞ � yðkÞ½ �2 ð19Þ

After determining the objective cost function, the
network performs back-propagation, and performs gradi-
ent search with the goal of minimizing the objective
function. In the search process, the iterative formula of
each network parameter is:

dijðkÞ ¼ dijðk� 1Þ þ DdijðkÞ þ a dijðk� 1Þ � dijðk� 2Þ� 	
tjðkÞ ¼ tjðk� 1Þ þ DtjðkÞ þ a tjðk� 1Þ � tjðk� 2Þ� 	
wðkÞ ¼ wðk� 1Þ þ DwðkÞ þ a wðk� 1Þ � wðk� 2Þ½ �
Ddij ¼ �h

∂E
dij

Dtj ¼ �h
∂E
tj

DwðkÞ ¼ �h
∂E
∂w

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð20Þ
where:

h —— the learning rate;
a —— the momentum factor.

4.3 Improved grey wolf optimizer
4.3.1 Introduction to grey wolf optimization algorithm

The grey wolf optimization algorithm simulates the strict
social division of labor and cooperative hunting mode of
grey wolves under natural environmental conditions,
thereby realizing the determination of the optimal solution
[24,25]. As grey wolves round up their prey, their hunting
behavior is defined as follows:

D ¼ jC⋅XpðtÞ �XðtÞj
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Xðtþ 1Þ ¼ XpðtÞ �A⋅D

where:
D —— the distance between individual wolves and

their prey;
Xp(t) —— the position of the tth generation of prey;
X(t) —— the position of the individual in the tth

generation of wolves;
A & C —— the coefficients, its calculation formula is

shown in formulas (21) and (22):

A ¼ 2a⋅r1 � a ð21Þ

C ¼ 2r2 ð22Þ
Among them: a is the convergence factor, which

decreases linearly from 2 to 0 with the number of iterations;
r1 and r2 are random numbers between 0 and 1.

The grey wolf’s social hierarchy is a 4-tier pyramid
structure. The a-wolf is located at the top of the pyramid,
which is the supreme leader of the wolf pack and is
responsible for the planning and decision-making of the
overall hunting. The b-wolf is located on the second layer of
the pyramid and is mainly responsible for assisting the
a-wolf in decision-making. When the a-wolf is vacant, the
b-wolf will replace the a-wolf as the leader. The d-wolf is
located on the third layer of the pyramid. It obeys the
decision-making orders of the a-wolf and the b-wolf, and is
mainly responsible for tasks such as reconnaissance, sentry,
and care babies. The v-wolves are located at the bottom of
the pyramid and play a role in balancing relationships
within the population.

The a-wolf, b-wolf and d-wolf are the wolves that are
closest to andmost aware of the presence of their prey when
encircling their prey. The b-wolf and d-wolf led by alpha
wolf, will lead the entire pack to surround their prey. Its
mathematical expression is as follows:

DaðtÞ ¼ jC1XaðtÞ �XðtÞj
DbðtÞ ¼ jC2XbðtÞ �XðtÞj
DdðtÞ ¼ jC3XdðtÞ �XðtÞj

8<
: ð23Þ

X1ðtÞ ¼ XaðtÞ � A1DaðtÞ
X2ðtÞ ¼ XbðtÞ � A2DbðtÞ
X3ðtÞ ¼ XdðtÞ � A3DdðtÞ
Xðtþ 1Þ ¼ X1ðtÞ þX2ðtÞ þX3ðtÞ

3

8>>><
>>>:

ð24Þ

where:
Da(t) —— the distance between the tth generation of

wolves and a-wolf individuals;
Db(t) —— the distance between the tth generation of

gray wolf individuals and b-wolf individuals;
Dd(t) —— the tth generation. distance between

individual wolf packs and d-wolf individual;
Equation (24) defines the step size and direction of the

individual v-wolf in the wolf pack toward the a-wolf, the
b-wolf and the d-wolf, and the final position of the new
generation of grey wolves.
4.3.2 Improved grey wolf optimization algorithm

The ultimate goal of the algorithm in this paper is to
minimize the deviation value. Therefore, the time multi-
plied absolute value error integration criterion ITAE index
is selected as the fitness function J of the GWO algorithm.
The calculation formula is:

J ¼ ∫N0 t⋅jeðtÞjdt ð25Þ
where:

N —— the total number of iteration steps of the gray
wolf algorithm;

It has the problem of slow convergence and easy
formation of local optimum, since the traditional GWO
algorithm ignores the information exchange between the
grey wolf and its own experience. Therefore, the improve-
ment of the convergence factor a and the control parameter
C is as follows:

a ¼ 2� 2t

tmax
;

1

1þ expððt� 0:25tmaxÞ=ð0:025tmaxÞ
� �

ð26Þ

C1 ¼ 2r2 � A
C2 ¼ 2r2 þ A

�
ð27Þ

In the formula,a,C1,C2∊[2,0], t=1,2,…,tmax/2
tmax —— the maximum number of iterations;
That is to say, from the beginning of the iteration to half

of the maximum number of iterations, the convergence
factor a decreases linearly from 2 to 0. The a-wolf and the
b-wolf achieve positional alternation in the subsequent
iteration cycle, and the b-wolf with better physical strength
leads the wolf group to approach the prey until the prey is
captured [26].

4.3.3 Hybrid algorithm to optimize neural network

The designed algorithm is denoted as the IGWO-FWNN-
PID algorithm, and its specific working process is as
follows:

Step 1: Build the fuzzy neural network PID control
model, determine the network topology, and initialize the
fuzzy neural network parameters dij, tj and w.

Step 2: Initialize wolf pack size, individual location,
number of iterations, and values of a, A, and C.

Step 3: Calculate the distance between the individual
grey wolves and the prey using formula (23), and set the top
three wolves with the shortest distance from the individual
to the prey as a-wolf, b-wolf and d-wolf.

Step 4: Surround the prey, and update the individual
position of the wolf pack using formula (24), where w takes
its initial value w0 in the first update.

Step 5: Update the values of a, A, and C are updated
using equations (21), (26), and (27).

Step 6: Calculate the distance between the new
generation of wolves and the prey, and update the a-wolf,
b-wolf and d-wolf according to the results.



Fig. 8. Flowchart of hybrid algorithm optimization.
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Step 7: Determine whether the maximum number of
iterations is reached. If YES, output the optimization
result to the fuzzy neural network, and go to the next step.
If NO, return to step 4.

Step 8: After the fuzzy neural network obtains the
initial value of the parameters, forward propagation is
performed, and the deviation is calculated according to the
formula (19).Then use the gradient descent method for
back-propagation, update the network parameters online
according to formula (20), and finally output the optimal
KP, KI, KD.

The flow chart of the above algorithm is present in
Figure 8.

5 MATLAB/Simulink simulation and
experimental analysis

5.1 MATLAB/Simulink simulation

In order to verify the effect of the IFWNNPID controller
designed in this paper, the simulation experiment was
carried out in Simulink. The controller simulation module
is shown in Figure 9. The simulation running environment
is in Windows 10 64-bit operating system with MATLAB
R2018a software platform, and the simulation computer
CPU is Intel Core i5-9400F of which the main frequency is
2.9GHz and the memory is 16GB. The simulation time was
set in 10s. The parameters used in the simulation are listed
in Table 1 and shown in Table 2.

The step signal was selected as the input of the
simulation in the experiment, and traditional PID
controller, fuzzy PID controller and FWNN PID controller
were added for comparison in order to verify the effect of
the controller designed in this paper.
A step signal with 550mA at 0s was input to the whole
system in the case of ideal and no interference. It obtained
the step response curve obtained by the simulation as
presented in Figure 10.

As can be seen from Figure 10, the clamping force of the
PID controller is maintained at about 315.15N after
3.515 s, while the FPID controller keeps the clamping force
at about 307.72N after 3.236s. The FWNN PID controller
preserves clamping force in 304.32N after 3.082 s, while the
IFWNN PID controller maintains the clamping force at
about 303.15N after 3.027s. It can be seen that the response
of the PID controller and the FPID controller is relatively
slow, and the clamping force is maintained at a relatively
large level, while the response speed of the FWNNPID
controller is faster than the previous two controllers, and
the output value of the clamping force is relatively good.

A white noise signal as shown in Figure 11 is applied to
the output clamping force of the actuator to simulate the
interference effect of the environment on the clamping jaws
in order to verify the performance of the IFWNN PID
controller under the condition of external interference. The
response curve of the system obtained from the simulation
is shown in Figure 12. The input current change curve and
error response curve of the IFWNN PID control system are
presented in Figures 13 and 14. The output shaft torque T0
and the output angle u of the clamping hydraulic motor are
listed in Figures 15 and 16.

It can be seen from Figure 12 that both the PID and
FPID controllers produce large fluctuations in the clamp-
ing force when the end of the gripper is disturbed, while the
FWNN PID controller and the IFWNN PID controller
produce relatively small fluctuations in the clamping force,
which means that the fuzzy neural network PID controller
has better robustness than PID and FPID controllers, and



Fig. 9. Simulation model of FWNNPID controller.

Table 1. The table of the simulation parameter.

Electro-hydraulic proportional direction valve Hydraulic motor Clamping jaws

ki 8mm. (mA)−1 G 62 N ·mm ·deg lAB 139 mm
kq 13.3ml/mm Jt 1347.80 kg ·mm2 lBC 50 mm
kc 0.027 ml · s�1 ·MPa D 18.20ml/r dCD 100 mm
E 0.7 GPa cm 15 N ·mm/deg e 90 mm

Vm 18.77 ml i 2
Kcm 1.2 L 10 mm

h1 0.95
h2 0.88

Table 2. Parameters of the fuzzy wavelet neural network.

h a a C1 C2

0.2 0.05 2 2 2
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canmaintain the clamping force within a range of relatively
stable values. It can be seen that when the system starts the
clamping operation function, the electromagnet of the
electro-hydraulic proportional direction valve is energized,
the valve core moves to make the hydraulic oil enter the
hydraulic motor, and the output shaft torque of the
hydraulic motor rises rapidly combining with Figures 13–
16. At this time, the clamping force of the gripper increases
rapidly, and the adjustment error of the neural network
decreases rapidly. After 3.027 s, the system reaches the set
clamping force value, the current of the electromagnet
decreases rapidly, the opening of the valve port decreases,
and the torque of the output shaft of the clamping
hydraulic motor decreases. When disturbed by external
interference signals, the control system mainly adjusts the
input small current to realize the flexible adjustment of the
valve opening of the electro-hydraulic proportional direc-
tion valve, which can adjust the output angle of the
hydraulic motor, so as to realize the control of the output of
the clamping hydraulic motor that keeps the clamping
force as a constant. The stronger the white noise signal the
gripper receives, the more severe the input current changes,
and the greater the output angle adjustment value.

In summary, the FWNNPID controller has the advan-
tages of faster response speed, relatively stable clamping
force and better robustness compared with the general PID
controller and fuzzyPIDcontroller under the condition of no
interference and external white noise interference at the end
of the gripper. This means that the controller can not only
ensure the stable clamping of the camellia trunk during



Fig. 10. Response without disturbance.

Fig. 11. Input white noise signal.
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vibration operation, but also avoids damage to the camellia
trunk caused by excessive clamping force.

5.2 Field test of the manipulator

In order to verify the control effect of the designed picking
manipulator, our research team conducted a camellia fruit
field test on October 18, 2021 at the experimental base of
Xuefengshan Camellia Society in Wangcheng District,
Changsha City, Hunan Province, China. The test time was
9:30 am, the weather was cloudy, the temperature was
15°C, and the air humidity was 86%. The designed test
prototype is shown in Figure 17. The prototype adopts
IFWNNPID controller and traditional PID controller
respectively for picking test.

Picker control system consists of single board comput-
er, driver, motion controller and sensor. The control system
of the prototype consists of a single-board computer, a
driver, motion controllers and sensors. The upper comput-
er adopts the single-board computer EasyDL-JetsonNano,



Fig. 12. Response in the presence of interference.

Fig. 13. Response curve of the input current.
Fig. 14. Error curve of the neural network.
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which is mainly used for receiving sensor signals, image
processing and motion position calculation, while the lower
computer adopts the single-chip STM32F405RGT6 as the
controller of the actuator. The MP3V5004DP-SMD-8
pressure sensor is installed on the side of the manipulator
clamping jaws to detect the clamping force of the
manipulator.

The prototype of camellia fruit picking machine first
determined a camellia tree to be picked through its vision
system(Monocular camera with FUJINON HF16SA-
1&binocular CMOS camera), and transmitted the data
of the tree to the Jetson Nano. The Jetson Nano
automatically planed the movement trajectory of the
picking manipulator according to the transmitted data,
and calculated the joint angles driven by the hydraulic
actuator required for each movement. Then it transmitted
the signal to the lower computer to drive the picking
manipulator to move and grip the target camellia tree.
When the manipulator moved to the designated position,
the control system controlled the electro-hydraulic propor-
tional direction valve to work and clamped the hydraulic
motor to grip the camellia trunk. And then the control
system started the vibration picking function after the
clamping operation was completed.



Fig. 15. Output shaft torque curve of clamping hydraulic motor.

Fig. 16. Changecurveofoutputangleof clampinghydraulicmotor.

Fig. 17. Push-and-shaking camellia fruit picking machine.
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In this test, 9 groups of camellia trees were designed
to be clamped. The clamping height of branches with
similar diameters was 1000mm, and the clamping was
repeated 3 times for each group of camellia trees. The
trunk diameter was measured with a meter ruler, the
clamping movement time was counted with a stopwatch,
the maximum clamping force was recorded by a pressure
sensor, and the clamping damage length was measured
with a scale. The picker was started vibrate picking, and
visually observed whether the clamping is loose after
stable clamping. The test results show that under the
action of the two controllers mentioned above, there is
no phenomenon that the clamping jaws loosen the
camellia tree during the vibration picking. Figures 18
and 19 show the effect of clamping damage left after the
picking test, and the measured test data are presented in
Tables 3 and 4.

It can be seen that IFWNN PID controller to drive the
gripper clamping operation compared with the PID
controller shorted the clamping time in 20.0 % and reduced
the clamping damage in 13.6% from Figure 18 and the data
comparison between Tables 3 and 4. The above results
show that the designed IFWNN PID controller can
effectively control the damage of camellia branches caused
by excessive clamping force, and can meet the clamping
force requirements of the camellia fruit picking machine.
However, it can also be seen from the above test results that
there is still room for optimization in the mechanical
structure of the above-mentioned camellia fruit picker, and
the clamping force damage can be further reduced by
improving the structure of the clamping jaw.

6 Conclusion

The state space equation of the valve-controlled clamping
hydraulic motor system of the push-and-shaking camellia
fruit picking manipulator was deduced, and the control
system was designed based on FWNN PID controller
optimized by improved GWO algorithm aiming at the
problem that the constant clamping force of themechanical
jaws of the push-and-shaking camellia fruit picking
manipulator reduces the damage of the holding tree trunk.
Finally, MATLAB/Simulink software was used for
simulation analysis under no interference and interference
situations and a field test was carried out. The results show
that the manipulator controlled by the IFWNN PID
controller can effectively reduce the clamping movement
time, reduce the damage of the clamping force, and has



Fig. 18. Damage of clamping tree trunk compared with PID controller and IFWNN PID controller.

Fig. 19. Damage of trunk clamped under the IFNNPID controller.

Table 3. Analysis of the clamping force with the PID controller.

Test
group

Average diameter
of trunk (mm)

Clamping movement
time (s)

Maximum clamping
force (N)

Clamping damage
length (cm)

1 45.6 3.42 659 55.2
2 44.8 3.57 627 51.6
3 48.2 3.76 694 52.6
4 53.4 4.26 786 47.9
5 52.8 4.59 825 48.9
6 55.4 4.36 843 42.7
7 58.7 4.97 962 24.6
8 60.3 4.86 1069 33.4
9 62.7 4.92 1012 25.4
Average 4.30 830.78 42.48
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Table 4. Analysis of the clamping force with the IWNNPID controller.

Test
group

Average diameter
of trunk (mm)

Clamping movement
time (s)

Maximum clamping
force (N)

Clamping damage
length (cm)

1 45.6 3.12 624 47.2
2 44.8 3.14 589 46.8
3 48.2 3.26 556 42.7
4 53.4 3.34 723 40.5
5 52.8 3.36 789 43.1
6 55.4 3.58 754 38.2
7 58.7 3.84 846 21.4
8 60.3 3.68 896 23.7
9 62.7 3.62 837 26.8
Average 3.44 734.89 36.71
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better robustness, which can satisfy the clamping operation
requirements of the push-and-shaking camellia fruit
picking mechanical manipulator.
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