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Abstract. Identifying model parameters is nowadays intrinsically linked with quantifying the associated
uncertainties. While classical methods allow to handle some types of uncertainties such as experimental noise,
they are not designed to take into account the variability between the different test specimens, significant in
particular for composites materials. The estimation of the impact of this intrinsic variability on the material
properties can be achieved using population approaches where this variability is modeled by a probability
distribution (e.g., a multivariate Gaussian distribution). The objective is to calibrate this distribution (or
equivalently its parameters for a parametric distribution). Among the estimation methods can be found mixed-
effects models where the parameters that characterize each replication are decomposed between the population
averaged behavior (called fixed-effects) and the impact of material variability (called random-effects). Yet,
when the number of model parameters or the computational time of a single run of the simulations increases
(for multiaxial models for instance), the simultaneous, global identification of all the material parameters
is difficult because of the number of unknown quantities to estimate and because of the required model
evaluations. Furthermore, the parameters do not have the same influence on the material constitutive model
depending for instance on the nature of the load (e.g., tension, compression). The method proposed in this
paper enables to calibrate the model on multiple experiments. It decomposes the overall calibration problem
into a sequence of calibrations, each subproblem allowing to calibrate the joint distribution of a subset of
the model parameters. The calibration process is eased as the number as the number of unknown parameters
is reduced compared to the full problem. The proposed calibration process is applied to an orthotropic
elastic model with non linear longitudinal behavior, for a unidirectional composite ply made of carbon fibers
and epoxy resin. The ability of the method to sequentially estimate the model parameters distribution is
investigated. Its capability to ensure consistency throughout the calibration process is also discussed. Results
show that the methodology allows to handle the calibration of complex material constitutive models in the
mixed-effects framework.
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1 Introduction

Following the increase of numerical facilities, virtual test-
ing is now widely used in order to partially substitute
numerical simulations to experimental campaigns because
of time and costs considerations. These numerical sim-
ulations require the use of material constitutive models
which describe different phenomena such as elasticity,
viscoelasticity, plasticity, damage, etc. These models, in
turns, involve several parameters that need to be cali-
brated. Calibrating model parameters consists in finding
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the parameters value that allow to best fit, in a specific
mathematical sense that should be specified, the exper-
imental responses of interest. This task is challenging
because the model may not be able to fully reproduce
the observations, the experimental data can be noisy and
the material properties subject to inherent variability.
Consequently, a faithful calibration of the model parame-
ters requires to take into account the different sources of
uncertainty in the identification process.

The properties of composite materials are known to be
subject to a significant variability because of the com-
plexity of the manufacturing process. To characterize this
variability, international standards impose to perform test
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repetitions [1] to determine the model parameters distri-
bution. In the classical approaches, model parameters are
calibrated independently on several specimens by mini-
mizing a fitting criterion [2] before inferring the model
parameters distribution by maximizing the joint likeli-
hood of the estimated parameters given a probabilistic
model (e.g., multivariate Gaussian) [3]. This procedure
is not fully satisfying because the fitting criterion (e.g.,
the sum of squares of the differences between observa-
tions and model predictions, the negative log-likelihood
of the model given the experiments [3,4]) does not con-
sider material variability in its definition. To overcome
this difficulty, it has been proposed [5,6] to use population
approaches [7,8] to characterize material variability. In
this framework, the different repetitions are described by
a specific set of model parameters known as the individual
parameters, distributed according to a joint probability
distribution (e.g., a multivariate Gaussian distribution).
This distribution represents the impact of material vari-
ability on the model parameters. The mixed-effects models
and the Hierarchical Bayesian models (HBMs) [9] belong
to the population-based approaches. The main difference
between them is that mixed-effects models can be applied
either in the frequentist or the Bayesian paradigm con-
trary to HBMs that are fully Bayesian, which usually
involves costly Markov Chain Monte Carlo (MCMC) sam-
pling. Given the computational costs of a single run of a
contemporary mechanical models, the focus is set on the
mixed-effects approach to be able to carry out the analy-
ses more easily. The mixed-effects notion comes from the
fact that there are “fixed” effects that are shared by the
entire population of individuals (i.e., specimen) and “ran-
dom” effects that are specific to each individual of the
population. For instance, the Young’s modulus measured
on a tension test individual can be considered as the com-
bination of a reference value (the average value given by
the manufacturer for a material batch) and of a devia-
tion due to the variability of the production process. The
parameters of this distribution can be determined by max-
imizing the appropriate likelihood of mixed-effects. This
kind of approach has already been applied successfully to
calibrate simple and uniaxial material constitutive models
[10].

Because of their heterogeneous and anisotropic nature,
the response of composite materials to external loads
is a combination of several phenomena, mainly elastic-
ity, viscosity, plasticity and damage [11]. Hence, various
types of modelings have been developed, for instance dam-
age [12], viscoelasticity [13,14], plasticity or viscoplasticity
[15], coupled viscoelasticity and viscoplasticity [16], cou-
pled viscoelasticity, viscoplasticity and damage [17,18],
etc. The modeling can be carried out at the laminate or
at the ply scale (see for instance damage-plasticity mod-
els for a single ply [19–22]). In addition to the in-plane
features, complex constitutive models can also describe
out-of-plane damage such as delamination [23]. Thus,
the constitutive models to calibrate usually involves a
large number of parameters, increasing the size of the
search space and making the optimization of the like-
lihood more difficult. Furthermore, the computation of
the likelihood of the mixed-effects is challenging as it is

expressed as a product of multivariate integrals. Given
the computational time of a single run of those models
(especially for multi-scale nonlinear models), the esti-
mation of the likelihood requires to set up appropriate
strategies (e.g., metamodeling [24]). Therefore, in order
to decrease the complexity of the calibration in the pres-
ence of uncertainty, we will seek to take advantage of the
decomposition of the model to transform the overall cal-
ibration problem into a sequence of appropriate smaller
calibration subproblems, corresponding to the different
test configurations (e.g. different load profiles and stack-
ing sequences). In addition to decreasing the number of
parameters to be identified, this alleviates the compu-
tational costs as it avoids to take into account all the
phenomena at the same time.

To calibrate the material parameters, often, experi-
mental tests of different natures are available, either in
terms of loads (e.g., tension, compression or shear tests)
or in terms of stacking sequences (e.g., unidirectional 0◦

laminates or quasi-isotropic laminates). Nevertheless, the
sensitivity of the model output with respect to the model
parameters depends on the nature of the test [25] and all
the model parameters characterizing a given phenomenon
(elasticity for instance) cannot always be estimated with
the same type of test. Consequently, in the decomposi-
tion of the calibration process, the choice of the relevant
parameters must be performed carefully to avoid ill-posed
problems.

To solve such problems, this paper introduces a sequen-
tial procedure to calibrate material constitutive models
compliant with the mixed-effects framework. This proce-
dure aims to calibrate the same orthotropic elastic model
on multiple experiments with different stacking sequences.
Prior to calibration, for each available individual, the
parameters to which the model output is sensitive are
determined from expert knowledge. This allows to define
a sequence of calibration subproblems with a separation
of the calibrated parameters. Note that the separation
may not be strict as some parameters may be sensitive to
several tests. For a given calibration subproblem (trans-
formed into an optimization problem) attached to the
appropriate experimental data, we only need to consider
the joint distribution of the parameters relevant to this
specific experiment. To ensure consistency between the
different steps of the sequential calibration process, for a
given step, the search space of the distribution parameters
already estimated with previous sub-calibrations is lim-
ited to a trust region. The distribution parameters of the
model coefficients that are not sensitive are fixed during
the resolution of this calibration subproblem.

This paper is organized as follows. Section 2 intro-
duces the population-based approaches and in particular
mixed-effects models, with a focus on the treatment of
multivariate data. In Section 3, the proposed sequential
calibration process is presented in details. In order to
illustrate the performance of the calibration strategy, the
methodology is applied to the calibration of an orthotropic
elastic model with nonlinear longitudinal behavior. In
Section 4, a numerical study is carried out to investigate
the performance of this methodology. Concluding remarks
can be found in Section 5.
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2 Population-based approaches for
calibration

2.1 Formalization

For a given a material constitutive model F(·,θ), the
calibration aims at finding a set of model parameters
labeled θ ∈ Rd (d standing for the number of parameters
to be calibrated) which allows to mimic the experimen-
tal data. The random variable to θ is labeled Θ and θ
stand for its outcome. The calibration problem in the pres-
ence of uncertainty can be formalized as follows [26,27].
Let us note the random vector of the output data Y
and y = (yj)j∈J1,NK its outcome, with N the number of
observations, considering one individual. Classically, the
following decomposition applies:

y ∼ F(·,θ) + ξ, (1)

where ξ stands for the random vector of the errors which
represents the experimental noise and the model bias. The
outcomes of ξ can be different from one measure to the
other and are labeled (ξj)j∈J1,NK. Equation (1) can be
further detailed:

yj := F(tj ,θ) + ξj , (2)

with tj the jth input measure, which is deterministic. A
common practice of classical identification consists in min-
imizing, the sum of squares of the difference between
the model prediction and the experimental data with
respect to model parameters. This method is known as
nonlinear least squares and the minimization is often con-
ducted with the Levenberg-Marquardt algorithm [28,29].
It should be noted that other criteria can be chosen to
perform the calibration of the constitutive model [30]. To
consolidate the identification of the model parameters,
the sensitivity matrix that corresponds to the gradient of
the constitutive model with respect to the model parame-
ters can be used as proposed in [31]. Taking into account
such information allows to better adapt the minimization
algorithm to the local variations of the fitting crite-
rion. Yet, such methods do not account for the intrinsic
variability of the material properties. On the contrary,
population-based approaches explicitly model the vari-
ability between individuals within a population. Figure 1
illustrates this fundamental difference with respect to the
classical identifications.

Population-based approaches explicitly model the vari-
ability between individuals within a population. Figure 1
illustrates this fundamental difference with respect to the
classical approaches summarized previously.

In the classical approaches (Fig. 1.a), individual vari-
ability is neglected and combined with other types of
uncertainties, which allows to describe all the individuals
by the same value of model parameters. In the population-
based approaches (Fig. 1.b), each sample (experiment
replication) is assigned a specific parameter vector value
called the individual parameters. It is assumed that there
exists an underlying probability distribution fΘ whose

outcomes are the individual parameters (θi)i∈J1,nK with
n the number of individuals (corresponding to the num-
ber of experiment repetitions) [7,8]. Both the underlying
probability distribution of the model parameters and the
value of the individual parameters have to be determined.
In addition, it remains possible to take into account other
sources of uncertainty, such as measurement noise. Thus,
population-based approaches are particularly well suited
to situations in which individual variability cannot be
neglected with respect to other sources of uncertainty

The population-based approaches framework [7,8]
assumes that there exists a probability distribution fΘ

whose outcomes are the individual parameters:

∀i ∈ J1, nK, θi ∼
i.i.d.

fΘ. (3)

Both the probability distribution fΘ and its realizations
θi are unknown and the aim is to determine them. In
addition, if fΘ is parametric (a Gaussian distribution for
instance), let Π be its parameters and fΘ = fΘ|Π. Identi-
fying fΘ|Π is tantamount to determining Π. Given Π and
θi ∼ fΘ|Π ∀i ∈ J1, nK, the model output yi can be written
as

∀i ∈ J1, nK, yi ∼
i.i.d.
F(·,θi) + ξi. (4)

Without any other hypothesis, the outcomes of ξi (labeled
(ξij)j∈J1,NiK) are different for each individual and for each
observation, with Ni the number of observations of the
ith individual. The global mixed-effects models for the jth

output measure of the ith individual yij reads as

yij = F(tij , θi) + ξij . (5)

For the sake of simplicity and to ease the numerical deriva-
tions, fΘ|Π is chosen in this paper to be a multivariate
Gaussian distribution of dimension d (remember that d
corresponds to the number of parameters to calibrate)
but the principles of the approach remain valid for other
distributions:

fΘ|Π := N (µ,Σ) and Π := [µ,Σ], (6)

with µ ∈ Rd the mean vector and Σ ∈Md(R) the covari-
ance matrix. The second hypothesis is that for each
individual and each measure, the discrepancy term is a
Gaussian white noise (no bias, no correlation):

ξij ∼
i.i.d.
N (0, ω2

ij), (7)

with ωij the standard-deviation of the noise of the jth

output measure of the ith individual. Furthermore, the
noise is supposed to be homoscedastic, i.e. ωij = ωi ∀ j ∈
J1, NiK [32]. This is a simplifying assumption but helps to
limit the number of parameters to estimate. Finally, the
vector of parameters to be calibrated is denoted Ψ:

Ψ := (µ, Σ, Ω) ,
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Fig. 1. Difference between the population-based and the classical approaches. On the left, a), usual methods with a single
parameter vector for all individuals. On the right, b), population-based approach in the mixed-models effects framework with fΘ
the distribution.

Fig. 2. Different levels of modeling in the population approach (adapted from [8] and [33]). The dashed lines indicate random
sampling and the ellipsis the distributions.

with Ω = diag(ω2
1 , . . . , ω

2
n). The population-based

approaches seek Ψ and provide an estimate of the individ-
ual parameters (θi)i∈J1,nK as a by-product. The complete
hierarchical modeling, that combines both the population
level (the repetition of experiments) and the individ-
ual level (the specimens themselves), is summarized in
Figure 2.

Figure 2 highlights the hierarchical link between the
population level (that is to say the repetitions of spec-
imens) and the individual level for which standard cali-
bration methods operate. In fact, population approaches
appear as a generalization of the standard calibration
methods with the additional feature that they statistically
account for the variability that arises from repetitions of
specimens.

To identify Ψ, that is to say the population and resid-
ual model, different methods can be set up in either
frequentist or Bayesian fashions. Among the frequentist
methods can be found mixed-effects models [7,8,34]. The
notion of mixed-effects comes from the decomposition of

the individual parameters θi through fixed-effects β and
random effects bi as

θi = Aiβ + Bibi, (8)

where Ai,Bi are deterministic design matrices that
belong to Md(R) with d the number of model parame-
ters. Design matrices other than Id, the identity matrix
of Md(R), can be used for example by removing them
through null coefficients in the matrices if some of the
model parameters are deterministic or do not express
themselves on all experiments [32] (e.g., compressive prop-
erties on the tension behavior). Generally, there is no
direct interpretation between the fixed-effects, random
effects and Π, but for a Gaussian fΘ|Π, the fixed-effects β
are equal to the population parameters average µ and the
random-effects comply with bi ∼ N (0Rd ,Σ), i ∈ J1, nK.
Furthermore, provided that the modeling proposed by the
population exhibit a hierarchical structure, hierarchical-
based techniques such as Hierarchical Bayesian models
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(HBMs) [6,9] can be implemented. HBMs are a fully
Bayesian approach that estimates the population param-
eters with a Bayesian paradigm. As in all Bayesian
problems, it requires the definition of a prior on the
population parameters Π (to which may be added Ω,
thus getting Ψ) that allows to derive the expression of
the posterior distribution of the population parameters
given the available data thanks to the Bayes rule. HBMs
techniques may lead to two challenges. The first is the
choice of the prior distribution of the population param-
eters Π, in particular for the covariance matrix Σ. The
second resides in the estimation of the posterior distri-
bution from Bayes rule. Except for specific simple linear
models to calibrate, the posterior distribution cannot be
expressed analytically (in particular because of the nor-
malization constant [35]) and should be sampled with,
for instance, Markov-Chain-Monte-Carlo techniques (e.g.,
the Metropolis-Hastings algorithm [36] or the Gibbs sam-
pler [37]). Moreover, because of the hierarchical nature
of HBMs, it is necessary to use nested MCMC. This
makes the sampling procedure harder than when no pop-
ulation modeling is considered, for which it is already
complicated to achieve. Given that MCMC techniques are
computationally intensive, this may not be applicable in
applications involving computationally costly simulation
codes. On the contrary, mixed-effects models provide more
flexibility as they can be applied in either the frequen-
tist and Bayesian frameworks. Note that in the Bayesian
framework, both methods turn out to be equivalent. They
will be here the chosen technique, mainly because of com-
putational concerns in order to be able to perform the
necessary computations. With mixed-effects, the popu-
lation parameters are most of the time estimated by
likelihood maximization [7,8,32], that will be derived in
the next section for first models with univariate output
and then for multivariate output. Note that all the deriva-
tions presented in the following assume that the design
matrices are set equal to the identity matrix for the sake
of clarity. If it is not the case, the relevant linear change
of variables should be applied.

2.2 Likelihood of the mixed-effects

The calibration is often achieved by maximizing the likeli-
hood of Ψ, L(Ψ) := f(y1, . . . ,yn|Ψ) (where f is a generic
letter for probability density functions or PDFs), even if
other methods can be found to estimate Ψ [38]. The step-
by-step derivation of the likelihood function can be found
in [10]. Under the assumption of independent individuals
(corresponding to independent experiment replications,
for instance with different samples), it reads as the
product of all the individual likelihoods Li(Ψ) := f(yi|Ψ),

L(Ψ) :=

n∏
i=1

Li(Ψ). (9)

Because the θis are not observed, the likelihood of the ith
individual Li(Ψ) is the integral of the marginal likelihood
(i.e., the density of the output data yi given individual
parameters θi and parameters Ψ) f(yi|θi,Π, ωi) with

respect to all possible θi over Rd:

Li(Ψ) :=

∫
Rd

f(yi|θi,Π, ωi)fΘ|Π(θi|Π)dθi. (10)

In Equation (10), fΘ|Π(θi|Π) refers to the PDF of the
model parameters distribution computed for the individ-
ual parameters. Note that, as a multivariate integrals,
the individual likelihoods are challenging to compute. In
particular, it should be ensured that none of them col-
lapse to 0, as it would otherwise flaw the estimation of
the complete likelihood function. The maximum likeli-
hood estimator (MLE) Ψ̂ is the result of the following
maximization problem over the set of all the possible
parameters ΓΨ:

Ψ̂ := arg max
Ψ∈ΓΨ

L(Ψ). (11)

In practice, the logarithm of the likelihood is computed to
ease the numerical optimization [39].

2.3 Mixed-effects for multivariate models

The calibration of mixed-effects for univariate models has
been extensively discussed [7,8,32]. This happens when
only one measure is available on each individual. Yet,
sometimes, one has access to several measures on the same
individual (with longitudinal and transverse gauges or dig-
ital image correlation for instance). Then, the model to be
calibrated becomes multivariate in the sense that the out-
put is no longer a scalar but rather a vector, requiring to
adapt the mixed-effects equations [40].

Let’s note mi the number of output measures of the
ith individual and k ∈ J1,miK the corresponding index.
In the following, all individuals are supposed to have the
same number of output measures, so mi = m ∀i ∈ J1, nK.
Moreover, all measures are supposed to have the same
number of observation pointsNi. The main difference with
Section 2.1 is that the model output of each observation
point is no longer a scalar yij but a vector yij ∈ Rm. The
same occurs for the discrepancy term, now labeled ξij .

The equations governing the mixed-effects are [7,8,32]:


∀(i, j) ∈ J1, nK× J1, NiK,yij = F(tij ,θi) + ξij ,

∀i ∈ J1, nK,θi ∼
i.i.d.

fΘ|Π,

∀(i, j) ∈ J1, nK× J1, NiK , ξij ∼i.i.d.
N (0Rm ,Ωij),

(12a)
(12b)

(12c)

with 0Rm the zero vector of Rm and Ωij the covariance
matrix of the discrepancy term which describes both the
errors of the different sensors and the possible correla-
tions between the errors on two different sensors. The
observations are supposed serially uncorrelated as in ear-
lier studies [41], meaning that the measurement errors at
two different observation times are independent:

∀i ∈ J1, nK, ∀(j1, j2) ∈ J1, NiK2, j1 6= j2
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⇒ Cov(ξij1 , ξij2) = 0. (13)

Furthermore, for all individuals, the noise is supposed to
be homoscedastic, that is to say: Ωij = Ωi ∀ j ∈ J1, NiK.
Note that the only difference between equations (5) and
(12a) is that all terms are now vectors rather than scalars
and that equation (12c) is the analogous of equation (7)
for vectors instead of scalars.

Let us define for all individuals Yi, the matrix of
the output data of the ith individual with Yi :=
(yi1, . . . ,yiNi

) ∈ Mm,Ni
(R). The rows of Yi correspond

to yki = (ykij)j∈J1,NiK, that is to say the Ni observations
of the k-th measure of the ith individual. Similarly, it
is possible to define the matrix of the errors as ξi :=
(ξi1, . . . , ξiNi

) ∈ Mm,Ni
(R). The rows of the ξi matrix

correspond to ξki = (ξkij)j∈J1,NiK and can be understood
as the Ni measurement errors of the k-th measure for the
ith individual. Let us define Ỹi the flattened array by
row of the matrix of the output data Yi and the same for
the matrix of the discrepancy term ξ̃i. Then, Ỹi and ξ̃i
belong to RmNi . This allows to transform equation (12)
into 

∀i ∈ J1, nK, Ỹi = F(ti,θi) + ξ̃i,

∀i ∈ J1, nK,θi ∼
i.i.d.

fΘ|Π,

∀i ∈ J1, nK, ξ̃i ∼i.i.d.
N (0RmNi , Ω̃i).

(14a)
(14b)

(14c)

with Ω̃i = Ωi⊗ INi
where ⊗ denotes the Kronecker prod-

uct, INi
the identity matrix ofMNi

(R) and 0RmNi the zero
vector of RmNi . Hence, the set of the model parameters
to be calibrated, labeled Ψ is defined as:

Ψ := (µ, Σ, Ω1, . . . , Ωm) .

Finally, the likelihood of the mixed-effects becomes
f(Ỹ1, . . . , Ỹn|Ψ). Equation (10) remains the same except
for yi that becomes Ỹi.

2.4 Likelihood estimation with Laplace approximation

The evaluation of the likelihood function requires to com-
pute the individual likelihoods, which implies to estimate
the multidimensional integral of equation (10). A funda-
mental method to compute the integral is the Monte-Carlo
method [42]. However, such an approach requires too
many model evaluations to keep the computational time
reasonable and may lead to numerical noise in the esti-
mation of the multivariate integral resulting in challenge
in the likelihood maximization. An alternative approach,
named Laplace approximation, can be used [32]. The
Laplace approximation [32] applies to integrals of the type

A :=

∫
Rd

exp(−h(x))dx,

where h(·) is a function which must satisfy the following
constraints:

1. h(·) admits a global minimum x0 that belongs to the
integration interval,

2. h(·) is a twice-differentiable function,
3. its Hessian matrix H(h) computed at x = x0 is a

symmetric definite positive matrix.

The main idea is to assume that only regions close to
x0 significantly contribute to the integral, leading to the
following Laplace approximation of A:

A ≈ exp(−h(x0)))
(2π)

d
2√

|H(h)(x0)|
. (15)

Given the modeling choices (Eq. (14)), the individual
likelihoods read as:

Li(Ψ) =

∫
Rd

f(Ỹi|θi,Π, Ω̃i)fΘ|Π(θi|Π)dθi

=

∫
Rd

1√
|Ω̃i||Σ|(2π)d+mNi

× exp

(
−gi(µ,∆,Λi, Ỹi,bi)

2

)
dbi .

(16)

Here, ∆ is the transpose of the result of the Cholesky
decomposition of Σ−1 (so Σ−1 = ∆T∆), Λi is the trans-
pose of the Cholesky decomposition of Ω̃

−1

i (so Ω̃
−1

i =

ΛT
i Λi) and the function gi(·) is defined by:

gi(µ,∆,Λi, Ỹi,bi) := ‖Λi(Ỹi −F(ti,µ+ bi))‖2

+‖∆bi‖2. (17)

The Laplace method is applied in two steps:

1. Search for the individual parameters (or rather the
deviations), b̂i, minimizing gi(·) equation (17),

2. Computation of the Laplace approximation with
equation (15).

To finalize the approximation of the likelihood, it remains
to estimate the Hessian matrix of gi(·) at b̂i [32]:

H(gi)(b̂i) =
∂2F(ti,µ+ b̂i)

∂bi∂bTi
ΛT
i Λi(Ỹi −F(µ, ti, b̂i))

+
∂F(ti,µ+ b̂i)

∂bi

T

ΛT
i Λi

∂F(ti,µ+ b̂i)

∂bi

+ ∆T∆. (18)

In practice, ∂2F(ti,µ+b̂i)

∂bi∂bT
i

ΛT
i Λi(Ỹi − F(ti,µ + b̂i)) can

be neglected if the model F(·, ·) is close enough to the
experiment Ỹi [43]. The term ∂F(µ,ti,b̂i)

∂bi
is evaluated

using a finite difference scheme. As a result, the negative
log-likelihood is finally expressed as

See equation (19) next page
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− ln(L(Ψ)) = −
n∑
i=1

ln (Li(Ψ)) = −
n∑
i=1

ln

(∫
Rd

f(Ỹi|θi,Π, Ω̃i)fΘ|Π(θi|Π)dθi

)

≈
n∑
i=1

(
1

2
ln(|H(gi)(b̂i)|) +

gi(µ,∆,Λi, Ỹi, b̂i)

2
+

1

2
ln(|Ω̃i|(2π)mNi)

)
+
n

2
ln(|Σ|) .

(19)

2.5 Individual parameters estimation

The mixed-effects model also allows to infer the indi-
vidual parameters. With the Laplace method, individual
parameters are by-products of the likelihood function cal-
culation given Ψ. Once Ψ is chosen, the random effects
bi are estimated by looking for the dominating contribu-
tion in the individual likelihood Li (Eq. (16)) through the
minimization of function gi(·) (Eq. (17))

b̂i = arg min
bi∈Γb

gi(µ,∆,Λi, Ỹi,bi) , (20)

with Γb the domain definition for the individual devia-
tions. The individual deviations are then simply computed
as θi = µ+ bi.

The determination of the individual parameters is a
key step to ensure a proper likelihood maximization and
should not be neglected. To explain its importance, it
should be underlined that mixed-effects aim to tune the
population parameters (Π) in order to find the best
possible agreement between the assumed model param-
eters distribution (fΘ|Π) and the empirical distribution
of the individual parameters. Thus, the observation data
should provide enough information to accurately estimate
the individual parameters. In particular, the material
constitutive model should be appropriately chosen with
respect to the observations and not present imperfections
(e.g., not over-parametrized). Otherwise, if the individ-
ual parameters cannot be learnt with sufficient precision,
the regularization term (fΘ|Π(θi|Π) in equation (10) or
‖∆bi‖2 in function gi(·) in equation (17)) will coerce them
to the mean value and thus flaw the estimation of the
standard-deviations and correlations parameters. In fact,
generally, it appears that to ensure a proper estimation
of a given marginal of fΘ|Π, the corresponding parameter
should be properly estimated over the different individu-
als, and the same occurs for the parameters involved in a
dependency relation.

2.6 Likelihood maximization estimate

Now that the expression of the likelihood for a mixed-
effects model has been established, the model param-
eters can be identified by minimizing the negative
log-likelihood,

Ψ̂ = arg min
Ψ∈ΓΨ

− ln(L(Ψ)), (21)

with ΓΨ the research space for Ψ. Remember that, as
computing the likelihood is numerically challenging, the
Laplace approximation of the likelihood is used instead in
the optimization process. To solve the minimization prob-
lem (Eq. (21)), the first possibility would be to rely on
gradient-based algorithms, which need either the gradi-
ent or an approximation of the gradient of the objective
function. Here, the gradient of − ln(L(Ψ)) expressed with
equation (19) with respect to Ψ is difficult to com-
pute analytically. Indeed, the differentiation with respect
to the population parameters of function gi(·) requires
to differentiate the individual deviations bi defined in
equation (20) with respect to the population parame-
ters (i.e., µ and Σ via ∆). Moreover, the log-likelihood
function often presents numerous local minima that also
makes the optimization task by gradient-based algorithms
complicated.

A second possibility is to use gradient-free optimiza-
tion algorithms, and in particular evolutionary algorithms.
Though they require many likelihood estimations, they
exhibit a greater ability to reach the global maximum
of the likelihood, Ψ̂, despite the possible presence of
local minima. The algorithm chosen here is the Covari-
ance Matrix Adapatation Evolution Strategy (CMA-ES)
algorithm [44]. Given that a multivariate Gaussian dis-
tribution of dimension d (d stands for the number of
parameters to be calibrated) is parametrized by at least d
means and d variance parameters, and that mixed-effects
models allow to estimate the variance of the discrepancy
term, there is always at least 2d+1 parameters to estimate
in equation (21) and thus, the dimension of Ψ labeled
p complies with p > 2d + 1. The complete principle of
mixed-effects calibration that starts with the population
modeling and ends with the individual estimation step is
depicted in Figure 3.

3 Sequential calibration process

Advanced mechanical constitutive models characterize
different aspects of the behavior of the material they
describe, among which elasticity, viscoelasticity behavior,
damage, etc. Each of these phenomena may be described
by its own set of model parameters, which finally makes
the number of parameters to be calibrated large (21 for
the 3 − d anisotropic elastic model for instance [25]).
Consequently, a common practice [45,46] in classical cal-
ibration consists in dividing the full calibration problem
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Choice of the Pop-
ulation modeling

(Eq. (14b))

Choice of the
constitutive
model F(·, ·)

Choice of the Indi-
vidual modeling

(Eqs. (14a), (14c))

Maximization of the
likelihood (Eq. (11))

Candidate Ψ

Estimation of the individual
parameters (Eq.(20)) via

minimization of function gi(·)

Laplace approximation of
the likelihood (Eq. (19))

Calibrated Ψ

Convergence ?
no

yes

Fig. 3. Recap of the mixed-effects calibration procedure. Modeling stages are highlighted in red, those that concern the calibration
itself are highlighted in blue.

into calibration subproblems that allow to identify dif-
ferent subsets of the complete parameters vector [47,48].
In these works, the different subproblems are associated
with a specific part of the model parameters. The meth-
ods consist in solving a sequence of calibration problems
taking advantage in each step of the knowledge acquired
so far. To be more precise, for a given step, in a frequen-
tist framework, the coefficients calibrated in the previous
steps are either taken as fixed inputs or severely bounded.
In a Bayesian fashion, the identified posterior probability
density of one step becomes a prior density for the next
stages [49,50].

The sequential approach requires to define a sequence
of calibration subproblems, which must be performed
carefully. Indeed, as each step depends on the previous
ones, an error at one step may flaw the whole calibration
process. In some cases, the decomposition in subproblems
can be rather easy to perform with the help of expert
knowledge [47,48]. For example, Jung et al. [47] choose
to separate the model parameters between those that

describe the electrical and mechanical behaviors of an
energy harvester. Yet, in some cases, such a decomposi-
tion is not available. Consequently, to avoid an arbitrary
choice, another option consists in relying on a statistical
criterion. For instance, given the available experiences,
it can be decided to select the parameters to which the
model output is sensitive following the analysis of the
rank of the Fisher Information Matrix (FIM, the Hessian
matrix of the log-likelihood) [51]. This takes advantage
of the fact that, for classical calibration problems,
assuming a Gaussian discrepancy ξ in equation (1) makes
the negative log-likelihood equivalent to least squares,
allowing to compute the Fisher Information Matrix from
the derivative of the material constitutive model with
respect to the model parameters.

The principal limitation of the previous studies is
that the statistical modeling developed do not consider
the inherent variability of the individuals on which the
experiments are performed (and thus do not require the
population modeling). On the contrary, in this paper, the
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calibration is carried out in the context of the population
approaches, which complicates the modeling and the esti-
mation procedure. This paper aims to adapt the sequential
calibration strategy to the mixed-effects models. Remem-
ber that the objective of the mixed-effects framework
is to characterize the material variability observed on a
population of individuals modeled by the model parame-
ters distribution. According to Sklar’s theorem [52], there
exists a unique decomposition of any probability density
function (PDF) between marginals and copula. Applied
to the model parameters distribution fΘ|Π, it gives :

fΘ|Π(θi|Π) = c(F1(θi1|Π1), . . . , Fd(θid|Πd)|Πcop)

×
d∏
l=1

fl(θil|Πl) , (22)

with Πcop the copula parameters, Πl the parameters of
the lth marginal of distribution fΘ|Π (so the marginal
marginal distribution of θil, (i, l) ∈ J1, nK × J1, dK) with
probability density function fl(·) and cumulative density
function Fl(·) and c(·), the density function of the copula
(Gaussian in this paper). In a case where all parameters
are independent (the copula density is constant equal to
one), following equation (22), it is possible to calibrate
separately the marginals of the relevant parameters for
each type of experiments. Note that in the presented pro-
cedure, the parameters whose dependencies cannot be
estimated (because they do not act simultaneously on
the same test) are set as independent. Furthermore, the
Gaussian copula (chosen in this paper) is compatible with
a sequential scheme. Indeed, remember a Gaussian copula
is parameterized by a correlation matrix which is symmet-
ric positive-definite. Sylvester’s criterion [53] states that
if the determinant of the sub-matrices extracted from the
full correlation matrix by deleting a row and the sym-
metric column is strictly positive, then the full correlation
matrix remains positive-definite. This condition is full-
filled if these sub-matrices are positive-definite. Then, it
is possible to sequentially estimate a Gaussian copula,
allowing, along with the estimation of the corresponding
marginals, a sequential calibration of fΘ|Π. The sequential
calibration process consists in defining a sequence of sub-
sets of indices Sq ⊂ J1, dK corresponding to the parameters
to which the model parameters is sensitive (determined for
instance from the FIM) defining the marginals and corre-
lations parameters Πq to be calibrated at step q, leading
to the definition of a specific likelihood function Lq. Note
that these subsets are not necessarily disjoint. In practice,
it is not likely that all parameters will be sensitive enough
to be propely estimated with standard experiments. Thus,
it can be considered that in each step, the joint distribu-
tion of a part of the model parameters will be estimated,
reducing the number of population parameters to cali-
brate at each step. Once these parameters are estimated,
a trust region Rq is defined. If some of the parameters
of the qth step are re-estimated, they are limited to their
trust region Rq (this choice is discussed further below).
This allows to ease the overall likelihood optimization as
it focuses on a specific regions of the parameter space,

but also enables to make sure that the calibrated dis-
tribution remains consistent with the data used in the
previous stages. The definition of the sequence of calibra-
tion relies on the observation that the identification of a
given marginal requires the model output to be sensitive
enough to the corresponding parameters. This allows to
design relevant experiments to estimate properly the PDF
of interest. Figure 4 sums up the different stages of the
method.

The choice of the trust region to which the parame-
ters are limited is a key feature of the process. In theory,
it should illustrate the trust we have in the estimated
parameters and allow to keep some consistency between
the population parameters estimates throughout the dif-
ferent steps. From a numerical point of view, the trust
regions ease the negative log-likelihood minimization as
the search space in which the population parameters are
refined at step q should be close to the Maximum like-
lihood Estimate (MLE) of step q − 1. Nevertheless, as
likelihood functions may present local optima, one draw-
back of this method is that the search space can be
reduced around a local optimum from which it can be
hard to escape, making the minimization of the negative
log-likelihood more prone to local convergence than in
usual cases.

Several options can be explored to choose the trust
region. The easiest one is an hypercube centered on the
population parameters that have already been estimated.
For instance, from step q − 1 to q, it would correspond to
[αΠl,1, βΠl,1]× · · · × [αΠl,q−1, βΠl,q−1] for the parameters
l ∈ J1, sq−1K, with α and β indicating the size of the inter-
val, sq−1 the number of common parameters from step
q − 1 to q and [Πl,q−1]l∈J1,sq−1K the corresponding coordi-
nates. Note that the size of the intervals α and β can also
depend on the step q and be different for each coordinate.
Most of the time, α will be strictly smaller than β, mean-
ing that the [Πl,q−1]l∈J1,sq−1K can be updated. Still, they
can be set equal, which is tantamount to fixing the pop-
ulation parameters to their current estimate. If this trust
regions management is easy to implement in practice, its
main drawback is that it is arbitrary as it defines a range
of variation which does not necessarily reflect the level of
uncertainty of the population estimates.

A more appropriate choice for tuning this trust region
would be a confidence interval, given either by the asymp-
totic theory or by bootstrap [8,32]. These proposals are
relevant as they quantify the uncertainty on the popu-
lation parameters that comes from the lack of data in
addition to other sources of errors. Thus, they seem to
be the most appropriate candidates for the trust region.
However, these confidence interval techniques suffer from
several limitations that make them difficult to use in prac-
tice. Indeed, aside from their respective issues discussed
later, both of them are based on asymptotic assump-
tions, that is to say when the number of individuals
increases to infinity. Of course, the asymptotic regime
is not achievable because for times and costs consider-
ations, and in practice, few (below 100) individuals are
available. Thus, the intervals that reflect the uncertainty
could be wider than expected, limiting the interest of a
sequential approach based on a limitation of the search
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Fig. 4. Different stages of the calibration process. Once the sequence of calibration problems to resolve is defined, the calibration
process starts. At each iteration, the search space is defined depending on whether parameters have already been calibrated to
preserve consistency between the different steps. Calibration stages are highlighted in red and those concerning the determination
of the search space are highlighted in blue. At each iteration, uq refers to the integer labeling the subgroup of parameters that will
be re-estimated in the current iteration. NG refers to the number of calibration subproblems. The process stops when all calibration
subproblems are solved.

space. Furthermore, both techniques suffer from their own
drawbacks. For instance, the asymptotic theory is based
on the Fisher Information Matrix that is the expectation
with respect to the population parameters of the second-
order derivative of the log-likelihood. Its evaluation is
difficult and demands appropriate estimation techniques
[54,55]. The observed FIM, in fact the second-order deriva-
tive of the log-likelihood with respect to Ψ is easier to
estimate but less accurate, which is a key feature given
that the trust region is described by a covariance matrix
computed as the inverse of the FIM, leading to possible
numerical issues. Bootstrap does not suffer form this limi-
tation as, from the bootstrap samples, confidence intervals
can be estimated straightforwardly, without the need of
any approximation. Yet, the accuracy of the estimations
requires as much samples as possible, which is synonymous
a heavy computational burden because the each sample is
the result of a likelihood maximization. Finally, note that
both of these methods remain arbitrary to some extent
as it is necessary to define the levels of confidence that
defines the size of the trust region.

Consequently, for this first implementation, the cho-
sen trust region is the first proposed, that is to say
defined from arbitrary intervals centered on the popula-
tion estimates with α = 0.8 and β = 1.2 (the boundaries
correspond to ±20% around the calibrated values). Such a
range should allow to make a compromise between explo-
ration and intensification for the maximization of the
likelihood. It was determined here by trial and error. Such
settings should be considered as hyper-parameters of the
method and ought to be carefully chosen.

4 Applications

This section presents the application of the consid-
ered sequential calibration to the identification of an
orthotropic non linear elastic model. After a brief descrip-
tion of the model in Section 4.1, the applied sequential
strategy is exposed in Section 4.2 before describing
the assessment protocol of the proposed method in
Section 4.3. The objective is to validate the model on
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Fig. 5. Illustration of the role of the model parameters. The solid line indicates the model output, the blue dashed lines the
asymptotes and the green dashed line the tangent at the origin. Exponent T stands for tension load and C for compressive load.

synthetic data first to study the consequences of such a
methodology in Section 4.5.

4.1 Presenting the elastic model

This section aims to present the orthotropic elastic behav-
ior of an elementary unidirectional (UD) ply in plane
stress [25]. Let us note σ := (σ11, σ22, σ12) the Cauchy
stress (in MPa) and ε := (ε11, ε22, 2ε12) the observed
strain dimensionless within the material frame character-
ized by the orthogonal frame (1, 2, 3). Axis 1 represents
the fiber direction, axis 2 represents the matrix direction.
The orthotropic elastic model can be written (using the
Voigt notation [25]) in the material axes:(

ε11

ε22

2ε12

)
= S

(
σ11

σ22

σ12

)
=

(
S11 S21 0
S12 S22 0
0 0 S66

)(
σ11

σ22

σ12

)
, (23)

with S the compliance tensor. S is a symmetric tensor so
S12 = S21. For practical interpretations, the coefficients of
the compliance tensor can be related to the elastic moduli,
that is to say the longitudinal modulus E11, the transverse
modulus E22, the shear modulus G12 and the Poisson’s
ratio ν12 [25].

The model presented above is elastic linear and can be
used either in tension and compression. Yet, it has been
observed that for some materials, in tension, 0◦ degree
laminate tends to stiffen, while in compression, 0◦ degree
laminate tend to soften [56]. This is the consequence of the
fiber behavior. Indeed, when produced, the fibers are not
always properly aligned and when loaded in tension, fibers
get aligned increasing the stiffness, while in compression,
the initial defaults are increased and tend to soften the
material. Thus, the apparent modulus increases (non lin-
early) throughout the tension experiments and conversely
on the compression experiments. Thus, the longitudinal
compliance S11 is changed and expresses as follows:

SL11 = SL1 +
(S0

11 − SL1 )εL0
(S0

11 − SL1 )σ11 + εL0
, (24)

with S0
11 the elastic linear compliance (module at the ori-

gin), SL1 the asymptotic compliance and εL0 the abscissa of
the intercept between the abscissa axis of the asymptotic

curve. The symbol L indicates whether tension (T ) or
compression (C) is considered. The transverse compliance
SL12 should also be updated and refers to SL12 := −ν12S

L
11.

Figure 5 details the role of the different parameters.
As the compliance of the material decreases in ten-

sion and increases in compression, the parameters should
comply with ST1 < S0

11 and SC1 > S0
11. With this param-

eterization, the model is not identifiable. In fact, it is
over-parameterized, i.e. there are several combinations of
both SL1 and εL0 that give the same output as shown by
Germain [57]. Thus, εL0 fixed to a usual nominal value,
here 0.005 [57]. Finally, there are 6 parameters to be
calibrated ST1 , SC1 , S0

11, S22, ν12 and S66.
In theory, the compliance matrix S should be positive-

definite [25] To enforce this property on the individual
compliance tensor, two requirements have to be met: the
strict positivity of S66 and the positive-definiteness of the
submatrix containing all other compliances (this is in fact
the application of the Sylvester criterion [53]). The first
point is easy to check but the second one deserves more
attention. Indeed, it can only be guaranteed if all the
involved compliances can be calibrated on the same spec-
imen. In that case, it is possible to enforce such property
by implementing constraints between the compliances or
by decomposing the compliance matrix with a relevant
factorization (e.g., Cholesky, spherical decomposition).
However, none of these solutions is fully satisfactory as
they either increase the difficulty of the auxiliary mini-
mizations or use parameters that are difficult to interpret
from a physical point of view. In any other case, for
most calibration methods, it is not possible to guarantee
positive-definitness of the compliance matrix in a sim-
ple way, because, on a given specimen, all parameters
of interest are not available. A more convenient way to
proceed, chosen in this paper, consists in calibrating the
elastic behavior without accounting to this constraint and
to discard the realizations of matrices that are not definite
positive in a subsequent.

4.2 Application of the proposed sequential strategy

Given the modeling choices, the model parameters
distribution is described by 27 parameters, namely
6 mean parameters, 6 variance parameters and 15
covariance parameters. The distribution parameters
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Σ =



S0
11 ST

1 SC
1 ν12 S22 S66

S0
11 V(S0

11) ∗ ∗ ∗ ∗ ∗
ST
1 Cov(S0

11, S
T
1 ) V(ST

1 ) ∗ ∗ ∗ ∗
SC
1 Cov(S0

11, S
C
1 ) Cov(ST

1 , S
C
1 ) V(SC

1 ) ∗ ∗ ∗
ν12 Cov(S0

11, ν12) Cov(ST
1 , ν12) Cov(SC

1 , ν12) V(ν12) ∗ ∗
S22 Cov(S0

11, S22) Cov(ST
1 , S22) Cov(SC

1 , S22) Cov(S22, ν12) V(S22) ∗
S66 Cov(S0

11, S66) Cov(ST
1 , S66) Cov(SC

1 , S66) Cov(ν12, S66) Cov(S22, S66) V(S66)


(25)

can be summed up into a mean vector µ =(
µS0

11
µST

1
µSC

1
µν12 µS22

µS66

)> and covariance
matrix

See equation (25) above

where the ∗ stands for the symmetric coefficient of the
covariance matrix.

To identify the elastic constants, a usual practice is
to rely on tests on unidirectional 0◦, 90◦ and ±45◦ lam-
inates [25,58,59]. Indeed, from a physical point of view,
S0

11, S
T
1 , S

C
1 and ν12 characterize the fiber behavior and

are almost exclusively monitor the 0◦ laminate. Simi-
larly, the linear part of the longitudinal response of a
tension/compression test on a 90◦ laminate is mainly con-
trolled by S22, the same applies for the linear part of
the difference between the longitudinal and transverse
responses for the ±45◦ laminate, mostly driven by S66

[25,58,59]. Remember that, with mixed-effects, to estimate
properly a given marginal, the corresponding parame-
ters should be accurately estimated over the different
identified individuals, and the same occurs for the param-
eters involved in statistical dependency relation. Thus,
from the analyses made earlier, the correlations between
S0

11, S
T
1 , S

C
1 , ν12 and S22 cannot be estimated with the

usual elementary experiments, and the same applies to
those between S0

11, S
T
1 , S

C
1 , ν12 and S66 or between S22

and S66. In fact, from these elementary experiments, only
the joint distribution of S0

11, S
T
1 , S

C
1 , ν12 and the marginals

of S66 and S22 can be estimated, which gives three distri-
butions to calibrate (in addition to the residual models).
This makes 18 population parameters (14 for the joint
distribution of S0

11, S
T
1 , S

C
1 , ν12, and 2 for both marginals

of S22 and S66) to estimate.
From this assessment, two solutions arise. On the

one hand, it is possible to calibrate all the experiments
together by making sure that for each individual, only the
relevant individual parameters are calibrated. This can
be done through equation (8) by choosing relevant design
matrices Ai and Bi. For instance, with the mean vec-
tor defined earlier, one possible choice would be Ai = Bi

equal to the identity matrix of dimension 6 to which
the two last rows would be deleted (and Ai would have
thus 4 rows with 6 columns) for the UD0◦ experiments,
Ai = Bi = (0, 0, 0, 0, 1, 0)> for the 90◦ experiments and
Ai = Bi = (0, 0, 0, 0, 0, 1)> for the ±45◦ experiments. Yet,
to ease the calibration process, as the parameters that
describe the behavior of the 0◦ laminates do not express

on the behavior of the 90◦ laminates and similarly between
the other laminates, it is possible to identify the joint dis-
tribution of S0

11, S
T
1 , S

C
1 , ν12 and the two other marginals

independently from the others (which thus do not require
to use design matrix). If the estimation of these distri-
butions is carried out separately, this can be considered
as a first application of the sequential strategy in an
extreme case, given that between the three cases, there
are not shared parameters, and the calibration of the
three distributions can thus be achieved independently.
The calibration of the marginals of S66 and S22 are car-
ried out from experiments with univariate observations
that exhibit a linear behavior. Thus, these cases only refer
to univariate linear mixed-effects models, that is to say the
simplest case that can be found and extensively discussed
in [7,8,32]. Consequently, the study is here focused on the
calibration of the joint distribution of S0

11, S
T
1 , S

C
1 and ν12.

One first remark that can be made is that SC1 only
expresses when compressive loads are applied to the sam-
ple, and ST1 only expresses when tension loads are applied.
Thus, from the elementary tests, there is no configuration
in which they are activated simultaneously, and thus the
correlation between them cannot be estimated. Therefore,
contrary to the above comments, the joint distribution of
S0

11, S
T
1 , S

C
1 and ν12 is parameterized by 13 and not 14

population parameters. S0
11 and ν12 are activated both

in tension and compression. Note that ν12 only expresses
on the transverse responses, either in tension and com-
pression. Here, there are shared parameters for two types
of experiments, S0

11 and ν12. Design matrices apply here.
For instance, for the tension experiments, matrices Ai and
Bi would correspond to the identity matrix of dimension
4 to which is deleted the third row (so both have 3 rows
and 4 columns) and for the compression experiments, they
could be taken as the identity matrix of dimension 4 to
which is deleted the third row (so both have 3 rows and
4 columns). The interest of this test case is that it also
allows to illustrate the sequential strategy. In particular,
it enables to compare the accuracy of the calibration from
the sequential strategy to the solution that implements
design matrices. For 0◦ UD laminate, let consider a ten-
sion load σ = (σ11, 0, 0) with σ11 > 0. Then, following
equation (23), the model output is determined by S0

11, S
T
1

and ν12. It is thus possible to calibrate the parameters
highlighted in red in equation (26):

See equation (26) next page
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µ =


µS0

11

µSC
1

µST
1

µν12

 Σ =


S0

11 SC1 ST1 ν12

S0
11 V(S0

11) ∗ ∗ ∗
SC1 Cov(SC1 , S

0
11) V(SC1 ) ∗ ∗

ST1 Cov(ST1 , S
0
11) 0 V(ST1 ) ∗

ν12 Cov(ν12, S
0
11) Cov(ν12, S

C
1 ) Cov(ν12, S

T
1 ) V(ν12)

. (26)

µ =


µS0

11

µSC
1

µST
1

µν12

 Σ =


S0

11 SC1 ST1 ν12

S0
11 V(S0

11) ∗ ∗ ∗
SC1 Cov(SC1 , S

0
11) V(SC1 ) ∗ ∗

ST1 Cov(ST1 , S
0
11) 0 V(ST1 ) ∗

ν12 Cov(ν12, S
0
11) Cov(ν12, S

C
1 ) Cov(ν12, S

T
1 ) V(ν12)

. (27)

This allows to estimate a first trust region: R1. Let’s
now consider a compressive load σ = (σ11, 0, 0) with
σ11 < 0. Then, following equation (23), the model output
is determined by S0

11, S
C
1 and ν12. The application of pre-

vious remarks shows that it is possible to calibrate the
parameters highlighted in blue in equation (26):

See equation (27) above

Note that µS0
11
, µν12 ,V(S0

11), Cov(S0
11, ν12) and V(ν12)

are limited to their trust region R1 in the second step.
All the distribution parameters of the model are now esti-
mated through these two steps. From this point, it could
be decided to restart the calibration with the tension
experiments to refine the estimation of the joint distri-
bution of S0

11, S
T
1 and ν12 by limiting the parameters of

the joint distribution of S0
11, ν12 to trust region R2 (deter-

mined from parameters calibrated in the second phase)
and the others to another that would be based on the cal-
ibration in the first phase. This would be repeated upon
reaching convergence (that should be defined), as in a
fixed point problem. This first difficulty is to define con-
vergence (at the level of the population parameters, of the
calibrated distributions, etc.). This is of prime importance
because a stationary behavior could only be met for some
convergence criteria, and nothing guarantees that only
few iterations would be enough, increasing the computa-
tional costs. Still, note that this paper is focused on the
sequential strategy, leaving the description and the gen-
eralization of the sequential strategy with a fixed-point
approach to future investigations. The application of the
sequential strategy has only been presented in one way,
starting with the tension experiments and ending with
the compression experiments. Yet, there is no particular
justification to such a choice. Consequently, it is here nec-
essary to carry out the sequential strategy in both ways,
that is to say starting with the tension experiments and
ending with the compression experiments and then start-
ing with the compression experiments and ending with
the tension experiments.

One of the main advantage of the sequential approach is
to reduce the maximum number of parameters to estimate

compared to the classical method using design matrices.
For instance, the calibration of the nonlinear elasticity
(that is to say the joint distribution of S0

11, S
T
1 , S

C
1 , ν12, S22

and S66 parameterized by 17 parameters with a depen-
dence structure and 12 without) is divided with a
sequential scheme into subproblems with at most 9 param-
eters with a dependence structure and 6 without. This
reduction can illustrated further if another component is
added, for instance the viscoelasticity behavior as in the
ONERA Progressive Failure Model (OPFM) [56]. This
component adds 6 new parameters and can be calibrated
from both 90◦ and ±45◦ laminates (in which also express
the linear compliances S22 and S66). With the same mod-
eling assumptions (Gaussian marginals and copula), the
joint distribution is parameterized with 42 parameters
with a dependence structure (all correlations but two can
be estimated) and 16 without. Implementing a sequential
scheme allows to substitute to these problems two cali-
bration of distributions with respectively 27 parameters
with a dependence structure and 12 without. Note that
this analysis does not take into account the residual mod-
els which is discussed later. Table 1 recaps the number
of population parameters to estimate with the sequen-
tial approach or using design matrices for both elasticity
and viscoelasticity behavior considering a dependence
structure or not.

A first remark that can be made from Table 1 is the
interest to separate the identification of the parameters
between the different phenomena, which can be considered
as an application of the sequential approach. Furthermore,
it shows that the sequential approach allows to limit the
number of population parameters to calibrate for each
phenomena. This is particularly true for the viscoelastic-
ity phase, in which the implementation of the sequential
approach with a dependence structure cuts almost by
half the number of population parameters, even if this
remains difficult to carry out. Table 1 also illustrates that
a dependence modeling inflates the number of population
parameters. This is expected because without dependence
structure, the number of population parameters is in O(d)
while it is in O(d2) if all dependencies are considered,
with d the number of model parameters to estimate. Thus,
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Table 1. For the nonlinear elastic and viscoelastic behavorial law of the OPFM model, number of population param-
eters to be calibrated with design matrices or using the sequential approach considering a dependence structure or
not. The residual models are not taken into account. Note that for the sequential approach, the number of population
parameters refers to highest number of parameters to be estimated in the different stages of the method.

Calibration method
Maximum number of population
parameters to estimate for the 2D
nonlinear elasticity

Maximum number of population
parameters to estimate for the 2D-
viscoelasticity behavior

Design matrices with depen-
dence structure

17 42

Design matrices without
dependence structure 12 16

Sequential approach with
dependence structure 9 27

Sequential approach without
dependence structure 6 12

because of the small number of available individuals, strik-
ing a balance between the complexity of the modeling
and the number of available individuals appears appears
as necessary, provided that the correlation coefficients
demand a large amount of data to be accurately esti-
mated. So far, only the number of distribution parameters
to estimate has been discussed. Yet, with mixed-effects,
the residual model (here the ωis) is also to calibrate.
Here again the implementation of the sequential approach
allows to reduce the number of residual models (and thus
of parameters) to estimate. Indeed, with the sequential
approach, a focus is made on certain types of specimen
(for instance compression experiments) while when with
design matrices, different types of experiments are consid-
ered (tension and compression experiments). Thus, under
the reasonable hypothesis of at least one residual model for
each type of experiments, there are more residual models
(so more parameters) to calibrate when design matrices
are employed than in the different stages of the imple-
mentation of the sequential approach. Consequently, it
appears that the sequential strategy is particularly suited
to reduce the complexity of the minimization problem. It
should be noticed that, in this application of the sequential
strategy, the calibration subproblems have been defined
from the analysis of the available experiments, allowing
to select the parameters of model that would be used
to describe the phenomena of interest.. Furthermore, it
should be emphasized that standard mixed-effects and
the sequential strategy enable to characterize the same
distributions. The only difference between the two meth-
ods is to know whether the full distribution is estimated
straightforwardly or sequentially. The interest of this test
case is that it allows to test the sequential strategy in a
case where it can be compared to its direct counterpart.
The next section describes the tools used to analyze the
results.

4.3 Application of the sequential strategy in the
mixed-effects framework

To test the ability of the proposed methodology to cali-
brate the elastic model with mixed-effects, it is chosen to

calibrate the model with synthetic data. Both the distri-
bution parameters and the individual parameters are are
known to generate the synthetic data and are estimated
with the proposed calibration approach.

A multivariate Gaussian distribution, defined by a mean
vector µexact and a covariance matrix Σexact is chosen to
generate the synthetic data. This set of parameters will
be denoted Πexact in the following. Individual parameters
θi,exact are sampled from this distribution to compute, for
each of these individuals the elastic model outputs εi,exact.
The mixed-effects approach is applied to the synthetic
data and the results obtained are confronted to their exact
counterpart.

The results are first compared at the population level
to ensure that the model parameters distribution is prop-
erly estimated, using the relative error on the distribution
parameters E(Π̂), defined as:

E(Π̂) :=
(
E(Π̂1), . . . , E(Π̂`)

)
with E(Π̂u)

:=
|Πexact,u − Π̂u|

Πexact,u
,∀u ∈ J1, `K, (28)

noting ` the number of distribution parameters and the
KL-divergence [60], KL(fΘ|Πexact , fΘ|Π̂), between the exact
fΘ|Πexact and the estimated distribution fΘ|Π̂:

KL(fΘ|Πexact , fΘ|Π̂)

:=

∫
Rd

fΘ|Πexact(θ) ln

(
fΘ|Πexact(θ)

fΘ|Π̂(θ)

)
dθ.

(29)

In general, it is computed with coarse Monte-Carlo. Yet, if
both the exact and calibrated model parameters distribu-
tion are Gaussian multivariate distribution of dimension d
parameterized by Πexact = [µexact,Σexact] and Π̂ =

[
µ̂, Σ̂

]
respectively, the Kullback-Leibler (KL) divergence can be
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Table 2. Exact values of the parameters distribution.

S0
11 [MPa−1] SC1 [MPa−1] ST1 [MPa−1] ν12 [ ×10−2]

Mean 8.52× 10−6 1.55× 10−5 6.47× 10−6 33.1
Standard-deviation 1.31× 10−7 1.73× 10−6 4.19× 10−7 0.660

estimated in closed form and refers to [61]

KL(fΘ|Πexact , fΘ|Π̂) =
1

2

(
tr(Σ̂

−1
Σexact)

+(µexact − µ̂)>Σ̂
−1

(µexact − µ̂) + ln

(
|Σ̂|
|Σexact|

)
− d

)
.

(30)

The KL-divergence expresses a notion of distance between
two distributions. One interest of such measure is that
it accounts simultaneously for all aspects (marginals and
correlations) when the error on the population parameters
only studies the calibration of one population parameter
at the time. In addition, it is here specifically relevant
as the population parameters are estimated jointly and
the KL-divergence can be understood as a joint measure
of the errors. The adequation between the calibrated and
the synthetic data can also be evaluated for each individ-
ual. To verify that the different individuals are correctly
identified either in terms of calibrated individual parame-
ters θ̂i or estimated output F(ti, θ̂i), the averaged relative
error on the individual parameters e(θ̂1, . . . , θ̂n) is defined
as:

e(θ̂1, . . . , θ̂n) :=
1

n

n∑
i=1

ei(θ̂i)

with ei(θ̂i) =
(
ei(θ̂

1
i ), . . . , ei(θ̂

d
i )
)

ei(θ̂
a
i ) =

|θai,exact − θ̂ai |
θai,exact

∀a ∈ J1, dK,

(31)

and the average error d(θ̂1, . . . , θ̂n) between the exact and
estimated strains for each coordinate

d(θ̂1, . . . , θ̂n) :=
(
d1(θ̂1, . . . , θ̂n), . . . , dm(θ̂1, . . . , θ̂n)

)
with dk(θ̂1, . . . , θ̂n)

:=
1

n

n∑
i=1

1

Ni
‖εki,exact −Fk(ti, θ̂i)‖22 ∀k ∈ J1,mK , (32)

are computed. Furthermore, to account for the specificity
of the sampled individuals, the calibration is repeated
20 times with different individuals generated from the
same joint distribution fΘ|Πexact . The above indicators are
averaged over the repetitions and their dispersion is char-
acterized by the coefficient of variation COV(X) defined

for any non-zero quantity X as COV(X) =

√
V̂ (X)

M̂(X)
with

M̂(X) the empirical mean of X and V̂ (X) its empirical
variance.

Finally, the maximum likelihood estimates (MLE) also
enables to determine the variance of the residual model.
To keep the number of parameters reasonable and ease
the minimization of the log-likelihood, it is decided here to
assign to each individual and measure the same covariance
matrix of the discrepancy term:

∀i ∈ J1, nK, Ωi = Ω.

4.4 Generating virtual data

The exact means and standard-deviations of the param-
eters for the joint distribution fΘ|Πexact are described in
Table 2.

Mean values are consistent with material properties
of composite material with carbon fibers and epoxy
resin such as those described in Laurin [56]. Standard-
deviations of S0

11 and ν12 are chosen to fit with
the values of dispersion given by Rollet [62]. Sev-
eral correlations scenarios are considered: independence
(between SC1 and ST1 ), positive correlation : ρ(S0

11, S
T
1 ) =

0.809, ρ(ν12, S
C
1 ) = 0.730 and negative correlations

ρ(ST1 , ν12) = −0.500, ρ(S0
11, ν12) = −0.741, ρ(SC1 , S

0
11) =

−0.414, noting ρ the correlation. For each of the 20 rep-
etitions, 50 independent identically distributed vectors of
parameters corresponding to 50 virtual individuals are
sampled from fΘ|Πexact to achieve statistical consistency of
the estimators. Note that 50 repetitions in an experimen-
tal context can be considered as much, but with synthetic
data, it eases the analysis of the calibration results.

For each of these samples, given a tension stress that
goes from 0 to 1500 MPa with 32 points regularly spaced
and a compressive load that goes from 0 to −1000 MPa
with 28 points regularly spaced, the corresponding model
outputs (εi,exact)i∈J1,nK are computed. An heteroscedastic
noise is added to the experimental data:

εji,noisy = εji,exact × (1R2 + τζ)

with ζ ∼ N (0R2 , I2) and τ = 0.02, (33)

with 1R2 the unitary vector of R2, 0R2 the zero vector of
R2 and I2 the identity matrix ofM2(R). Yet, in the cali-
bration process, the noise is considered as homoscedastic
for all measures (cf. Eq.(7)) as otherwise, this would make
too much residual models to estimate (up to 2800 in com-
pression and 3200 in tension). Exact and noisy data are
depicted in Figure 6.

4.5 Calibration with synthetic data

This section is dedicated to the presentation of the
calibration results in the mixed-effects framework with
the sequential strategy using synthetic data. First, the
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Fig. 6. Example of a set of 50 synthetic stress-strain curves, without and with added noise (lines and dots, respectively). The
longitudinal (on the left) and transverse responses (on the right) are depicted for both the tension (upper line) and compression
experiments (lower line).
Table 3. Search space for the population parameters.

µS0
11

(10−7MPa−1) µST
1

(10−7MPa−1) µSC
1

(10−7MPa−1) µν12 (10−2)

[10.0, 110.0] [50.0, 130] [60.0, 250] [15.0, 50.0]

σS0
11

(10−7MPa−1) σST
1

(10−7MPa−1) σSC
1

(10−7MPa−1) σν12 (10−2)

[0.500, 4.50] [0.500, 10.0] [5.00, 30.0] [0.100, 3.00]

ωTlong [×10−6] ωTtrans [×10−5] ωClong [×10−5] ωCtrans [×10−5]

[1.00, 10.0] [3.16, 31.6] [1.00, 10.0] [3.16, 31.6]

calibration results with the tension experiments are inves-
tigated to check that the joint distribution of S0

11, ν12

and ST1 is properly estimated in Section 4.5.2. Then, the
results of the second stage, that is to say with the compres-
sion experiments are analyzed to assess the ability of the
sequential procedure to estimate the full joint probability
distribution in Section 4.5.3. Both orders are considered
(tension to compression and then conversely), before being
compared to the straightforward calibration of the full
joint distribution using design matrices in Section 4.5.4.

4.5.1 Numerical settings

The implementation of the code has been carried out in
Python with the NumPy library [63] for matrix calcula-
tion and OpenTURNS library [64] for the probabilistic
modeling.

The global optimization is carried out with the
Covariance-Matrix-Adaptation-Evolution-Strategy [44].
The optimization variables are normalized between the
0 and 1. The bounds on the population parameters
are reported in Table 3. They are determined in two
stages. First, the individual parameters are estimated,
from which empirical means and standard-deviations are
computed. They are used to deduce upper and lower
bounds. Note that these bounds can be adapted if deemed

necessary when optimization variables hit either upper
or lower bounds. The parameters for the correlations
are bounded between 0 and π. These mathematical
bounds cannot be changed to ensure the positive-definite
character of the correlation matrix. Those on the variance
of the residual models are determined by trial-error. The
initialization point is taken as 0.65 × 1Rp with p the
dimension of Ψ. The population suggested by [44] corre-
sponds to 4 + 3 ln(p) (the upper rounded value is chosen).
The maximum number of iterations is set to 400 to carry
out the global optimization and appears to be sufficient
in the numerical simulations. The tolerance criterion for
the negative log-likelihood is 10−6 and the same for the
criterion is chosen for the optimization variable.

The auxiliary optimization to identify the individual
parameters is the Nelder-Mead algorithm in NLopt library
[65]. One of its main advantage is that it is derivative free
and thus more robust than gradient descent as it does not
require any gradient or Hessian approximation, and it does
not require the same number of model evaluations than
evolutionary that are computationally intensive. To avoid
local minimas, a multi-start version of the algorithm is
chosen. 50 initialization points are considered, whose one
correspond to the mean vector which is the most probable
value for the individual parameters. The 49 others are
determined from a Latin Hypercube Sampling (without
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Table 4. Averaged calibrated mean, standard-deviations and correlations Π1,mean and averaged error Emean(Π̂1) over
20 repetitions of the calibration process with samples of 50 individuals each. The coefficients of variation COV in %
are indicated between brackets.

S0
11 [×10−6MPa−1] ν12 [×10−2] ST1 [×10−6MPa−1]

Exact Means 85.2 33.1 64.7
Averaged Calibrated Means 85.3(0.305) 33.1(0.362) 64.8(0.872)
Averaged Errors
On Calibrated Means (%) 0.249(73.1) 0.306(64.9) 0.738(68.7)

Exact Standard-Deviations 1.31 0.660 4.19
Averaged Calibrated Stan-
dard Deviations

1.19(21.5) 0.672(11.7) 4.08(9.33)

Averaged Errors On Calibrated
Standard-Deviations (%) 18.1(65.9) 8.31(105) 7.82(68.5)

Correlations ρ(S0
11, ν12) ρ(S0

11, S
T
1 ) ρ(ST1 , ν12)

Exact Correlations −0.741 −0.500 0.809
Averaged Calibrated
Correlations −0.676(23.4) −0.450(24.8) 0.851(16.3)

Averaged Errors On Calibrated
Correlations (%) 17.9(81.4) 18.8(83.0) 15.9(53.3)

random shuffle) available in OpenTURNS [64], and like
for the global optimization, the variables are normalized
between 0 and 1. The individual parameters are bounded
between [0.3µ, 1.7µ].

4.5.2 Calibration of the joint distribution of S0
11, S

T
1 and

ν12

Given the modeling assumptions described in Sections 4.2
and 4.5, there are p = 11 parameters to be calibrated in
this first step corresponding to the tension/compression
step: 3 mean parameters, 3 standard-deviation param-
eters, 3 correlation parameters and 2 parameters for
the residual model. The calibration of the dependence
structure is achieved implementing a spherical parameter-
ization of the Cholesky decomposition of the covariance
matrix [66]. This technique has multiple advantages,
notably the guarantee to provide a positive-definite matrix
for Σ without adding constraints to the optimization algo-
rithm. Another interest is that the optimization variables
are easy to bound, contrary to those that appear in the
Cholesky decomposition, which is helpful when defining
the trust regions.

To start the analysis result, the estimation of the
calibrated means, standard-deviations and correlations
reported in Table 4 can be discussed.

These results indicate that all the mean parameters
are properly calibrated as the average relative error
remains below 1% in average over all the repetitions.
The standard-deviation parameters and the correlations
are not estimated with the same accuracy, which can be
understood as they require more samples to converge to
their exact values. Still, the standard-deviations of both
ST1 and ν12 similarly to the correlation between them
are estimated with acceptable level of errors (at most
15% in average). It is interesting to notice that even if
50 repetitions of experiments can be considered as a lot
in a mechanical context, it remains relatively few in a
statistical context as some repetitions reach high levels

of error for the population parameters, as indicate the
COVs.Remark that all population parameters linked to
S0

11 except its mean exhibit higher level of errors than
the others. This suggests a poorer calibration of the cor-
responding individual parameters. To explain this point,
remember that S0

11 mainly expresses at the beginning of
the strain-stress curve, where the residuals have the lowest
values, while ST1 expresses at the end of the experiment,
for the highest residual values. Thus, function gi(·) defined
in equation (17) is necessarily more sensitive to the latter
parameter than to S0

11 that can be flawed with more error.
Studying the correlations, the higher (in absolute value)
the exact correlation, the more accurate the estimation.
This is not surprising if remembering that correlations can
be understood as constraints between the model param-
eters. The higher (in absolute value) it is, the more it
coerces the individual parameters to follow a given pat-
tern which makes the likelihood function sensitive to it,
allowing to provide an accurate estimation. Globally, the
calibration gives estimation of the joint distribution of
S0

11, S
T
1 and ν12 that can be considered as rather accurate

provided the difficulties coming from the concentration of
the linear compliance around its mean.

To check the consistency of the calibration, it is manda-
tory to study the calibration of the individual parameters
as they influence the determination of the population
parameters. Table 5 reports the error on the individual
parameters as well as the error on strain outputs. It also
contains the measure of the spread of each model param-
eter labeled ςexact (instead of the empirical COV), that

is to say ςexact :=

√
diag(Σexact)

µexact
with µexact and Σexact the

exact mean vector and covariance matrix. It measures
how much each parameter is concentrated around its mean
values. In fact, it is a coefficient of variation that is here
renamed, to prevent confusions with the empirical coeffi-
cient of the averaged relative errors (denoted COV), that
also measures the concentration around their mean value
for several quantities that are different from θ.
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Table 5. Relative errors on the estimation of the individual parameters e(θ̂1, . . . , θ̂n) averaged over 20 repetitions of
the calibration process with 50 individual along with the spread ςexact. The corresponding coefficients of variation in
% are indicated between brackets.

S0
11 [×10−6MPa−1] ν12 [×10−2] ST1 [×10−6MPa−1]

Relative error (%) 0.616(41.0) 0.613(57.4) 1.6(135)
Spread ςexact (%) 1.53 2.00 6.48

Table 6. Error in model space d(θ̂1, . . . , θ̂n) for each strain component.

Strain Component ε11 ε22

Order of magnitude of the mean strain value 10−3 10−3

Distance in model space 8.67× 10−9 8.66× 10−10

In Tables 5 and 6, the individual parameters are, in
average, always properly estimated with a maximum error
of at most 1.6% for each parameter. This a key feature
as a poor calibration of the individual parameters would
prevent a proper estimation of the joint distribution of
the model parameters. Furthermore, in model space, the
square root of the model error reaches about 10−5 for
both strain component, that can be considered low com-
pared to the strain values that are above 10−3 for most
of the experiments. This confirms the good calibration
of the experiments in average for all repetitions. It has
been stated earlier that the linear compliance was not esti-
mated as accurately as it could be because the residual of
the nonlinear part outweight those of the linear behav-
ior monitored by S0

11. Yet, this statement seems to be in
contradiction with the level of error. Meanwhile, a com-
parison to the exact spread values ςexact can bring some
elements of justification. Indeed, this variable is the most
concentrated around its mean value, especially compared
to ST1 . Thus, within [µS0

11
− 3σS0

11
, µS0

11
+ 3σS0

11
], (the 99%

credible interval for Gaussian distributed variables), most
of the parameters will give the same model error, which
makes them difficult to identify exactly. This effect has
a small impact on the mean parameter because it is a
position parameter and the same interval of linear com-
pliances is always targeted. However, this gets different
for the standard-deviation which indicates the dispersion
of the model parameters and depends on the position of
the individual parameters with respect to the mean value,
making it more sensitive to estimation errors. Still, despite
of the limitations highlighted here, these different indica-
tors allow to validate the calibration of joint distribution
of S0

11, S
T
1 and ν12 either at the population or individual

levels. Consequently, the first stage of the methodology is
completed.

4.5.3 Calibration of the joint distribution of S0
11, S

C
1 and

ν12

In the second stage of the methodology, the objective is
to identify the joint distribution of S0

11, S
C
1 and ν12. Fur-

thermore, the parameters of the joint distribution of ν12

and S0
11: µν12 , µS0

11
,V(ν12),V(S0

11) and ρ(ν12, S
0
11), already

estimated in the previous step, will be limited to a trust

region corresponding to R1 = [0.8Π1, 1.2Π1]. Consider-
ing 20% of variation both enables a small exploration
around the calibrated value of Π1 and to remain concen-
trated around them. To bound the correlation parameter,
ρ(ν12, S

0
11), a spherical decomposition of the covariance

matrix is used [66]. The number of population parame-
ters to estimate remains the same (11), with six of them
limited to R1.

First, one can notice that the distribution parameters
involving SC1 (not calibrated in step 1) are well esti-
mated. Indeed, the average relative error on the marginal
parameters is, over all the repetitions, below 10%. The
correlation coefficients show larger level of errors, but it
can be understood as it is rather weak (−0.41) which adds
to the limited number of individuals. Otherwise, the cali-
bration of the population parameters that involve SC1 can
be considered as satisfactory, provided that this parame-
ter is the most dispersed around its mean value (its exact
coefficient of variation is about 10% which makes it more
subjected to estimation errors). It is now possible to focus
on the joint distribution of S0

11 and ν12. From Table 7,
it seems that the estimation on this joint distribution is
downgraded between the two steps. Indeed, except for the
mean parameters, the two standard-deviations appear to
be flawed from their initial estimation (Tab. 4), in par-
ticular for the standard-deviation of S0

11 (the averaged
error increases by 30%). Indeed, both in terms of averaged
values or averaged error on the population parameters.
The correlation between S0

11 and ν12 does not seem to
be much affected and even exhibits a small improvement.
Rather than focusing independently on each parameter,
a more suited way to quantify this alleged degradation is
the Kullback-Leibler (KL) divergence between the exact
joint distribution of S0

11, ν12 (fexact(S
0
11, ν12)) and the cal-

ibrated distribution (fcalibrated(S0
11, ν12)) in the two stages

as depicts Figure 7 for the 20 repetitions. The main inter-
est of such a quantity is that it takes into account all
aspects within the same quantity, which sounds more
appropriate as all parameters were calibrated jointly.

First, one can notice that the distribution parameters
involving SC1 (not calibrated in step 1) are well esti-
mated. Indeed, the average relative error on the marginal
parameters is, over all the repetitions, below 10%. The
correlation coefficients show larger level of errors, but it
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Table 7. Averaged calibrated mean, standard-deviations and correlations Π2,mean and averaged error Emean(Π̂2) over
20 repetitions of the calibration process with samples of 50 individuals each. The coefficients of variation COV in %
are indicated between brackets.

S0
11 [×10−6MPa−1] ν12 [×10−2] SC1 [×10−6MPa−1]

Exact Means 85.2 33.1 155.2
Averaged Calibrated Means 85.4(0.424) 33.1(0.339) 155.4(1.89)

Averaged Errors
On Calibrated Means (%) 0.376(76.5) 0.273(74.6) 1.52(74.0)

Exact Standard-Deviations 1.31 0.660 17.3
Averaged Calibrated Stan-
dard Deviations

1.01(28.6) 0.669(10.5) 17.9(7.93)

Averaged Errors On Calibrated
Standard-Deviations (%) 26.3(67.5) 9.41(54.8) 6.68(84.9)

Correlations ρ(S0
11, ν12) ρ(SC1 , ν12) ρ(S0

11, S
C
1 )

Exact Correlations −0.741 0.729 −0.414
Averaged Calibrated
Correlations −0.726(18.6) 0.713(6.40) −0.354(56.0)

Averaged Errors On Calibrated
Correlations (%) 14.7(74.6) 4.91(90.4) 41.1(69.0)

Fig. 7. KL-divergences of the calibrated and exact joint distribution S0
11 and ν12 for the 20 repetitions in the two stages. Remember

that the KL-divergence expresses a notion of distance between two distributions and the lower is its value, the more accurate the
calibration of fΘ|Π is.

can be understood as it is rather weak (−0.41) which adds
to the limited number of individuals. Otherwise, the cali-
bration of the population parameters that involve SC1 can
be considered as satisfactory, provided that this parame-
ter is the most dispersed around its mean value (its exact
coefficient of variation is about 10% which makes it more
subjected to estimation errors). It is now possible to focus
on the joint distribution of S0

11 and ν12. From Table 7,
it seems that the estimation on this joint distribution is
downgraded between the two steps. Indeed, except for the
mean parameters, the two standard-deviations appear to
be flawed from their initial estimation (Tab. 4), in partic-
ular for the standard-deviation of S0

11 (the averaged error
increases by 30%). This downgrade can be noticed both

the averaged values or averaged errors on the population
parameters. The correlation between S0

11 and ν12 does
not seem to be much affected and even exhibits a small
improvement. Rather than focusing independently on each
parameter, a more suited way to quantify this alleged
degradation is the Kullback-Leibler divergence between
the exact joint distribution of S0

11, ν12 (fexact(S
0
11, ν12)) and

the calibrated distribution (fcalibrated(S0
11, ν12)) in the two

stages as depict Figure 7 for the 20 repetitions.
In Figure 7, the deterioration of the joint distribution

of S0
11 and ν12 suggested by Table 7 seems to be con-

firmed. For instance, the median of the KL-divergences
increases (multiplied by 3), and the ranges of variation of
the KL-divergences are also increased by two (without
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Table 8. Relative errors on the estimation of the individual parameters e(θ̂1, . . . , θ̂n) averaged over 20 repetitions of
the calibration process with the spread ςexact. The corresponding coefficients of variation in % are indicated between
brackets.

S0
11 [×10−6MPa−1] ν12 [×10−2] SC1 [×10−6MPa−1]

Relative error (%) 1.50(13.0) 2.22(9.83) 13.1(10.1)
Spread ςexact (%) 1.53 2.00 10.0

Table 9. Error in model space d(θ̂1, . . . , θ̂n) for each strain component.

Strain Component ε11 ε22

Order of magnitude of the mean strain value 10−3 10−3

Distance in model space 6.36× 10−8 9.00× 10−9

consideration of the outliers). This seems mainly due
to poorer estimation in the compression phase of the
standard-deviation of S0

11. Consequently, a deterioration
of the estimation of joint distribution of S0

11 and ν12 can be
observed in the second phase. Nevertheless, this deterio-
ration remains limited for both the relative errors and the
KL-divergences. In particular, even if they are larger in the
second phase than in the first phase, the KL-divergences
have the same orders of magnitude. Indeed, except for
one repetition, the KL-divergences range from 0 to 0.7 in
the first step and from 0 to 1 in the second step, which
can be considered as a clear but small downgrade. This
does not necessarily invalidate the sequential method, that
would require a comparison with the direct estimation
method proposed in Section 4.5.4 but rather hints that
the calibration is harder to perform using the compression
experiments instead of tension experiments. One possible
explanation could be a poorer calibration of the individ-
ual linear compliances S0

11 (to be investigated later). To
finish the analysis, it remains to check the calibration of
the individuals, either in the parameters and model space.
The suited indicators are displayed in Tables 8 and 9 that
also contain, as earlier, the measure of the spread of each
model parameter labeled ςexact (instead of the empirical

COV), that is to say ςexact :=

√
diag(Σexact)

µexact
with µexact and

Σexact the exact mean vector and covariance matrix.
From Tables 8 and 9, the same remarks made on

Tables 5 and 6 arise. Indeed, in average, for all repeti-
tions, all experiments seem properly calibrated either in
model or parameters space. However, with respect to their
exact spread, the nonlinear compliance can be considered
as better calibrated than the others. The only difference is
that the elastic linear parameters S0

11, ν12 are flawed with
higher errors, partly explaining the poorer calibration of
their joint distribution highlighted above. This could come
from the non-linearity of the strain-stress curve more pro-
nounced in compression than in tension, making the sum
of the residuals of the nonlinear part greater than those
from the linear part, here reduced to few points, but this
remains to be confirmed by a detailed study.

The results from this section and the previous one
show that by conducting the calibration starting with
the tension experiments and then continuing with the

compression experiments, it is possible to estimate accu-
rately the full joint distribution of the longitudinal
nonlinear elasticity provided the limitations of the model
and of population parameters values. Still, the sequential
calibration has been performed in an arbitrarily chosen
order and there is no particular reason to favor this
one to others. Thus, it is necessary to check to what
the extent the choice of the order and more generally
the calibration strategy influences the calibration results.
In the next section, the sequential strategy is achieved
in the reverse order to check in particular whether this
choice downgrades the estimation of the model parame-
ters distribution, before being compared to the method
that implements design matrices.

4.5.4 Comparison of the different calibration strategies

In this section, the objective is to present the results pro-
vided by the other solutions that allow to estimate the
model parameters distribution. Remember that among
these solutions can be found either the implementation of
the sequential strategy in the reverse order: compression
first, then traction, and with the use of design matri-
ces. Results from the sequential calibration in the reverse
order are presented, before a comparison with the calibra-
tion with design matrices. Note that all the optimization
settings for the sequential scheme are kept the same as in
Section 4.5.2. The main issue here is to know whether one
of the orders provides better results (in terms of errors).
To investigate this point, the result of main interest is
directly studied, i.e., how does evolve the calibration of
the joint distribution of S0

11, ν12 ? In particular, is the esti-
mation downgraded or improved between the two stages
? To answer this question, the KL-divergence between the
exact joint distribution of S0

11, ν12 (fexact(S
0
11, ν12)) and

the calibrated distribution (fcalibrated(S0
11, ν12)) in the two

stages can be estimated.
Here, contrary to the previous case, there is a clear

improvement of the calibration results between the two
phases. Indeed, the median of the KL-divergences is
almost divided by 7. This is interesting because, here, the
tension phase corrected the errors made in the compres-
sion phase that appears harder to conduct as shown by all
the indicators studied so far. In fact, the observed decrease
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Fig. 8. KL-divergences of the calibrated and exact joint distribution S0
11 and ν12 for the 20 repetitions in the two stages. Remember

that the KL-divergence expresses a notion of distance between two distributions and the lower the more accurate the calibration of
fΘ|Π is.

mainly comes from the fact that, with the compression
experiments, the estimation of the population parameters
that concern the joint distribution of S0

11 and ν12 shows
higher levels of error compared the to estimate of the
population parameters from the tension experiments, as
it arises from Tables 4 and 7. Thus, choosing this order
of calibration implies an improvement when the other was
synonymous of a deterioration. It is also worth noticing
that, with the compression experiments, the joint distri-
bution of the S0

11 and ν12 is estimated with increased
accuracy when its calibration is carried out in the sec-
ond phase rather than in the first phase, as show the
KL-divergences in Figures 7 and 8. Indeed, though their
medians are comparable in both situations, the range of
variation of the KL-divergences (without consideration of
the outliers) in the second phase of the calibration process
is about half of their range of variation in the first phase
of the calibration process when starting with the com-
pression experiments. This illustrates the interest to use
a sequential scheme. Indeed, the MLE calibrated in the
first phase (conducted with the tension experiments and
described in Sect. 4.5.2) is used to define a trust region,
which reduces the size of the search space by focusing
the optimization within a region that concentrates pro-
posals of population parameters that seems to be close
to the value of MLE of the second phase. This eases the
optimization and seems to limit the deterioration of the
population parameters estimates, contrary to the situa-
tion in which the population parameters are learnt from
scratch (that is to say when the compression experiments
are used first). Still, this assumption would demand to be
consolidated with uncertainty quantification techniques
and confirmed by appropriate convergence studies. It can
be interesting to know whether this is a global improve-
ment (i.e., the estimation of all parameters was improved)

or if it is concentrated on one specific parameter. To study
this particular point, the averaged error on the popula-
tion parameters of the joint distribution of S0

11 and ν12

whose values are reported in Tables 10 and 11 can be
investigated.

From these tables, it follows that the estimation of all
the population parameters is slightly improved from the
first to the second phase except σS0

11
, whose averaged

estimation error is reduced by about 30%. This mainly
comes from the fact that the linear compliances are iden-
tified with better accuracy with the tension experiments
than with the compression experiments, as show Tables 5
and 8. Still, it can be noticed that the calibration of the
standard-deviation of ν12 and of the correlation is not
improved as for the other parameters given that the coef-
ficient of variation of their corresponding averaged error
is increased, indicating that this improvement is not uni-
form among the repetitions. However, globally, with this
particular model, provided the modeling assumptions and
the values chosen for population parameters, it seems bet-
ter to identify first the joint distribution of the population
parameters in compression, before a refinement with the
tension experiments. Of course, this conclusion does not
apply in all cases and is only specific to our model of
interest, parameters value and modeling choices.

So far, the results provided by a sequential strategy
have only been discussed. However, in this particular case,
it is possible to use classical mixed-effects to estimate,
with the help of design matrices, the 13 parameters of
the joint distribution of ST1 , SC1 , S0

11 and ν12 (recall that
Cov(ST1 , S

C
1 ) cannot be estimated with the actual data).

Furthermore, with the two different kind of experiments
considered here, the tension and compression experiments,
a reasonable assumption is to consider different resid-
ual models for each kind of experiment. Provided that
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Table 10. Averaged marginal parameters (Π1,mean from the first phase and Π2,mean from the second phase), alongside
the averaged error (Emean(Π̂2) and Emean(Π̂2)) over 20 repetitions of the calibration process with samples of 50
individuals each. The first two columns refer to the error made on the population parameters estimated in the first
stage Π1 (with the compression experiment) and the two left to parameters Π2 estimated in the second phase (with
the tension experiment). The coefficients of variation COV in % are indicated between brackets.

S0
11 [×10−6MPa−1] (1st phase) ν12 [×10−2] (1st phase) S0

11 [×10−6MPa−1] (2nd phase) ν12 [×10−2] (2nd phase)
Exact Means 85.2 33.1 85.2 33.1
Averaged Calibrated Means 85.4(0.438) 33.1(0.343) 85.3(0.306) 33.1(0.366)
Averaged Errors
On Calibrated Means (%) 0.364(78.9) 0.277(73.4) 0.251(73.1) 0.309(64.8)

Exact Standard-Deviations 1.31 0.660 1.31 0.660
Averaged Calibrated-
Standard Deviations 1.07(30.1) 0.675(10.5) 1.20(21.1) 0.669(10.7)

Averaged Errors On Cali-
brated Standard-Deviations (%) 25.5(73.9) 9.44(59.5) 17.7(64.7) 7.48(108)

Table 11. Averaged marginal parameters correlation parameter ρ̂(S0
11, ν12)mean,1/2 in both phases and averaged error

Emean(ρ̂(S0
11, ν12))mean,1/2 over 20 repetitions of the calibration process with samples of 50 individuals each. The first

column refers to the error made on the population parameters in the second stages of the sequential methodology (with
the compression experiment on the left and with the tension experiment on the right). The coefficients of variation
COV in % are indicated between brackets.

ρ(S0
11, ν12) ρ(S0

11, ν12)

Exact Correlation −0.741 −0.741
Averaged Calibrated
Correlations −0.771(20.8) −0.715(18.5)

Averaged Errors On Calibrated
Correlations (%) 18.2(68.2) 13.8(85.8)

there are two different curves to identify (longitudinal and
transverse measurements), that makes 4 parameters for
the two residual models. In total, p = 17 parameters have
to be estimated. This illustrates a first interest to use a
sequential scheme as with such techniques, only p = 11
parameters have to be calibrated in the different phases.
The three calibration techniques are studied here. They
respectively stand for the calibrated distribution in the
second phase of the first implementation of the sequential
strategy (the one obtained after the calibration with the
compression experiments) labeled C1, the calibrated distri-
bution in the second phase of the second implementation
(the one obtained after the calibration with the tension
experiments) C2 and finally, the one that comes from the
complete calibration the joint distribution of ST1 , SC1 , S0

11
and ν12, labeled C3. Several items can be investigated
among which the error on all population parameters in
the three cases, as reported in Table 12.

In Table 12, it is noticeable that the estimation of the
marginals of the asymptotic compliance in tension and
compression are slightly downgraded in case C3 compared
to cases C1 and C2. This could come from the fact in case
C3, all variables are considered together and may be more
difficult to tune than when the population parameters cor-
responding to a single type of experiment are estimated.
Still, the differences remain small and may also originate
from numerical issues. Furthermore, it appears that, sur-
prisingly, the calibration that considers both compression
and tension does not necessarily provide the best results
for the calibration of the joint distribution of S0

11 and
ν12. Indeed, as these parameters express on both types

of experiments with 50 individuals each (so 100 individ-
uals in total), we could expect it to be the best solution
among the three possibilities given that this distribution
is estimated with the highest number of individual pos-
sible. Obviously, it is not true in this particular case. In
fact, it seems that the calibration process makes trade-
offs between the tension and compression experiments,
and provided that the linear compliances are identified
with less accuracy on the compression than the tension
experiments. The phenomenon of trade-off can be illus-
trated in the parameters space by depicting the PDFs of
the elastic linear parameters, estimated with either the
tension or compression experiments in Figure 9.

In Figure 9, on the left, it can be noticed that, if the
calibration is carried out only from the compression exper-
iments, because of the higher levels of error, the marginal
parameters of S0

11 are estimated less accurately than when
they are estimated from only the tension experiment or
when both types of experiments are jointly considered,
which is consistent with previous results. For this repeti-
tion, adding the compression experiments to the tension
one slightly decreases the error on the marginal estima-
tion. This seems to be linked to the level of errors on
the individual parameters as discussed earlier. The cal-
ibration of the other marginals and correlations do not
exhibit specific problems provided the limitations of the
population parameters values and the model issues. The
KL-divergence is computed for two distributions: the joint
distribution of S0

11 and ν12 on the one hand and on the
other hand for the full joint distribution, and illustrated
in Figure 10.
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Table 12. Averaged error Emean(Π) on the population parameters calibrated in the three cases over 20 repetitions of
the calibration process with samples of 50 individuals each. For cases C1 and C2, the error on the parameters of the
joint distribution of S0

11 and ν12 correspond to those obtained after completion of the sequential scheme, that is to say
after the second step. The coefficients of variation COV in % are indicated between brackets.

Parameter µS0
11

µν12 µST
1

µSC
1

Averaged Errors
in Case C1 (%) 0.376(76.5) 0.273(74.6) 0.738(68.7) 1.52(74.0)

Averaged Errors
in Case C2 (%) 0.251(73.1) 0.309(64.8) 0.736(66.7) 1.60(72.2)

Averaged Errors
in Case C3 (%) 0.259(78.1) 0.281(68.2) 0.683(77.9) 1.61(72.6)

Parameter σS0
11

σν12 σST
1

σSC
1

Averaged Errors
in Case C1 (%) 26.3(67.5) 9.41(54.8) 7.82(68.5) 6.68(84.9)

Averaged Errors
in Case C2 (%) 17.7(64.7) 7.48(108) 7.85(67.4) 7.11(75.7)

Averaged Errors
in Case C3 (%) 18.1(69.5) 7.96(87.3) 7.90(78.5) 7.43(73.3)

Parameter ρ(ν12, S
T
1 ) ρ(ν12, S

C
1 ) ρ(SC1 , S

0
11) ρ(ST1 , S

0
11) ρ(S0

11, ν12)
Averaged Errors
in Case C1 (%) 18.8(83.0) 4.91(90.4) 41.1(69.0) 17.9(81.4) 14.7(74.6)

Averaged Errors
in Case C2 (%) 26.7(97.8) 5.44(90.3) 53.9(72.8) 16.9(69.4) 13.8(85.8)

Averaged Errors
in Case C3 (%) 26.3(110.6) 8.79(168) 68.0(121) 25.8(76.9) 16.4(165)

Fig. 9. For the 17th repetition, PDF of S0
11 and ν12 and the corresponding individual parameters for the calibration from case

C1 (with the compression experiments in the second phase), from case C2 (with the tension experiments in the second phase) and
considering both types of experiments (case C3).

In Figure 10, it is interesting to notice that the KL-
divergences are similar in terms of values and range of
variation, either for the joint distribution of S0

11 and ν12

or for the complete joint distribution. Still, it is possible to
observe the KL-divergences have significant range of varia-
tion (from 10−1 to over 108). This can be partly explained
by the fact that the complete distribution is parameter-
ized by 13 parameters (against 5 for the joint distribution
of S0

11 and ν12) whose 2 correlations exhibit large level of
errors (in particular ρ(SC1 , S

0
11)). These results show that

the three different cases provide similar results in terms
of accuracy of the calibrated distribution, suggesting that
implementing a sequential approach does not downgrade
much the estimation of the population parameters. A
final comparison can be made to study the computa-
tional behavior of the sequential scheme with respect to
the method that uses design matrices. Two indicators are
studied here: the number of (material) model evaluations
and the number of likelihood evaluations, all reported in
Figure 11 for the three cases over the twenty repetitions.
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Fig. 10. On the left, KL-divergences between the calibrated and exact joint distribution of S0
11 and ν12 and on the right,

KL-divergences between the calibrated and exact joint full distributions for the 20 repetitions and 3 cases. Remember that the
KL-divergence expresses a notion of distance between two distributions and the lower the more accurate the calibration of fΘ|Π is.

Fig. 11. On the left, number of model evaluations for the three cases and on the right, number of likelihood evaluations for the
three cases. In cases C1 and C2, the costs of both stages are combined together.

Figure 11 shows that with a sequential scheme, in total
over the two phases, the likelihood function is evalu-
ated a comparable number of times in each case, even
if in Case C2 (when ending with the tension experi-
ments), a slight increase can be noticed. Still, the increase
remains an within acceptable range. On the contrary, the
interest of using a sequential approach arises with the
study of number of model evaluations, which is of prime
interest. Indeed, the costly part of the likelihood computa-
tion refers to the resolution of the minimization problem
defined in equation (20). Focusing on the number of model
evaluations demonstrate the interest of using a sequential
scheme as over the two phases, the number of model eval-
uations is approximately divided by two from case C3 to
case C1 and by 40% from case C3 to case C2, which can be
considered as a significant gain in terms of computational
cost. Still, the number of model evaluations remains high,
about 108. This number can be partly explained by the
choices and settings of the optimization algorithms used
for the minimization of both the opposite log-likelihood
and function gi(·). For more complex, it may be necessary
to combine the sequential strategy with other approaches
such as surrogate modeling to guarantee the appliabil-
ity of the calibration method. If such solution is chosen,
the surrogate model would be easier to train compared
to the standard case. Indeed, throughout the sequential
process, the search spaces over which population param-
eters evolve are limited to preserve consistency between
the different steps. Therefore, the range of validity of
the chosen surrogates can be smaller, making them eas-
ier to build, contrary to the standard case in which the

entire search space is considered. Note that, as in most
procedures implementing surrogate models, it should be
checked that the trained surrogate model does not intro-
duce errors that could impair the calibration process. The
observed reduction can be explained by different reasons.
First, notice in Figure 11, for the three cases, the num-
ber of likelihood evaluations are (in total for cases C1 and
C2) similar. In fact, the number of likelihood evaluations
in each stage of the sequential approaches is about half of
the number of likelihood evaluations when design matrices
are used. This can be understood as there more parame-
ters to estimate (17 instead of 11). However, for case C3,
for each likelihood evaluation, the models for both the
compression and tension experiments are identified. This
adds to the fact that, in the second step of the methodol-
ogy, the individual calibrations are eased.Indeed, the mean
parameters around which the individual deviations bi are
searched (see Eq. (20)) are already estimated with few
error (smaller than 1% in average). This is even more
important here because of the concentration of the lin-
ear elastic parameters around their average values. This
is illustrated in Figure 12, which compares for the twenty
repetitions, the number of model evaluations for the sec-
ond steps of the sequential strategy, i.e., case C1 with the
compression experiments and case C2 with the tension
experiments to their counterpart of case C3.

Figure 12 confirms that thanks to the focus realized by
the first identification for the mean parameters, it seems
easier to identify the individual parameters. Indeed, the
number of model evaluations is almost cut by half between
the case C3 and the second stages of both cases C1 and
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Fig. 12. On the left, total number of model evaluations for the estimation of the individual parameters with the compression
experiments in case C3 and on the second stage of case C1. On the right, total number of model evaluations for the estimation of
the individual parameters with the tension experiments in case C3 and on the second stage of case C2.

C2. This significant improvement partly explains the gain
observed in terms of model evaluations. A further study on
the convergence behavior should be carried out to demon-
strate rigorously the interest of the sequential approach
compared to classical mixed-effects methods with design
matrices.

This study of the sequential scheme allows to illustrate
some advantages and drawbacks. Among the benefits of
such a strategy can be cited a proper estimation of the
population parameters, at least as accurate as the one
that can be obtained with the use of design matrices
in this test-case. Furthermore, it allows to significantly
reduce the number of model evaluations necessary to carry
out the calibration of the population parameters. Finally,
it also reduces the number of population parameters of
estimated in each calibration problem, allowing to con-
sider more complex phenomena in future works. However,
the process exhibits its own limitations. For instance, it
could be interesting to test different solutions for the trust
regions instead of a simple hypercube. In addition, the
routine could have been continued until reaching conver-
gence as in a fixed-point approach at the expense of a
larger computational costs. Still, this test-case is inter-
esting as the results can be compared to the standard
calibration process that sometimes cannot be carried out
because of the computational costs and the dimension of
the optimization problem.

5 Conclusion

This article presents a sequential calibration procedure
that aims to calibrate complex material constitutive mod-
els compliant with the mixed-effects framework using
multivariate data. The method consists in defining a
sequence of calibration subproblems, each one correspond-
ing to a subset of the available experimental data. The
subdivision of the complete problem into subproblems
can be based on the choice of the expert and on sen-
sitivity analyses. Indeed, well-chosen tests can activate
different parts of the model, i.e. different subsets of the
model parameters. Thus, each type of test makes it possi-
ble to define a subproblem whose objective is to identify

the joint distribution of a subset of the model parame-
ters. A parameter can be involved in several subproblems.
In this case, it is identified once and the search space of
the corresponding distribution parameters is reduced to
a trust region in the subsequent calibrations, to ensure
consistency between the different subproblems.

The method is applied to a virtual test case to the
calibration of the orthotropic model in plane stress with
nonlinear longitudinal behavior. This test-case is interest-
ing as it allows to compare the sequential strategy to its
usual counterpart using design matrices that is not neces-
sary available in all configurations. A first implementation
allows to split the identification of the joint distribution
of the compliances with the usual elementary UD 0◦,
UD 90◦ and ±45◦ laminates. The second allows to divide
the calibration of the joint distribution of the longitudi-
nal and transverse nonlinear elasticity of UD0◦ laminates
between the tension and compression experiments. The
consistency of the results throughout the calibration pro-
cess is ensured by bounding the parameters estimated
twice. The results of the methodology applied on syn-
thetic data generated with the exact model demonstrate
the ability of the proposed procedure to estimate prop-
erly the model parameters distribution in the presence
of significant material variability. The results obtained
considering the different orders of calibration are inves-
tigated and compared to the straightforward calibration
of the complete joint distribution using design matrices.
It shows that in particular this calibration method is not
necessarily the best in this test case, the one step cali-
bration method is not necessarily the best, in particular
because of the trade-offs made between the different type
of experiments. An application (not shown in this paper)
with experiments carried on a material with carbon and
epoxy resin confirm this point and shows in particular that
with a sequential strategy, the number of model evalua-
tions to provide an estimation of the full joint distribution
is significantly reduced. This is a key feature, and com-
bined to the preservation of the calibrated distributions
throughout the calibration process, it shows that sequen-
tial calibration is not only compatible with mixed-effects
models but scales better to more complex model with a
high number of parameters to be calibrated.
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Though the proposed method seems promising, the pro-
posed application case is simple and very fast to evaluate.
More complex models usually require to solve differen-
tial equations which can be much more time consuming,
making the overall computational cost of the method
intractable with direct calls to the model. In that regard,
combining the proposed approach with surrogate models
falls as a direct perspective of this work.
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