
Mechanics & Industry 24, 34 (2023)
© A. Pulikkathodi et al., Published by EDP Sciences, 2023
https://doi.org/10.1051/meca/2023029

Mechanics
&Industry

Available online at:
www.mechanics-industry.org

REGULAR ARTICLE

A neural network-based data-driven local modeling of spotwelded
plates under impact
Afsal Pulikkathodi1,* , Elisabeth Lacazedieu1,2, Ludovic Chamoin1,3 , Juan Pedro Berro Ramirez4 ,
Laurent Rota5, and Malek Zarroug5

1 Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS – Laboratoire de Mécanique Paris-Saclay,
91190 Gif-sur-Yvette, France

2 EPF School of Engineering, 94230 Cachan, France
3 IUF, Institut Universitaire de France, Paris, France
4 Altair Engineering France, 92160 Antony, France
5 Stellantis, 78140 Velizy-Villacoublay, France

Received: 28 February 2023 / Accepted: 27 July 2023

Abstract. Solving large structural problems with multiple complex localized behaviors is extremely chal-
lenging. To address this difficulty, both intrusive and non-intrusive Domain Decomposition Methods (DDM)
have been developed in the past, where the refined model (local) is solved separately in its own space and
time scales. In this work, the Finite Element Method (FEM) at the local scale is replaced with a data-driven
Reduced Order Model (ROM) to further decrease computational time. The reduced model aims to create a
low-cost, accurate and efficient mapping from interface velocities to interface forces and enable the predic-
tion of their time evolution. The present work proposes a modeling technique based on the Physics-Guided
Architecture of Neural Networks (PGANNs), which incorporates physical variables other than input/output
variables into the neural network architecture. We develop this approach on a 2D plate with a hole as well as a
3D case with spot-welded plates undergoing fast deformation, representing nonlinear elastoplasticity problems.
Neural networks are trained using simulation data generated by explicit dynamic FEM solvers. The PGANN
results are in good agreement with the FEM solutions for both test cases, including those in the training
dataset as well as the unseen dataset, given the loading type is present in the training set.

Keywords: Artificial neural networks / data-driven modelling / local/global coupling / explicit dynamics /
physics-guided architecture

1 Introduction

High-fidelity simulations of large structures containing
many localized features such as spotwelds [1] or bolted
joints are still a major scientific and industrial challenge.
The mechanical behavior of these localized features has
traditionally been addressed using simplified models to
circumvent the complexities associated with numerical
analysis procedures. For spotwelds, these models typically
employ rigid or flexible beams with coincident nodes [2,3].
However, these simplified modeling approaches often fall
short in accurately predicting failure. Therefore, in order
to capture the complex and nonlinear behavior of these
localized features accurately, refined 3D elements are
necessary. Due to the space and time scale discrepan-
cies between the global response of the structure and

* e-mail: afsal.pulikkathodi@ens-paris-saclay.fr

the localized phenomena, such mesh refinements dras-
tically increase the computational cost. This arises not
only from the increase of the number of dofs but also
from the requirement to reduce the time step to ensure
the Courant–Friedrichs–Lewy (CFL) condition [4] of the
explicit time integration process.
Numerous numerical methods devoted to multiscale

computing have emerged over the last three decades
to address this problem. They are mostly based on
Domain Decomposition techniques such as the primal
BDD method [5], dual FETI method [6], the mixed LATIN
scheme [7], or the Arlequin framework [8]. These are well-
suited to problems in which the refinement zones are fixed.
In the case of rapidly evolving problems, non-intrusive
domain decomposition techniques based on local/global
approaches have proven to be effective (e.g., local plas-
ticity [9,10], local crack propagation [11]). An overview
of such techniques can be found in [12]. They allow the
global mesh to remain unchanged while the local problem

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.edpsciences.org
https://doi.org/10.1051/meca/2023029
https://www.mechanics-industry.org
https://orcid.org/0000-0001-5952-9943
https://orcid.org/0000-0002-8361-0757
https://orcid.org/0000-0002-2473-7467
mailto:afsal.pulikkathodi@ens-paris-saclay.fr
https://creativecommons.org/licenses/by/4.0

2 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

is refined in space and time. The non-intrusive local/global
strategy relies on an iterative exchange of interface quan-
tities between global and local computations. It was
successfully applied to coupling of 2D and 3D models
in thin composite panels with local stress concentration
and debonding [13]. The same approach was extended in
the context of explicit dynamics in [14,15]. Sub-modelling
techniques are another non-intrusive option widely avail-
able in Finite Element Method (FEM) software and used
in industry. However, they are referred to as “one-way
coupling” because the data exchange occurs from global
to local, and the global solution is not updated after the
local solution has been modified.
The FEM simulations of local problems can be compu-

tationally expensive due to the requirement for refined
space and time scales. To address the aforementioned
challenge, it is proposed here to replace the original,
time-consuming simulation by a reduced model in order
to increase the computational performance. Model Order
Reduction (MOR) [16] seems to be an appealing choice
to overcome this issue. Projection-based MOR methods,
which rely on linear transformations with some additional
constraints, such as Proper Orthogonal Decomposition
(POD) or Reduced-Basis technique [17], are widely used.
However, they can hardly be used to model highly non-
linear phenomena and often require prior knowledge of
the governing equations of the physics. Neural Networks
(NNs) based on machine learning have proven to be highly
effective for learning nonlinear manifolds. NNs often out-
perform physics-based models in many disciplines (e.g.,
materials science [18], applied physics [19], biomedical
science [20], computational biology [21]) in terms of pre-
diction accuracy and capability to capture the underlying
nonlinear input-output relationship for complex systems.
A main limitation of this technique is the correct selection
of the network tuning parameters.
Training NNs requires a vast amount of data that

must contain a rich input-output relationship, which is
not available in the majority of engineering problems. To
address this issue, researchers have developed a large vari-
ety of methods for integrating physical principles into NN
models. Integrating physical principles into NN models
provides several key advantages. It ensures physical con-
sistency by aligning predictions with fundamental physics
laws and constraints. This improves generalization, allow-
ing accurate predictions with limited data. A detailed
review of these methods applied in various fields can
be found in [22]. They can be broadly classified into
four main categories: (i) physics-guided loss function, (ii)
physics-guided initialization, (iii) physics-guided architec-
ture, and (iv) hybrid physics-Machine Learning (ML)
models. The idea behind physics-guided loss function is
to incorporate physical constraints into the loss function
of NN models [23,24]. In physics-guided initialization, the
physical or other contextual knowledge is used to help
inform the initialization of the weights, so that the model
training can be accelerated and may require fewer train-
ing samples [25]. In physics-guided architecture, the key
idea is to incorporate physics-based guidance into archi-
tecture design making the NN more interpretable, this
allows to include typically missing features into the NN

model [26,27]. In hybrid modelling the focus has been on
augmenting ML models specifically; numerous approaches
combine physics-based models with ML models where
both are operating simultaneously [28].
In an explicit dynamic local/global coupling framework,

the input and output of the local problem are the inter-
face velocities and interface reaction forces, respectively.
However, these quantities are highly noisy in nature,
making it difficult to obtain direct input-output relation-
ships. To address this fundamental challenge, we propose
to use Physics-Guided Architecture of Neural Networks
(PGANNs). The key idea behind this approach is to inject
other physical variables of the whole local domain, such as
displacement, stress, strain, plastic strain etc., at the local
scale between the input and output layers of NNs in order
to improve learning within the solution space. By includ-
ing these additional physical variables, we provide the
network with relevant domain-specific information that
can potentially enhance optimization and training effi-
ciency. It should be noted that the architecture of the
proposed NN itself operates as a black box, as its inter-
nal mechanisms are not explicitly designed to resemble
physics equations.
In this article, we focus on the injection of displacement

as well as effective plastic strain as intermediate vari-
ables, as displayed in Figure 4. The neural network (NN)
architecture begins by reconstructing the displacement
of the local domain from the input. Next, an autoen-
coder extracts the most relevant features of displacement,
known as Latent Vector (LV). Similarly, another autoen-
coder is employed to capture the significant features of
effective plastic strain, forming its corresponding LV. The
dynamics of these LVs is then modeled using a Long Short-
Term Memory (LSTM) network. Finally, the predicted
displacement at the next global time step is mapped to
the interface reaction forces.
The paper is organised as follows: In Section 2, a

summary of the non-intrusive local/global coupling refer-
ence problem in explicit dynamics is presented. Section 3
details the proposed PGANN to metamodel the local
problem. In Section 4, the proposed method is tested
on a numerical example of an elastoplastic plate with
hole geometry discretized using 2D elements that has
undergone rapid deformation. In Section 5, the pro-
posed method is tested on a spotwelded plate geometry
discretized using 3D elements. Finally, in Section 6, con-
clusions and outlooks of the proposed work are presented.

2 Problem formulation

In this study, we briefly present a method for addressing
the non-intrusive local/global coupling in explicit dynam-
ics [29]. To illustrate the method, we consider the problem
configuration depicted in Figure 1. As shown in the figure,
the overall domain, denoted as Ω, is partitioned into two
subdomains: the local region, denoted as Ωl, and the com-
plementary region, denoted as Ωc. The local region Ωl may
contain fine geometric features or large gradients, which
requires a refined mesh in both space and time scales.
Conversely, the complementary region Ωc only requires a

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 3

Ωc. The local region Ωl may contain fine geometric features or large gradients, which requires
a refined mesh in both space and time scales. Conversely, the complementary region Ωc only
requires a coarse mesh in both space and time. The interface between the two regions is denoted
as Γ. In this problem, the displacement uD is prescribed on the Dirichlet boundary ∂Ωu, the ex-
ternal force fext is applied on the Neumann boundary ∂Ω f , and the body force fΩ may be applied125

in the domain Ω.

Local model

Global model

Interface velocities

Interface forces

𝛤𝛺𝑙

𝛺𝑔

𝛺𝑐

𝛺𝑙
𝜕𝛺𝑢

𝜕𝛺𝑓𝛤

𝜏𝑔

𝜏𝑙

𝑡𝑔 𝑡𝑔+1

𝑡𝑙 𝑡𝑙+1

𝑓𝑒𝑥𝑡

𝛤𝑔

Figure 1: Heterogeneous discretization in space of the reference problem

Using a displacement-based finite element method with the heterogeneous spatial discretization
described in Figure 2a (left), the problem can be expressed as follows.

MÜ=Fext −Fint over Ωc ∪Ωl × [t0, tend]

U=U along ∂Ωu × [t0, tend]

{U, U̇}= {U0, V0} over Ωc ∪Ωl |t0

(1)

where M is the lumped mass matrix, Fext and Fint are, respectively, the external and inter-
nal force vectors, and Ωc ∪Ωl represents the union of two different homogeneous finite element130

discretizations that span the entire domain. U represents the vector containing the nodal dis-
placement (Ü and U̇ are the associated acceleration and velocity respectively). The initial and
final times are denoted t0 and tend.

The central difference technique is used to implement an explicit time integration scheme. The
time integration scheme is not unconditionally stable, so the CFL condition governs the selection135

of the time step size. The critical time step ∆tcr is given by :

∆tcr = 2
ωmax

(2)

where ωmax is the maximum eigenfrequency of the problem. The value of ωmax is inversely
proportional to the smallest element size. As a result, the time integration step is reduced
because of the refined space mesh.

In a non-intrusive local/global coupling framework, the global model extends over the whole140

structure with a global mesh and never changes (Figure 2a). The local analysis is carried out
with a more refined mesh where the boundary conditions are derived from the global problem.
Two different time steps ∆tg and ∆tl are applied in the two partitions Ωc and Ωl (Figure 2b).
Separate explicit dynamics analyses of the two meshes are performed concurrently, allowing
the models to run with their own time increment. The continuity of velocities between the two145

4

Fig. 1. Heterogeneous discretization in space of the reference
problem.

Fig. 2. An illustration of the non-intrusive local/global coupling
method.

coarse mesh in both space and time. The interface between
the two regions is denoted by Γ. In this problem, the
displacement uD is prescribed on the Dirichlet boundary
∂Ωu, the external force fext is applied on the Neumann
boundary ∂Ωf , and the body force fΩ may be applied in
the domain Ω.
Using a displacement-based finite element method

with the heterogeneous spatial discretization described in
Figure 2a (left), the problem can be expressed as follows.

MÜ = Fext − Fint over Ωc ∪ Ωl × [t0, tend]

U = U along ∂Ωu × [t0, tend]

{U, U̇} = {U0, V0} over Ωc ∪ Ωl|t0

(1)

where M is the lumped mass matrix, Fext and Fint are,
respectively, the external and internal force vectors, and
Ωc ∪Ωl represents the union of two different homogeneous
finite element discretizations that span the entire domain.
U represents the vector containing the nodal displacement

(Ü and U̇ are the associated acceleration and velocity
respectively). The initial and final times are denoted t0
and tend.
The central difference technique is used to implement

an explicit time integration scheme. The time integration
scheme is not unconditionally stable, so the CFL condition
governs the selection of the time step size. The critical
time step ∆tcr is given by:

∆tcr =
2

ωmax
(2)

where ωmax is the maximum eigenfrequency of the prob-
lem. The value of ωmax is inversely proportional to the
smallest element size. As a result, the time integration
step is reduced because of the refined space mesh.
In a non-intrusive local/global coupling framework, the

global model extends over the whole structure with a
global mesh and never changes (Fig. 2a). The local anal-
ysis is carried out with a more refined mesh where the
boundary conditions are derived from the global prob-
lem. Two different time steps ∆tg and ∆tl are applied in
the two partitions Ωc and Ωl (Fig. 2b). Separate explicit
dynamics analyses of the two meshes are performed con-
currently, allowing the models to run with their own time
increment. The continuity of velocities between the two
models is ensured along the interface Γ through Lagrange
multipliers [9]. Substituting the local model into the global
model is achieved by iteratively exchanging the velocities
and forces at the interface Γ, as displayed in Figure 2a.
The global domain, shown with a coarse mesh on the left,
is initially solved at a global time scale τg. The veloc-
ity at the interface is then transferred to solve the local
problem as a Dirichlet problem at local time scale τl. The
global problem is then re-solved by applying the reac-
tion forces from the local problem at the interface. This
process is repeated until the difference in reaction forces
reaches a predefined tolerance e. It was shown in [30]
that for explicit dynamic problems, the global computa-
tion may be performed only once per global time step,
while a repeated solution is needed only for the local
problems. This finding serves as a motivation for our
development of a NN-based ROM for the local problem,
which significantly reduces the overall iteration cost.
The non-intrusive local/global coupling strategy is not

implemented in this article; it is a work in progress to inte-
grate NN-based ROM with explicit FEM solvers. In this
context, our present goal is to develop a reduced model
of the local problem based on NN, which can predict
the interface forces at time t + ∆tg, given the bound-
ary conditions of the local problem at previous global
time steps t. More precisely, as shown in Figure 3, given
the interface velocities and other model parameters at
time instants such as tng , tn−1

g , tn−2
g , tn−3

g , the metamodel
should be able to accurately predict the interface forces
at tn+1

g . It is worth noticing that the number of past time
steps considered is arbitrary, and a greater amount of
historical information generally improves the predictive
performance of the model. However, it is important to
consider the limitations of storage space associated with
long-term data retention.

4 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Fig. 3. Structure of the reduced model: the NN inputs are interface velocity and interface nodal position at time instances
tng , t

n−1
g , tn−2

g , tn−3
g in global time scale denoted using dashed arrows, while the output is the interface forces at time tn+1

g denoted
using solid arrow.

Fig. 4. A schematic for the architecture of the PGANN framework.

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 5

3 Proposed physics-guided NN architecture
(PGANN)

3.1 Structure of PGANN

In this section, we shall elaborate on the proposed
PGANN model. Due to the lack of a robust input-output
relationship, it is challenging to train a NN using only
the velocity and reaction forces of the interface. This is
primarily due to their noisy nature and dependence on
other model parameters, such as material parameters and
geometric parameters. In order to address this issue, a
new layer containing information about the displacement
ul of the local problem is inserted between the input and
output layers.
Plastic deformation of materials is a complex process

that exhibits history-dependent behavior. Recent studies
in [31,32] have investigated the application of (Recur-
rent Neural Networks) RNNs in modeling path-dependent
plasticity models. These RNNs, which are an extension of
traditional NNs, have shown promising results in predict-
ing complex history-dependent plasticity. However, their
architecture is more complex, requiring a large amount
of historical data for accurate predictions. It was shown
in [33] that traditional NN architectures can also capture
path-dependent behavior effectively, provided that a set
of internal variables representing the material history is
appropriately included in the training process. Inspired by
this work, we adopt a similar methodology in this study to
avoid the need for an extensive history of data while still
achieving accurate predictions. In metal plasticity, the his-
tory of plastic deformation is often characterized by using
a scalar quantity called the effective plastic strain, which
is given by

εp =

∫
||ε̇p|| dt (3)

where ε̇p is the plastic strain rate. The examples presented
in this study use the effective plastic strain εp as the
internal variable.
An important aspect of our method is the preprocessing

step, in which the actual FEM grid is interpolated to a
Cartesian grid to represent the local displacement. Thus,
the interpolated displacement can be treated analogous
to a colour image, and the three components of displace-
ment (x, y, and z) are treated analogous to the three
colour channels, allowing the use of convolutional NN
architectures. As a result, the memory and computation
costs depend primarily on the size of the interpolated grid
rather than the size of the actual FEM grid. A schematic
of the training pipeline for the PGANN model is presented
in Figure 4. It consists of four separately trained NNs. In
the following paragraphs of this section, we shall explain
the procedures for training all four networks separately.
The first NN (NN I) of the architecture is trained

to capture the nonlinear relationship between the input
variables, specifically the velocities vtΓ and displacements
utΓ of the interface nodes, at a specific time t, and the
corresponding displacement of the local model utl . It is
important to highlight that while this study focuses on

these specific input variables, the approach is not limited
exclusively to this set of variables. Other model parame-
ters, such as material parameters or geometric parameters,
can also be included as input variables, further enhancing
the flexibility and applicability of the methodology. The
input layers are concatenated to form a dense layer. A
few dense layers and convolutional layers are then added
between the concatenated layer and the output layer utl .
The number of these added layers and their properties,
such as the number of filters used and filter size, are the
main hyper-parameters to be optimized in this model; this
is detailed in Section 4.2.1.
The second NN, referred to as (NN II), utilizes autoen-

coders to encode the local solution into a reduced manifold
known as a latent vector zt. Autoencoders are trained
by setting the target layers equal to the input layers,
where the size of the middle layer (latent vector) is much
smaller than that of the input/output layers. The main
objective is to extract the most dominant features of the
system, while effectively filtering out the noise generated
during explicit dynamics simulation. This reduced mani-
fold enhances the training performance of the subsequent
RNN model (NN III), which is responsible for predict-
ing the system time evolution. Within (NN II), two
autoencoders are employed and trained separately. The
first autoencoder reduces the displacement utl to its cor-
responding latent vector ztu using its encoder component
ϕu, while the decoder component ϕ′u converts the latent
vector ztu back to the original displacement utl . Similarly,
the second autoencoder reduces the εtp,l to its correspond-
ing latent vector ztεp using an encoder component ϕεp ,
and a decoder component ϕ′εp converts the latent vector
back to the original εtp,l. During the online phase, when
the trained model is utilized, the first explicit cycle ini-
tializes the εp,l with zero, assuming no plastic deformation
has occurred. The predicted εt+∆tg

p,l is then used as input
for the subsequent cycle. Since we are not interested in
observing εp,l during the online phase, only its latent vec-
tor zt+∆tg

εp
needs to be stored at the end of each cycle.

This approach avoids the need for evaluating ϕεp and ϕ′εp ,
thereby reducing the computational cost involved.
The third NN (NN III) is a RNN that learns the tem-

poral evolution of the latent variable. More specifically,
the goal is to predict the latent vector at time t + ∆tg
based on the latent vector from previous global time steps.
The input of this network consists of a sequence of latent
vectors (zu and zεp) from past global time steps, while the
output is a sequence of latent vectors in future local time
steps. From this sequence, the latent vector corresponding
to ∆tg is selected. It is important to note that here the
purpose of the RNN is not to learn the path dependency
of elastoplastic materials. We employ an encoder-decoder
(also known as Sequence-to-Sequence models) type LSTM
architecture. This means that the model will not output a
vector sequence directly. Instead, the model will consist of
two sub-models: the encoder and the decoder. The encoder
reads and summarizes the input sequence information,
referred to as the internal state vectors. At each time step,
the encoder receives an input element from the sequence

6 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Fig. 5. Example of proposed RNN architecture used. The network is trained by taking the latent vectors from the past four global
time steps and the following five latent vectors of local scale as output.

and updates its internal state based on the current input
and the previous hidden state. The LSTM memory cells
maintain a memory of past inputs, which enables them
to retain information over longer sequences. The outputs
of the encoder are discarded and only the internal states
are kept. The decoder reads the final state of the encoder
and makes a one-step prediction for each element of the
output sequence (Fig. 5). We enforce that the input of the
decoder at each time step is the output from the previous
time step, which helps to train the decoder faster. The
fact that the output sequence corresponds to local time
steps allows prediction for variable global time step ∆tg
using simple interpolation. The shapes of input and out-
put are specific to the case, therefore the implementation
will be detailed in Section 4.2.4.
The final NN, (NN IV), is responsible for mapping

the predicted local nodal displacement ut+∆tg
l , the pre-

dicted interface velocity vt+∆tg
Γ at time t + ∆tg, and its

corresponding interface reaction forces rt+∆tg
Γ . The archi-

tecture used is similar to that of the encoder part ϕu of the
autoencoder. First the multi-dimensional displacement
layer is transformed to a dense layer using convolutional
layers, and merged with other model parameter layers to
output the interface forces.

3.2 Training configuration and metrics

The quantitative performance of each NN framework
is evaluated using a metric called Normalized Mean
Absolute Error (NMAE). NMAE is calculated for each
component k between the actual value and the predicted
value by the NN, from the initial time to the final time.
The overall NMAE is obtained by summing the NMAEs
of each component. The NMAE is defined as:

NMAE =

R∑
k=1

(∑N
i=1 |y

(i)
k − ỹ

(i)
k |∑N

i=1 y
(i)
k

)
(4)

where R is the total number of components of the dynam-
ical system, N is the total number of time steps in the
evolution of the dynamical system, y is the true solution
and ỹ is the solution predicted by the NN.

Throughout this study, we employ the mean squared
error (MSE) as the loss function, Rectified Linear Unit
(ReLU) activation function for all hidden layers and linear
activation function for the output layer in all NNs. The
ReLU activation function σ can be defined as:

σ(a) = max(0, a) (5)

where a is the input of the node.
The NN training has been performed in the Python

environment using TensorFlow. We used the TensorFlow
2.0 API tf.distribute.MultiWorkerMirroredStrategy
to distribute the training across multiple machines (up
to 4 machines) with single NVIDIA Quadro RTX 4000
GPU cards. Source codes are available at https://github.
com/afsalpt1/ROM-PGANN.Using the TensorFlow API
tf.data.Dataset, efficient input pipelines are written for
the data generated in Section 4.1. The pipeline allows for
easy access to the data to distribute the training across
multiple machines. We set the training batch size to 128
to ensure better generalization of each batch. To train
the NN, the Adam optimization algorithm is used. In the
following section, the proposed method is implemented on
a plate with hole example.

4 A first validation example: plate with a
hole

In the present section we consider an elementary problem
to test and validate the PGANN architecture for meta-
modelling of a highly nonlinear local problem. Let us
consider a rectangular 2D domain with a hole in the cen-
tre, as shown in Figure 6. The region surrounding the hole
is taken as the local domain Ωl, where plastic deformation
is expected during the loading process, and the remaining
part refers to Ωc where only elastic deformation occurs.
The elastic behavior is defined by the Young modulus

E = 210 GPa, the Poisson ratio ν = 0.3, and the mate-
rial density ρ = 7, 800 kg/m3. The isotropic elastoplastic
material is described using the Johnson-Cook material
model. Neglecting the effect of temperature or strain rate,

https://github.com/afsalpt1/ROM-PGANN
https://github.com/afsalpt1/ROM-PGANN

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 7

Fig. 6. Model of a plate with hole. The local domain, shown in yellow, is a refined region near a geometrical detail (a hole).

the expression for stress is given by:

σ = a+ bεnp (6)

where εp is the plastic strain. The Johnson Cook param-
eter a, hardening modulus b, and the hardening exponent
n are defined as

a = σy, b =
σu

nε
(n−1)
u

, n =
σuεu
σu − σy

(7)

where σy is the yield stress, σu is the engineering Ultimate
Tensile Stress (UTS), and εu is the engineering strain at
UTS. For simulation purposes, the following values are
considered: a = 0.792 GPa, b = 0.51 GPa, and n = 0.26.
The dimensions of the computational domain shown in

Figure 6 are Hx = 300 mm, Hy = 100 mm. The diame-
ter of the hole is d = 40 mm, and the length of the local
domain is Hl = 60 mm. The structure is clamped on the
left boundary ∂ΩL, and the displacements are imposed on
the right boundary ∂ΩR.

4.1 Data generation and post-processing

The data required for training the NNs are obtained by
solving the reference model shown in Figure 6 using a
nonlinear explicit FEM dynamic solver. The simulation
spans from an initial time t0 = 0 ms to a final time tend =
2.5ms. To discretize the time domain, a constant time step
∆tl = 2.3× 10−4 ms is employed, calculated based on (2).
Consequently, each simulation comprises approximately
10,800 time steps. For simplicity it is assumed here that
the ratio ∆tg/∆tl is equal to 10.
The first dataset comprises five principal loading direc-

tions, namely translational displacements (sx, sy, sz) and
rotational angles (θx, θy). Each load direction undergoes
eight simulations with varying magnitudes, including four
positive and four negative magnitudes, resulting in a
total of 40 simulations. The second dataset is created to
enrich the first dataset by including additional loading
directions. Unlike the single-direction loading in the first
set, the second dataset involves simultaneous monotonic
loading in two directions, as outlined in Table 1. This
results in a total of 24 distinct loading directions. For
each combination of load directions, four simulations are
performed, encompassing two positive and two negative
magnitudes, thereby generating additional 96 simulations.

Consequently, the second dataset comprises a total of 136
simulations. Further information regarding the magnitude
and direction of loading can be found in Appendix A.
While alternative approaches like Design of Experiment
(DoE) methodologies could be employed to efficiently gen-
erate optimal data parameters, it is important to note that
the simplified load cases used in this article primarily serve
to present the core concept of our strategy. In reality, the
load cases are much more complex and can be derived
from the local/global boundaries of a coupled model.
In this particular example, snapshots are col-

lected at each local time step. At the interface Γ,
velocities (vΓ = (vΓ,x, vΓ,y, vΓ,z)), rotational velocities
(ωΓ = (ωΓ,x, ωΓ,y, ωΓ,z)), and reaction forces (rΓ =
(rΓ,x, rΓ,y, rΓ,z)) are recorded. Additionally, the nodal dis-
placement (ul = (ux, uy, uz)) of the local domain, and the
elemental effective plastic strain (εp) of the local domain
is collected. The model contains a total of 120 interface
nodes; thus, the interface quantities v, ω, or r are a vector
of size 120 × 3 (x, y and z components). The displacement
in the actual FEM grid is interpolated to a Cartesian reg-
ular grid of size 40× 40, as shown in Figure 7. To improve
the training performance, all data are standardized on
a scale of [0, 1] using a MinMax scale. The network is
trained using 80% of the total data, while the remaining
portion is divided equally between the cross-validation set
(10%) and the test set (10%).

4.2 Training and verification of PGANN

In this section, we explore the individual training and veri-
fication of all four sub-networks of the proposed PGANNs.
First we outline a systematic approach for determining the
optimal hyper-parameters of a NN. The hyper-parameters
we focus on include: the number of layers, the number of
neurons or filters in dense or convolutional layers, the
choice of activation functions, the type of loss function,
the learning rate, and the batch size, among others. Then
to evaluate the accuracy of the trained model, aside from
the dedicated test dataset comprising 10% of the over-
all data, four additional test cases are generated, which
are neither included in the first dataset nor in the second
dataset. To avoid confusion, we will refer to the former
as the test dataset and the latter as test cases. Table 2
provides details regarding the direction and magnitude of
the load applied on the boundary ∂ΩR for each test case.

8 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Table 1. Training datasets.

Dataset Loading direction Remark

I sx, sy, sz, θx, θy
Loading in single

direction

II sx, sy, sz, θx, θy, [sx&sy], [sx&sz], [sx&θx], [sx&θy], [sy&sz],
[sy&θx], [sy&θy], [sz&θx], [sz&θy], [θx&θy]

Single &
bidirectional
loading

Table 2. Test cases used for verification of PGANN architectures for 2D example.

Dataset Translational
loading (mm)

Rotational
loading (rad)

sx sy sz θx θy Remark
Case 1 I 16 Interpolation of magnitude
Case 2 I 32 Extrapolation of magnitude

Case 3 I 21 1.5 Interpolation of magnitude and
direction

Case 4 II 21 1.5 Enriched training dataset

Fig. 7. Grid used to feed displacement to NN (green), and
actual grid used by FEM solver (blue).

The performance of the first three test cases is evalu-
ated using the NNs trained on first dataset. The first two
test cases involve loading of similar direction that were
present in the training data, but with different, unseen
magnitudes. The first test case has a magnitude within
the range of the training data, while the second test case
has a larger magnitude. The third and fourth test cases
have the same loading magnitude and direction and cor-
respond to combination loading. The third test case is
evaluated on model trained using the first training set,
while the fourth test case is evaluated on model trained
using the second training set.

4.2.1 NN I

Figure 8 illustrates the initial proposed reference architec-
ture for NN I. It comprises three input layers: vtΓ, ωt

Γ,
and displacement of interface nodes utΓ. After concatenat-
ing input layers, a dense layer of size 1, 600 is added to
help reshape to a 3D layer of shape (5,5,64). Subsequently,
three deconvolution layers (Conv2DTranspose) with 64, 32
and 16 filters, respectively, are added to achieve an output
shape of (40,40,3). For each deconvolutional layer, filters
have a kernel size of 2 and a stride of size 2 is used.

When working with NNs, two crucial hyper-parameters
to tune are the learning rate and batch size. The learn-
ing rate determines the step size at each iteration during
the optimization process, while the batch size refers to
the number of training examples processed in a single for-
ward and backward pass. If the learning rate is set too
high, the optimization process may oscillate or fail to con-
verge. On the other hand, if the learning rate is too low,
the training process may become extremely slow. A larger
batch size can provide computational efficiency, as more
examples are processed in parallel, but it may lead to sub-
optimal generalization. Smaller batch sizes, on the other
hand, can introduce more noise and result in slower con-
vergence. Figure 9a shows the NMAE plot against the
learning rate of Adam optimizer using 512 batch size, it
becomes evident that a value of 5× 10−5 provides an ideal
learning rate. Similarly, the Figure 9b shows the NMAE
plot against the batch size for a learning rate of 5× 10−5;
it indicates that a batch size of 128 is optimal for this
scenario.
Next, we focus on optimizing the number of layers used

in the training network. This involves incorporating one
deconvolutional layer with same shape as its preceding
layer at positions A, B, or C as depicted in Figure 10.
The results are tabulated in Table 3. The results indicate
that adding a single layer at positions A and B leads to the
lowest NMAE values. The effect of incorporating multiple
layers at position A and B is shown in Figure 10, which
indicates that adding eight such layers is optimal. The
inclusion of dense layers after each input layer does not
seem to have a significant impact on the training process.
After 1,000 epochs, the NMAEs of the optimized (NN

I) on the first and second test datasets (10% of total
data) are 6.52 × 10−4 and 4.8 × 10−3, respectively. Fur-
thermore, we investigated the robustness of the trained
NN I on unseen data using the test cases presented in
Table 2. Figure 11 displays the displacement predicted
by NN I and the corresponding reference displacement
(FEM) at t = 2.5 ms for each test case. Even though the
test cases were unseen data during the training, it was

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 9

Table 3. Effect of added layers at positions A, B and C.

Added layer NMAE on test dataset Training time
(in minutes for 500 epochs)

Position A 3.53× 10−3 98
Position B 3.873× 10−3 102
Position C 4.59× 10−3 115

Position A & B 3.51× 10−3 111
Reference network 4.54× 10−3 92

Fig. 8. A schematic for the architecture of NN I.

Fig. 9. Effect of learning rate and batch size on the learning.

Fig. 10. Effect of NMAE and training time on the number of
added layers at positions A&B.

observed that the predicted solution and FEM solution
were in excellent agreement for the first two test cases
in which the same direction of loading cases were seen
during training. Based on the results of the first two test
cases in Figure 11, NN I achieved good performance not
only on loadings within the range it has been trained on,
but also on loadings far outside the range it has been
trained on. Based on the results of test cases 3 and 4, it
can be deduced that the predicted solution using NN I
is in good agreement with FEM solution only if similar
directions of loading are present in the training set. From
the aforementioned results, we can also conclude that the
trained NN I model can generalize well to unseen values
of loadings given the loading direction is present in the
training set.

10 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Fig. 11. Comparison between the reconstructed displacement using NN I of the PGANN framework vs. baseline model (FEM)
for various test cases. The displacements shown are at the final time of each solution, whereas the NMAE value indicates the mean
of all time steps.

Fig. 12. Schematics of the architecture of NN II: Converting displacement input tensor to vector via convolutional layers and
merging with other inputs, obtaining latent vector through dense layer, and generating outputs via dense and convolutional layers.

4.2.2 NN II : reduction of ul
The architecture utilized to train the first autoencoder
is shown in Figure 12. The encoder component (ϕu) has
the following structure. It begins with three input layers:
vtΓ, ωt

Γ, and utl . Following the input layer u
t
l , three con-

volution layers (Conv2D) with 16, 32, and 64 filters and
2 strides are incorporated to achieve an output shape of
[5,5,64]. This output is then reshaped to form a dense
layer with a size of 1,600. For the input layers vtΓ and ωt

Γ,
several dense layers are added. Subsequently, these layers
are concatenated with the dense layer derived from the
input utl to form the latent vector ztu. The decoder com-
ponent (ϕ′u), has the same structure as the encoder but in
reverse order.
In a similar manner to the previous section of training

NN I, various hyper-parameters such as learning rate,
batch size, number of convolutional layers are optimized.

Using a learning rate of 5× 10−5 and a batch size of 256
yielded optimal results for both datasets. By comparing
the error and its corresponding training cost, we concluded
that it is best not to add layers at positions A, B, and C.
Additionally, we found that including 2 dense layers after
vtΓ and ωt

Γ resulted in the best performance. One of the
main hyper-parameters to optimize in autoencoder is the
size of latent vector ztu. Figure 13a shows the performance
with respect to the size of the latent vector after 100
epochs. It can be observed that the model has the best
performance when using 64 latent variables. We choose a
latent vector of size 50 as an optimal value as there is no
significant decrease in NMAE with increase in size of ztu.
Figure 13b displays the latent vector of test case 1 with
size 50. After 1,000 epochs, the NMAEs of the optimized
model on the first and second test datasets are 6.38×10−4

and 4.38× 10−3 respectively.

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 11

Fig. 13. Training of NN II.

Fig. 14. Comparison between the reconstructed displacement using NN II of PGANN framework vs. reference model (FEM) for
various test cases.

Figure 14 shows the performance of the network and
the result of reconstructed displacement using 50 latent
variables. From the first two test cases, it can be observed
that, although the input is scaled by a large magnitude,
the network is able to reconstruct local displacement
accurately just using 50 latent variables. However, the
reconstruction is poor in test case 3. Notably, in test
case 4, where a combination loading similar to that in
the training set is present, the reconstruction performance
improves.
The use of skip connections in an autoencoder architec-

ture can have a significant impact on its performance [34].
Skip connections allow for the flow of information from the
input layer directly to the output layer, bypassing the bot-
tleneck or compressed representation in the middle layers.
This allows for the preservation of important information
that may be lost during the compression process. Here
it was observed that the use of skip connections did not
result in a significant reduction of NMAEs.

4.2.3 NN II : reduction of εp

The reference architecture of the proposed autoencoder,
designed for reducing the dimension of effective plastic
strain of local problem (εp,l), consists of two main compo-
nents: the encoder (ϕεp) and the decoder (ϕ′εp), as shown
in Figure 15. The ϕεp takes εp,l as input data and maps it
to a lower-dimensional latent vector ztεp . The input layer
has a size of 300, corresponding to each element of the
local mesh. In this case, we opted to use only dense lay-
ers instead of convolutional layers, given the relatively
small size of the input layer. The ϕ′εp which mirrors the
architecture of ϕεp aims to reconstruct εp,l from ztεp .
The most crucial hyper-parameter to optimize in this

model is the size of the latent vector ztεp . Figure 16a
displays the NMAE in relation to the size of the latent
vector after 500 epochs with batch size 256 and learning
rate 5× 10−5. Notably, the best performance is achieved

12 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Table 4. NMAE on NN II training of εp,l for various test cases.

Test case 1 Test case 2 Test case 3 Test case 4

N
M
A
E

6.1× 10−3 7.98× 10−3 7.2× 10−2 3.4× 10−2

Fig. 15. Schematic representation of the architecture of NN II: An autoencoder for converting the εp,l input vector to a latent
vector through dense layers, and its reconstruction.

Fig. 16. Training of NN II.

when employing a latent vector of size 16. Addition-
ally, the impact of adding n layers between two layers
of the reference architecture, each having the same size
as the layer before, is shown in Figure 16b. It is obvi-
ous that n = 1 is the ideal value. After 2,000 epochs, the
NMAE of the optimized model on the first and second
test datasets are 6.6 × 10−3 and 4.1 × 10−3 respectively.
Table 4 shows the performance of the network and the
result of reconstructed εp,l using 12 latent variables.

4.2.4 NN III

In this example, the goal of NN III is to predict the LV
at tn+1

g given LVs at tn−3
g , tn−2

g , tn−1
g and tng . The encoder-

decoder LSTM architecture takes two sequential inputs:
the latent vector zu and the latent vector zεp from past

instances of the local time scale. During the online phase,
as the LVs are only available in the global time scale, a
cubic interpolation method is employed to interpolate the
LVs into the local time scale. This interpolation approach
also enables the handling of varying time steps for the
global problem during the online stage. In this specific
implementation, the LSTM is fed with the previous 30
time steps, resulting in input shapes of [31,50] for zu and
[31,16] for zεp , respectively.
The data required to train NN III are generated using

the encoder (ϕu and ϕεp) components of the trained NN
II. The first dataset is created using the FEM simulation
with load applied in a single direction. Each simulation
consists of 10,800 time steps. To create a single input-
output data pair, a sequence of 61 time steps is selected
and first 31 are allotted to the input and the remaining is

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 13

Table 5. NMAE on NN III training for various test cases.

Test case 1 Test case 2 Test case 3 Test case 4

N
M
A
E

1.22× 10−3 1.03× 10−3 1.27× 10−1 4.99× 10−2

Fig. 17. Optimization of the number of LSTM units in NN III

allotted to the output. By selecting various combinations,
a total of 9,000 input-output pairs are generated from one
simulation, resulting a 360,000 input-output pair from 40
simulations. A second dataset is also created with enriched
loading cases, yielding 1,800,000 input-output pairs.
The number of LSTM units used in both the encoder

and decoder parts of theNN III is one of the most crucial
hyper-parameters to optimize in this network. Because
both input and output have the same shape, here we use
the same number of LSTM units in both the encoder and
decoder. This design allows for a seamless flow of infor-
mation and promotes consistency between the encoding
and decoding processes. Figure 17 shows the relationship
between the number of LSTM units and two key metrics,
namely the NMAE and training time for the first dataset
over 500 epochs. To achieve a balance between compu-
tational time and NMAE, the optimal number of LSTM
units is 512. After 1,000 epochs, the NMAE of the opti-
mized NN III (with 512 LSTM units) on the first and
second test datasets (10% of total data) is 4.56 × 10−7

and 1.10× 10−6, respectively.
In Figure 18, the predictions of the latent vector zu

usingNN III are displayed. The NN model is trained with
1,000 epochs on the second dataset, and randomly selected
data from the test dataset of the second dataset is used for
plotting. The plot shows 5 out of 50 latent variables that
are randomly selected. The prediction using 512 LSTM
units in the NN model is reasonably accurate. However,
the prediction with 756 LSTM units matches well with
the ground truth, as shown in Figure 18c. It is important
to note that the predictions of the latent variables with
128 and 1024 LSTM units are not displayed in the plot.
This is because the predicted latent variable has a poor
match with the ground truth for 128 LSTM units and an
excellent match for 1024 LSTM units.
Figure 18 displays the prediction of the zu using NN

III trained with 1,000 epochs on second dataset with 256,

512, and 756 LSTM units of randomly selected data from
the test dataset of the second dataset. Randomly selected
5 out of 50 latent variables are displayed in the plot. Using
512 LSTM units, the prediction is reasonably accurate.
The prediction with 756 LSTM units matches well with
ground truth, see Figure 18c. Note that the predictions of
LV with 128 and 1024 LSTM units are not shown since
the predicted LV has a poor and excellent match with the
ground truth, respectively. Similarly, Figure 19 showcases
the predictions of the variable zεp using NN III with
the same configuration as before. Out of the 12 latent
variables, four are chosen for plotting purposes that are
varying with time. It is evident from the figure that using
756 LSTM units yields the best results.
We analyze the robustness of the trained NN III of

756 LSTM units on unseen data with inputs different
from the two training datasets on which it was trained.
We use the same test configurations as in Section 4.2.1.
Table 5 summarizes the performance of the NN III for
unseen test cases. The predicted evolution of LV given its
past is shown in Figure 20. From Figure 20a-20b, it can
be clearly seen that the evolution of LV with time can
be perfectly predicted using the proposed NN III even
though data with such higher magnitudes is not available
in the training set.

4.2.5 NN IV training and evaluation

The reference NN (first guess) model used to train NN
IV is displayed in Figure 21. In this architecture, the
input displacement layer utl of size [40× 3] is encoded to
a dense layer of size 1,600 using convolutional layers. The
encoded layer is combined with the other input layers
vtΓ and ωΓ

t . The number of dense layers added between
the output layer rtΓ and combined layer is one of the
hyper-parameters we optimize in this section. After 1,000
iterations, the NMAE of the optimizedNN IV on the first
and second test datasets is 2.4 × 10−3 and 1.02 × 10−2,
respectively.
The trained model is verified on the same test configura-

tions as in Section 4.2.1. The performance of the trained
NN IV for various test configurations is tabulated in
Table 6. Figure 22 shows the comparison of the recon-
structed rtΓ using NN IV and the actual rtΓ from FEM.
It is obvious from the reconstruction with first two test
cases that the trained NN IV can capture the variations
in the force very well for unseen large magnitudes. How-
ever, from the third test case the reconstruction usingNN
IV is poor when unseen direction of loading is present. It
is inferred from last two test cases that the reconstruction
can be improved by adding combination loading to the
training set.

14 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Fig. 18. Prediction of the latent vector zu using NN III with 256, 512, and 756 LSTM units: given the LV of past time steps
(0–30), the NN III predicts the LVs of next 30 time steps, with dashed and solid lines indicating predicted and ground truth,
respectively.

Fig. 19. Prediction of the latent vector zεp using NN III with 256, 512, and 756 LSTM units. Dashed lines represent the predicted
latent vectors, while solid lines represent the ground truth.

5 Application to spotwelded plates

In this section, we extend the previously introduced tech-
niques to an industrial application in three dimensions.
The car body-in-white (BIW) is assembled by spotwelding
numerous sheet metals together. Due to heat treatment
during the spotwelding process, these welds might have
complex properties. In order to accurately model these
localized nonlinear behaviors, refined 3D elements are
required near the spotwelded region. Due to the high com-
putational cost, these refinements are avoided in a full
vehicle crash simulation, and simplified models (1D ele-
ments) are traditionally used. Having numerous spotwelds
in a car structure, replacing the fine 3D FEM model
with data-driven ROM in localized spotwelded zones can
significantly reduce the computational cost.

5.1 Data generation

Let us consider a spotweld domain as shown in Figure 23.
The edges of bottom plates are clamped and the loading
is applied on the edges of the top plate for 1.5 ms. The
integration time step is set to a constant value ∆tl =
5.0× 10−5 ms, calculated based on (2).
The training dataset was constructed using a total of

60 simulation cases, using various loading magnitudes and
directions. The minimum and maximum magnitudes of
loading applied in each direction are listed in Table 7.

These extreme values denote the approximate maximum
and minimum load capacity of the material, respectively,
before failure occurs. The first 22 simulations correspond
to instances in which the loading is applied in a single
direction, while the remaining simulation cases correspond
to loading in two different directions simultaneously.
In this study, snapshots of the simulation were created

by saving the global interface velocities, denoted as vΓg ,
the global interface forces, denoted as rΓg , and the dis-
placement of the local domain, denoted as ul, at selected
time steps. Each simulation contains approximately 3,000
time steps. Unlike the previous example presented in
Section 4, the quantities at the interface nodes are chosen
at the global interface nodes. The model contains a total of
24 global interface nodes. Furthermore, the local displace-
ment ul was interpolated to a regular three-dimensional
cartesian grid of size 31 × 31 × 8. As in the previous
example, the data is partitioned such that 80% of the
total dataset is used for training the network, while the
remaining 20% is divided between cross-validation and
test datasets, with each set comprising 10% of the total
data.

5.2 Training and verification of PGANN

In this section, we detail the process of individually train-
ing each section of the proposed PGANN, as well as
its verification on unseen data. In the context of a 3D

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 15

Fig. 20. Prediction of the latent vector zεp using NN III for various test cases. The dashed and solid lines indicate predicted and
reference values, respectively.

Fig. 21. Schematics of the NN IV architecture, converting
input ut

l tensor to vector via convolutional layers and merging
with other inputs, and obtaining the output ttΓ through dense
layers.

structural problem, the input layer of the PGANN com-
prises of two components: vΓg

and uΓg
, and the output

is rΓg
. Unlike the previous example, the information on

plasticity is not fed into the LSTM, this is mainly for
reducing the complexity of the architecture. The train-
ing strategy employed for the current models is similar
to the one outlined in Section 4. However, in contrast
to the model discussed in the previous example, the cur-
rent model uses higher dimensional convolutional layers,

specifically Conv3D and Conv3DTranspose. The NMAE
of each component of the trained PGANN after 2,000
epochs on the test cases is presented in Table 8.
Similar to the previous example, each hyper-parameter

is optimized. The most critical hyper-parameter to opti-
mize in this study is the size of the latent vector. The
NMAE of the NN II after 600 epochs with respect to
the size of the latent vector is shown in Figure 24a. It
is observed that the NN II demonstrates optimal per-
formance when using a latent vector of 50 variables. A
representative latent vector of size 50 from one of the
training cases is presented in Figure 24b. It is obvious
that the majority of the components of the latent vector
are time-dependent.
To evaluate the effectiveness of the trained model,

four additional test cases were generated with randomly
selected magnitudes and direction that were not present in
the training data set. The direction and magnitude of the
applied displacement on the edges of the top boundary are
reported in Table 9. Note that unlike the previous exam-
ple, the magnitudes of the test cases have been limited to
the range of magnitudes used in the training dataset to
prevent failure of material.
In this study, we investigate the robustness of trained

PGANN on unseen data using the test cases presented in
Table 9. To evaluate the performance of the PGANNs,
we compare the displacement predicted by the NN (NN
I and NN II) with the reference displacement obtained

16 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Fig. 22. Prediction of interface forces using NN IV for various test cases: displaying only 4 out of 360 variables with dashed and
solid lines indicating predicted and reference values, respectively.

Figure 23: Model of a spotwelded plate.

Translational
loading (mm)

Rotational
loading (rad)

sx sy sz θx θy θz

min -0.5 -0.5 0 -0.1 -0.1 -0.4

max 0.5 0.5 2.6 0.1 0.1 0.4

Table 7: Parameters of training data

nodes are chosen at the global interface nodes. The model contains a total of 24 global interface
nodes. Furthermore, the local displacement ul was interpolated to a regular three-dimensional
cartesian grid of size 31×31×8. As in the previous example, the data is partitioned such that525

80% of the total dataset is used for training the network, while the remaining 20% is divided
between cross-validation and test datasets, with each set comprising 10% of the total data.

5.2 Training and Verification of PGANN
In this section, we detail the process of individually training each section of the proposed PGANN,
as well as its verification on unseen data. In the context of a 3D structural problem, the input530

layer of the PGANN comprises of two components: vΓg and uΓg , and the output is rΓg . Unlike
the previous example, the information on plasticity is not fed into the LSTM, this is mainly for
reducing the complexity of the architecture. The training strategy employed for the current mod-
els is similar to the one outlined in Section 4. However, in contrast to the model discussed in the
previous example, the current model uses higher dimensional convolutional layers, specifically535

Conv3D and Conv3DTranspose. The NMAE of each component of the trained PGANN after 2000
epochs on the test cases is presented in Table 8.

NN I NN II NN III NN IV

N
M

A
E

5.12×10−3 2.85×10−3 3.45×10−2 5.35×10−3

Table 8: NMAE of test dataset.

23

Fig. 23. Model of a spotwelded plate.

from FEM. The results of this comparison is presented in
Figure 25, where the displacement at the final time step
t = 1.5 ms for each test case is displayed. The NMAEs
corresponding to each case are shown in the bracket.
Additionally, we also evaluate the prediction of the LVs
using NN III, which was trained with 756 LSTM units.
The results of this evaluation are displayed in Figure 26.

Furthermore, we compare the reconstructed rtΓg
using NN

IV and the actual rtΓg
from FEM, as shown in Figure 27.

From the results of these evaluations, it can be observed
that the solution from the Neural Network is in good
agreement with its reference solution. This suggests that
the PGANNs trained in this study are robust and can
provide accurate predictions on unseen data.

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 17

Table 6. Prediction error on NN IV training for various test cases.

Test case 1 Test case 2 Test case 3 Test case 4

N
M
A
E

1.05× 10−2 9.77× 10−3 1.03 2.10× 10−2

Table 7. Parameters of training data

Translational
loading (mm)

Rotational
loading (rad)

sx sy sz θx θy θz

min -0.5 -0.5 0 -0.1 -0.1 -0.4

max 0.5 0.5 2.6 0.1 0.1 0.4

Table 8. NMAE of test dataset.
NN I NN II NN III NN IV

N
M
A
E

5.12× 10−3 2.85× 10−3 3.45× 10−2 5.35× 10−3

Table 9. Test cases used for verification of PGANN architectures for 3D example.

Translational
loading (mm)

Rotational
loading (rad)

Test case sx sy sz θx θy θz

1 – 0.125 – 0.025 – –
2 – – 0.650 – 0.025 -
3 –0.12 – – – – –0.10
4 – –0.12 - –0.03 – –

 time step
(a) Effect of the size of the latent vector on NMAE (b) LVs of test case 1

Fig. 24. Training of NN II

18 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)
Figure 26. Furthermore, we compare the reconstructed rt

Γg
using NN IV and the actual rt

Γg
from

FEM, as shown in Figure 27.

Test case 1 Test case 2 Test case 3 Test case 4

F
E

M

(6.98×10−4) (7.64×10−4) (2.43×10−3) (2.43×10−3)

N
N

I

(6.98×10−4) (7.64×10−4) (2.43×10−3) (2.43×10−3)

N
N

II

Figure 25: Comparison between the reconstructed displacement using NN I and NN II of
PGANN framework vs. baseline model (FEM) for various test cases. The displacements shown
are at the final time, whereas the NMAE values shown in brackets indicate the mean of all time
steps.

From the results of these evaluations, it can be observed that the solution from the Neural
Network is in good agreement with its reference solution. This suggests that the PGANN trained560

in this study are robust and can provide accurate predictions on unseen data.

6 Conclusion
The application of PGANN to the metamodeling of local nonlinear structures is shown in this
work. We developed this approach on a 2D plate with a hole as well as a 3D case with spot-
welded plates undergoing fast deformation, representing nonlinear elastoplasticity problems. In565

the proposed network architecture, we introduced a pair of displacement and effective plastic
strain layers in between input and output. We compared the results obtained from PGANN ar-
chitecture to those of traditional FEM methods to demonstrate its ability to generate physically
consistent and generalizable solutions; the network yields promising results even for unseen
magnitude of data. Despite the success exhibited by the PGANN approach, we have found that570

it faces challenges when dealing with unseen type of loading when the similar loading direction
is not present in the training set. The network architecture trained on single load cases is less
accurate on problems with combination loading types. We find that the reconstruction can be
improved by adding more complex loading data to the training set.

Future benchmarking with other model order reduction tools such as POD will provide valuable575

insights into the effectiveness and limitations of the PGANN approach. Looking ahead, future
research will be needed to further improve the accuracy and performance of the PGANN ap-
proach, as well as to assess its industrial applicability. To achieve this, we plan to use design of
experiment tools to generate parameters required for generating data. Another objective is to

25

Fig. 25. Comparison between the reconstructed displacement using NN I and NN II of PGANN framework vs. baseline model
(FEM) for various test cases. The displacements shown are at the final time, whereas the NMAE values shown in brackets indicate
the mean of all time steps.

0.255 0.260 0.265 0.270 0.275 0.280 0.285
Time (ms)

0.15

0.10

0.05

0.00

0.05

(a) Test case 1

0.255 0.260 0.265 0.270 0.275 0.280 0.285
Time (ms)

0.10

0.05

0.00

0.05

0.10

(b) Test case 2

0.255 0.260 0.265 0.270 0.275 0.280 0.285
Time (ms)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

(c) Test case 3

0.325 0.330 0.335 0.340 0.345 0.350 0.355
Time (ms)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

(d) Test case 4

Figure 26: Prediction of the latent vector zεp using NN III for various test cases. The solid and
dashed lines indicating predicted and reference values, respectively.

enrich the training set with various model parameters such as material and geometric param-580

eters, including plate thickness and diameter of spotweld. Additionally, non-intrusive coupling
of NN based reduced model with explicit FEM solver is a work in progress. We also plan to
investigate the use of Physics-Informed Neural Networks to impose basic principles of physics
on the metamodel, thereby improving its physical consistency and training data requirement.

References585

[1] A. Reille, V. Champaney, F. Daim, Y. Tourbier, N. Hascoet, D. Gonzalez, E. Cueto, J. L. Du-
val, F. Chinesta, Learning data-driven reduced elastic and inelastic models of spot-welded
patches, Mechanics & Industry 22 32 (2021).

[2] P. Salvini, F. Vivio, V. Vullo, A spot weld finite element for structural modelling, Int. J. Fa-
tigue 22, 645-656 (2000).590

[3] A. Rupp, K. Storzel, V. Grubisic, Computer aided dimensioning of spot-welded automotive
structures, SAE technical paper 950711 (1995).

[4] R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical
physics, IBM J. Res. Dev. 11, 215–234(1967).

26

Fig. 26. Prediction of the latent vector zεp using NN III for various test cases. The solid and dashed lines indicating predicted
and reference values, respectively.

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 19

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Time (ms)

0.3

0.2

0.1

0.0

0.1

0.2

In
te

rfa
ce

 fo
rc

e
(N

)

(a) Test case 1

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Time (ms)

0.1

0.0

0.1

0.2

0.3

In
te

rfa
ce

 fo
rc

e
(N

)

(b) Test case 2

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Time (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
te

rfa
ce

 fo
rc

e
(N

)

(c) Test case 3

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Time (ms)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

In
te

rfa
ce

 fo
rc

e
(N

)

(d) Test case 4

Figure 27: Prediction of interface force using NN IV for various test cases: displaying only 4
out of 360 variables in different colours with dashed and solid lines indicating predicted and
reference values, respectively

[5] J. Mandel. Balancing domain decomposition. International Journal for Numerical Methods595

in Biomedical Engineering., 9 (3): 233-241 (1993).

[6] C. Farhat, and F.-X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm. Int. J. Numer. Meth. Engng., 32: 1205-1227 (1991).

[7] P. Ladeveze, O. Loiseau, and D. Dureisseix. A micro–macro and parallel computational strat-
egy for highly heterogeneous structures. Int. J. Numer. Meth. Engng., 52: 121-138 (2001).600

[8] H. BenDhia, and G. Rateau. The Arlequin method as a flexible engineering design tool. In-
ternational Journal for Numerical Methods in Engineering, 62:1442–1462 (2005).

[9] L. Gendre, O. Allix, and P. Gosselet. Non-intrusive and exact global/local techniques for
structural problems with local plasticity. Comput Mech., 44: 233–245 (2009).

[10] L. Gendre, O. Allix, and P. Gosselet. A two-scale approximation of the Schur complement605

and its use for non-intrusive coupling. Int. J. Numer. Meth. Engng., 87: 889-905 (2011).

[11] JC. Passieux, J. Réthoré, A. Gravouil, MC Baietto. Local/global non-intrusive crack propa-
gation simulation using a multigrid X-FEM solver. Comput Mech. 56(2):1381–93 (2013).

27

Fig. 27. Prediction of interface forces using NN IV for various test cases: displaying only 4 out of 360 variables in different colours
with dashed and solid lines indicating predicted and reference values, respectively

6 Conclusion

The application of PGANNs to the metamodeling of
local nonlinear structures was shown in this work. We
developed this approach on a 2D plate with a hole as
well as a 3D case with spot-welded plates undergoing
fast deformation, representing nonlinear elastoplasticity
problems. In the proposed network architecture, we intro-
duced a pair of displacement and effective plastic strain
layers in between input and output. We compared the
results obtained from PGANN architecture to those of
traditional FEM methods to demonstrate its ability to
generate physically consistent and generalizable solutions;
the network yields promising results even for unseen mag-
nitude of data. Despite the success exhibited by the
PGANN approach, we have found that it faces challenges
when dealing with unseen type of loading when the sim-
ilar loading direction is not present in the training set.
The network architecture trained on single load cases
is less accurate on problems with combination loading

types. We found that the reconstruction can be improved
by adding more complex loading data to the training
set.
Future benchmarking with other model order reduc-

tion tools such as POD will provide valuable insights into
the effectiveness and limitations of the PGANN approach.
Looking ahead, future research will be needed to further
improve the accuracy and performance of the PGANN
approach, as well as to assess its industrial applicabil-
ity. To achieve this, we plan to use design of experiment
tools to generate parameters required for generating data.
Another objective is to enrich the training set with various
model parameters such as material and geometric param-
eters, including plate thickness and diameter of spotweld.
Additionally, non-intrusive coupling of NN-based reduced
model with explicit FEM solver is a work in progress.
We also plan to investigate the use of Physics-Informed
Neural Networks to impose basic principles of physics on
the metamodel, thereby improving its physical consistency
and alleviating training data requirement.

20 A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023)

Appendix A

Table A.1. Datasets used to train/cross-validate/test the plate with a hole example.

Direction Magnitude of monotonically varying load during (t0 → tend) s:
Translational Displacement (mm), θ: rotation angle (rad)

D
at
as
et
2

D
at
as
et
1 sx (0→ 10), (0→ 15), (0→ 20), (0→ 25),

(0→ −5), (0→ −10), (0→ −15), (0→ −20)
sy (0→ 8), (0→ 16), (0→ 24), (0→ 32),

(0→ −8), (0→ −16), (0→ −24), (0→ −32)
sz (0→ 8), (0→ 16), (0→ 24), (0→ 32),

(0→ −8), (0→ −16), (0→ −24), (0→ −32)
θx (0→ 0.5), (0→ 1.0), (0→ 1.5), (0→ 2.0),

(0→ −0.5), (0→ −1.0), (0→ −1.5), (0→ −2.0)
θy (0→ 2), (0→ 4), (0→ 6), (0→ 8),

(0→ −2), (0→ −4), (0→ −6), (0→ −8)
[sx & sy] [(0→ 16) & (0→ 20)], [(0→ 16) & (0→ −20)],

[(0→ −16) & (0→ 20)], [(0→ −16) & (0→ −20)]
[sx & sz] [(0→ 16) & (0→ 20)], [(0→ 16) & (0→ −20)],

[(0→ −16) & (0→ 20)], [(0→ −16) & (0→ −20)]
[sx & θx] [(0→ 16) & (0→ 1.5)], [(0→ 16) & (0→ −1.5)],

[(0→ −16) & (0→ 1.5)], [(0→ −16) & (0→ −1.5)]
[sx & θy] [(0→ 16) & (0→ 5.0)], [(0→ 16) & (0→ −5.0)],

[(0→ −16) & (0→ 5.0)], [(0→ −16) & (0→ −5.0)]
[sy & sz] [(0→ 16) & (0→ 16)], [(0→ 16) & (0→ −16)],

[(0→ −16) & (0→ 16)], [(0→ −16) & (0→ −16)]
[sy & θy] [(0→ 16) & (0→ 5.0)], [(0→ 16) & (0→ −5.0)],

[(0→ −16) & (0→ 5.0)], [(0→ −16) & (0→ −5.0)]
[sz & θx] [(0→ 16) & (0→ 1.5)], [(0→ 16) & (0→ −1.5)],

[(0→ −16) & (0→ 1.5)], [(0→ −16) & (0→ −1.5)]
[sz & θy] [(0→ 15) & (0→ 5.0)], [(0→ 16) & (0→ −5.0)],

[(0→ −16) & (0→ 5.0)], [(0→ −16) & (0→ −5.0)]
[θx & θy] [(0→ 1.5) & (0→ 6.5)], [(0→ 1.5) & (0→ −6.5)],

[(0→ −1.5) & (0→ 6.5], [(0→ −1.5) & (0→ −6.5)]

Acknowledgments. The authors gratefully acknowledge the sup-
port provided by CNRS, EPF, ALTAIR, and STELLANTIS for
this research.

References

[1] A. Reille, V. Champaney, F. Daim, Y. Tourbier, N. Hascoet,
D. Gonzalez, E. Cueto, J.L. Duval, F. Chinesta, Learning
data-driven reduced elastic and inelastic models of spot-
welded patches, Mech. Ind. 22, 32 (2021)

[2] P. Salvini, F. Vivio, V. Vullo, A spot weld finite element
for structural modelling, Int. J. Fatigue 22, 645–656 (2000)

[3] A. Rupp, K. Storzel, V. Grubisic, Computer aided dimen-
sioning of spot-welded automotive structures, SAE Tech.
Pap. 950711 (1995)

[4] R. Courant, K. Friedrichs, H. Lewy, On the partial differ-
ence equations of mathematical physics, IBM J. Res. Dev.
11, 215–234 (1967)

[5] J. Mandel, Balancing domain decomposition, Int. J. Numer.
Methods Biomed. Eng. 9, 233–241 (1993)

[6] C. Farhat, F.-X. Roux, A method of finite element tearing
and interconnecting and its parallel solution algorithm, Int.
J. Numer. Meth. Eng. 32 1205–1227 (1991)

[7] P. Ladevèze, O. Loiseau, D. Dureisseix, A micro–macro
and parallel computational strategy for highly heteroge-
neous structures, Int. J. Numer. Meth. Eng. 52, 121–138
(2001)

[8] H. Ben Dhia, G. Rateau, The Arlequin method as a flexible
engineering design tool, Int. J. Numer. Methods Eng. 62,
1442–1462 (2005)

[9] L. Gendre, O. Allix, P. Gosselet, Non-intrusive and exact
global/local techniques for structural problems with local
plasticity, Comput Mech. 44, 233–245 (2009)

[10] L. Gendre, O. Allix, P. Gosselet, A two-scale approxi-
mation of the Schur complement and its use for non-
intrusive coupling, Int. J. Numer. Meth. Eng. 87, 889–905
(2011)

[11] J.C. Passieux, J. Réthoré, A. Gravouil, M.C. Baietto,
Local/global non-intrusive crack propagation simulation
using a multigrid X-FEM solver, Comput Mech. 56,
1381–1393 (2013)

[12] M. Duval, J.C. Passieux, M. Salaün, et al., Non-intrusive
coupling: recent advances and scalable nonlinear domain
decomposition, Arch. Computat. Methods Eng. 23, 17–38
(2016)

[13] G. Guguin, O. Allix, P. Gosselet, On the computation
of plate assemblies using realistic 3D joint model: a
non-intrusive approach, Adv. Model. Simul. Eng. Sci. 3
(2016)

[14] T. Chantrait, J. Rannou, A. Gravouil, Low intrusive cou-
pling of implicit and explicit time integration schemes for
structural dynamics: application to low energy impacts on
composite structures, Finite Elem. Anal. Des. 86, 23–33
(2014)

A. Pulikkathodi et al.: Mechanics & Industry 24, 34 (2023) 21

[15] O. Bettinotti, O. Allix, U. Perego, V. Oancea, B. Malherbe,
Simulation of delamination under impact using a global–
local method in explicit dynamics, Finite Elem. Anal. Des.
125, 1–13 (2017)

[16] F. Chinesta, A. Huerta, G. Rozza, K. Willcox, Model order
reduction, in: E. Stein, R. de Borst, T. Hughes (Eds.), The
Encyclopedia of Computational Mechanics, 2nd ed., John
Wiley & Sons Ltd., 2015

[17] G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis
approximation and a posteriori error estimation for
affinely parametrized elliptic coercive partial differen-
tial equations, Arch. Computat. Methods Eng. 15, 229
(2008)

[18] S.K. Kauwe, J. Graser, A. Vazquez, T.D. Sparks, Machine
learning prediction of heat capacity for solid inorganics,
Integr. Mater. Manuf. Innov. 7, 43–51 (2018)

[19] P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Jet
substructure classification in high-energy physics with deep
neural networks, Phys. Rev. D 93, 9 (2016)

[20] C. Tesche, C.N. De Cecco, S. Baumann, et al., Coronary
CT angiography–derived fractional flow reserve: machine
learning algorithm versus computational fluid dynamics
modeling. Radiology 288, 64–72 (2018)

[21] B. Alipanahi, A. Delong, M. TWeirauch, B.J. Frey, Pre-
dicting the sequence specificities of DNA-and RNA-binding
proteins by deep learning, Nat. Biotechnol. 33, 831–838
(2015)

[22] J. Willard, X. Jia, S. Xu, et al., Integrating scientific
knowledge with machine learning for engineering and
environmental systems, ACM Comput. Surv. 55, 1–37
(2022)

[23] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, J. Computat. Phys. 378,
686–707 (2019)

[24] F. As’ad, P. Avery, C. Farhat, A mechanics-informed arti-
ficial neural network approach in data-driven constitutive

modelling, AIAA 2022-0100. AIAA SCITECH 2022 Forum,
2022

[25] J.S. Read, X. Jia, J. Willard, A.P. Appling, et al., Process-
guided deep learning predictions of lake water temperature,
Water Resour. Res. 55, 9173–9190 (2019)

[26] P. Sturmfels, S. Rutherford, M. Angstadt, et al., A domain
guided CNN architecture for predicting age from structural
brain images, arXiv:1808.04362 (2018)

[27] A. Daw, R.Q. Thomas, C.C. Carey, J.S. Read, A.P.
Appling, A. Karpatne, Physics-guided architecture (PGA)
of neural networks for quantifying uncertainty in lake
temperature modelling, arXiv:1911.02682 (2019)

[28] F. Hamilton, A.L. Lloyd, K.B. Flores, Hybrid modeling and
prediction of dynamical systems, PLoS Computat. Biol. 13,
pp. e1005655 (2017)

[29] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Ele-
ments for Continua and Structures, John Wiley & Sons,
Ltd, 2000

[30] O. Bettinotti, O. Allix, U. Perego, V. Oancea, B. Mal-
herbe, A fast weakly intrusive multiscale method in explicit
dynamics, Int. J. Numer. Methods Eng. 100, 577–595
(2014)

[31] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao,
M. Bessa, Deep learning predicts path-dependent plasticity,
Proc. Natl. Acad. Sci. U.S.A. 116, 26414–26420 (2019)

[32] M.B. Gorji, M. Mozaffar, J.N. Heidenreich, J. Cao, D.
Mohr, On the potential of recurrent neural networks for
modeling path dependent plasticity, J. Mech. Phys. Solids
143, 103972 (2020)

[33] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier,
Thermodynamics-based artificial neural networks for con-
stitutive modelling, J. Mech. Phys. Solids 147, 1–28
(2021)

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z.B. Wojna,
Rethinking the inception architecture for computer vision,
CoRR, 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016,
pp. 2818–2826 2016.

Cite this article as: A. Pulikkathodi, E. Lacazedieu, L. Chamoin, J. P. Berro Ramirez, L. Rota, and M. Zarroug, A Neural
Network-Based Data-Driven local modeling of spotwelded plates under impact, Mechanics & Industry 24, 34 (2023)

https://arxiv.org/abs/1808.04362
https://arxiv.org/abs/1911.02682

	A neural network-based data-driven local modeling of spotwelded plates under impact
	1 Introduction
	2 Problem formulation
	3 Proposed physics-guided NN architecture (PGANN)
	3.1 Structure of PGANN
	3.2 Training configuration and metrics

	4 A first validation example: plate with a hole
	4.1 Data generation and post-processing
	4.2 Training and verification of PGANN
	4.2.1 NN I
	4.2.2 NN II : reduction of ul
	4.2.3 NN II : reduction of p
	4.2.4 NN III
	4.2.5 NN IV training and evaluation

	5 Application to spotwelded plates
	5.1 Data generation
	5.2 Training and verification of PGANN

	6 Conclusion

	References

