Security and Safety, Vol. 2, 2023023 (2023)
https://doi.org/10.1051 /sands/2023023
sands.edpsciences.org
Security
Safety

Research Article OPEN @ ACCESS

Other Fields

Multi-path exploration guided by taint and probability
against evasive malware

Fangzhou Xu®34, Wang Zhang!3:4, Weizhong Qiang!3-*:6-* and Hai Jin!2-°

1 National Engineering Research Center for Big Data Technology and System, Wuhan 430074, China
2 Services Computing Technology and System Lab, Cluster and Grid Computing Lab, Wuhan 430074, China
Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research Center on Big Data
Security, Wuhan 430074, China
4 School of Cyber Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China
5 School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China
¢ Jinyinhu Laboratory, Wuhan 430040, China

Received: 8 May 2023 / Revised: 20 June 2023 / Accepted: 11 August 2023 / Published online: 05 September 2023

Abstract Static analysis is often impeded by malware obfuscation techniques, such as encryp-
tion and packing, whereas dynamic analysis tends to be more resistant to obfuscation by
leveraging concrete execution information. Unfortunately, malware can employ evasive tech-
niquestodetect theanalysisenvironment and alter its behavior accordingly. While known evasive
techniques can be explicitly dismantled, the challenge lies in generically dismantling evasions
without full knowledge of their conditions or implementations, such as logic bombs that rely on
uncertain conditions, let alone unsupported evasive techniques, which contain evasions without
corresponding dismantling strategies and those leveraging unknown implementations. In this
paper, we present Antitoxin, a prototype for automatically exploring evasive malware. Anti-
toxin utilizes multi-path exploration guided by taint analysis and probability calculations to
effectively dismantle evasive techniques. The probabilities of branch execution are derived from
dynamic coverage, while taint analysis helps identify paths associated with evasive techniques
that rely on uncertain conditions. Subsequently, Antitoxin prioritizes branches with lower exe-
cution probabilities and those influenced by taint analysis for multi-path exploration. This is
achieved through forced execution, which forcefully sets the outcomes of branches on selected
paths. Additionally, Antitoxin employs active anti-evasion countermeasures to dismantle known
evasive techniques, thereby reducing exploration overhead. Furthermore, Antitoxin provides
valuable insights into sensitive behaviors, facilitating deeper manual analysis. Our experiments
on a set of highly evasive samples demonstrate that Antitoxin can effectively dismantle evasive
techniquesin a generic manner. The probability calculations guide the multi-path exploration of
evasions without requiring prior knowledge of their conditions or implementations, enabling the
dismantling of unsupported techniques such as C2 and significantly improving efficiency com-
pared to linear exploration when dealing with complex control flows. Additionally, taint analysis
can accurately identify branches related to logic bombs, facilitating preferential exploration.

Keywords Malware analysis, dynamic binary instrumentation, forced execution, taint analy-
sis, evasion detection

Citation XuF,ZhangW,Qiang W et al. Multi-path exploration guided by taint and probability
against evasive malware. Security and Safety 2023; 2: 2023023. https://doi.org/10.1051 /sands/
2023023

* Corresponding author (email: wzqiang@hust.edu. cn)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
© The Author(s) 2023. Published by EDP Sciences and China Science Publishing & Media Ltd.

https://sands.edpsciences.org/
https://doi.org/10.1051/sands/2023023
https://sands.edpsciences.org/
https://doi.org/10.1051/sands/2023023
https://doi.org/10.1051/sands/2023023
mailto:wzqiang@hust.edu.cn
https://creativecommons.org/licenses/by/4.0/

Security and Safety, Vol. 2, 2023023

1 Introduction

Malware is a widespread threat to information systems, with nearly 100 million new malware samples
being identified each year [1]. Various analysis methods have been proposed to identify malware samples
automatically. Static analysis is a widely used method for malware detection, but obfuscation techniques,
particularly those that reveal little information about behaviors before execution, such as encryption [2],
can have a significant impact on its effectiveness [3] by removing static features. In contrast, dynamic
analysis is more resistant to obfuscation because it monitors the behavior that is actually executed. How-
ever, malware samples often employ evasive techniques to hinder dynamic analysis [4]. These techniques
extract information from the environment to detect whether the sample is being analyzed. If it is, the
control flow is redirected away from malicious behaviors [5], preventing dynamic analysis from capturing
these behaviors and effectively evading detection.

Therefore, the ultimate goal of defeating evasive techniques is to explore hidden paths. For the two
phases of evasion, namely obtaining information and altering control flow, researchers have proposed two
types of countermeasures, information-based and control-flow-based.

Active anti-evasion countermeasures are information-based methods that actively modify environmen-
tal information obtained through evasive techniques. Their purpose is to deceive evaders into believing
that they are not under analysis, thus enabling the triggering of malicious operations. In comparison to
passive methods that generate artifacts and mimic user behaviors in normal hosts, active anti-evasion
countermeasures offer greater customization and extensibility to other user functions. Relevant works
[6-9] have analyzed and defeated various evasive techniques, revealing their prevalence in malware sam-
ples. Active anti-evasion countermeasures can precisely modify detection results to satisfy the conditions
imposed by evasive techniques, all without incurring additional exploration overhead [10]. However, logic
bombs represent a distinctive form of evasion that relies on uncertain conditions, necessitating manual
analysis to determine the conditions needed to trigger malicious behavior. Currently, there is limited
research available on logic bombs, let alone automatic anti-evasion efforts.

Multi-path exploration [11-13] is a control-flow-based countermeasure aimed at achieving extensive
program coverage by exploring paths that may contain malicious behaviors. It offers a generic approach
that can effectively overcome various evasive techniques without prior knowledge. However, multi-path
exploration can be inefficient due to the path explosion problem, which introduces significant over-
head. Moreover, the lack of targeted exploration for specific evasive techniques can result in unnecessary
exploration overhead.

In this paper, we propose a method that combines automatic multi-path exploration with active
anti-evasion countermeasures to achieve a balance between efficiency and coverage when dealing with
evasive techniques. Multi-path exploration generically defeats logic bombs and other unsupported evasive
techniques. Furthermore, to improve exploration efficiency, path planning based on dynamic analysis is
used to select the most probable evasion-related paths for exploration. Specifically, when dealing with
logic bombs that rely on uncertain conditions, our method identifies and marks relevant environmental
information and accurately switches branches based on taint analysis. For evasive techniques that are
difficult to mark, it calculates branch probabilities and prioritizes those least likely to be executed for
multi-path exploration. Additionally, to minimize the number of techniques that need to be explored, we
have integrated several active anti-evasion countermeasures against known evasive techniques.

We have implemented Antitoxin, a dynamic analysis system for automatic evasion analysis of Win-
dows x86 binaries, using Intel Pin [14]. The evaluation of Antitoxin is on a set of complex evasive
malware samples containing diverse evasive techniques. The experimental results demonstrate that Anti-
toxin efficiently explores logic bombs and unsupported techniques with minimal rounds. Furthermore,
Antitoxin successfully mitigates the impact of most evasive techniques through its active anti-evasion
countermeasures.

In summary, we make the following contributions:

— We have conducted an in-depth study on evasive techniques to dismantle them through multi-path
exploration and active anti-evasion countermeasures based on their implementations accordingly.

— We have proposed a path-planning strategy to explore the most evasion-related paths, which can
effectively explore logic bombs and unsupported evasive techniques with the guidance of taints and
probability.

Page 2 of 24

Security and Safety, Vol. 2, 2023023

— We have implemented a prototype called Antitoxin for automatically analyzing evasive malware.
The performance evaluation of different path-planning strategies demonstrates the effectiveness of
Antitoxin.

2 Related work

The static analysis identifies evasion based on statically extracted features. Branco et al. [15] summarized
50 static detection methods for anti-debugging, anti-disassembly, and anti-VM evasions by checking the
disassembled code for the presence of specific sensitive behaviors. Static analysis is efficient but vulnera-
ble to obfuscation techniques. Aghakhani et al. [3] investigated the classification performance of machine
learning-based static features on packed samples and found that static information was not always indica-
tive of actual behavior, based on experiments on 392 168 executables. Chenke et al. [16] found that static
analysis was ineffective in obtaining behavior and control flow information under strong protection, such
as encrypting the whole program using AES.

In contrast to static analysis, dynamic analysis is more robust to obfuscation. To defeat evasions, it
covers multiple paths in several executions or dismantles evasive techniques in each execution. The first
dynamic method is multi-path exploration. Moser et al. [11] proposed to explore multiple paths to identify
malicious behaviors that are triggered only under specific conditions. They tracked inputs of interest and
solved the input-related conditions to achieve new coverage. Other works, such as [17-20], used symbolic
execution to precisely solve the conditions during exploration. However, analyzing and solving constraints
for the entire sample in this manner is infeasible due to the high overhead involved [21]. To alleviate this
weakness, Zhao et al. [22] and Sebastio et al. [23] proposed enabling symbolic execution on demand.
Furthermore, to completely get rid of the constraint-related overhead, Peng et al. [12] proposed X-Force,
a technique that utilizes forced execution to switch input-related branches. Experiments on ten real-world
malware samples demonstrated that forced execution can effectively overcome evasive malware checks and
expose malicious behavior. Building on X-Force, You et al. [13] developed PMP, which employs memory
pre-planning to minimize memory exceptions caused by force execution without tracing the memory
correlations between memory addresses, which can detect 98% more payload than X-Force.

However, multi-path exploration faces the path explosion problem [20], as the number of paths expo-
nentially increases with each branch, leading to intractability. Thus, it is crucial to cover critical branches
within limited rounds. Existing works [24, 25] identified potential triggers statically and validated them in
dynamic executions. However, static analysis may be infeasible due to obfuscation. X-Force [12] and PMP
[13] begin multi-path exploration from input-related data, but their high coverage necessitates numer-
ous repeated executions. Therefore, there is a need for a more targeted design for evasive techniques.
Similarly, to accelerate the multi-path exploration for software testing, Bohme et al. [21] employed a
probability-based technique, and Wang et al. [26] suggested using several indicators to prioritize candidate
branches.

Another dynamic method is deploying active anti-evasion countermeasures after figuring out how
evasions detect analysis environments. Xu et al. [27] introduced taint analysis [28] for dissecting evasions
based on system resource conditions such as files, mutexes, registries, windows, processes, libraries, and
services. Based on prior knowledge, recent works systematically classified and dismantled various evasive
techniques, creating a transparent analysis environment to trigger more malicious behaviors. Polino et al.
[6] focused on techniques that target dynamic binary instrumentation (DBI). Maffia et al. [29] and Galloro
et al. [9] actively dismantled more evasive techniques. D’Elia et al. [8] proposed a novel observe-check-
replace design called BluePill, which reconciles transparency requirements with dissection capabilities.
Experiments on 48 highly evasive samples demonstrated its ability to defeat evasive techniques and assist
in manual analysis.

Defeating evasive techniques by thoroughly analyzing how they are implemented and the conditions
they rely on is a practical approach, but it may fail when malware developers use new techniques and logic
bombs using unknown conditions. To address this challenge, we propose a two-fold approach. Firstly, we
use multi-path exploration guided by taint and probability as a generic strategy against unknown condi-
tions and unsupported evasive techniques. Secondly, we actively and efficiently dismantle known evasive
techniques to reduce the exploration overhead when full knowledge of evasions is available. Additionally,

Page 3 of 24

Security and Safety, Vol. 2, 2023023

to avoid being hindered by obfuscation, we explore evasive techniques based on dynamic information
rather than statically identifying targets in advance.

3 System design

The system aims to automatically analyze and explore malware samples equipped with evasive tech-
niques, particularly logic bombs, and unsupported evasive techniques, and trigger the guarded malicious
behaviors. To achieve this, the system should possess the following features:

(i) operation without the need for preprocessing the samples, simplifying the operation and minimizing
the impact of obfuscation,
(ii) efficient dismantling of logic bombs and unsupported techniques by selecting exploration paths
carefully, and
(iii) extensibility to existing anti-evasion countermeasures to reduce exploration overhead.

To provide the first feature, dynamic analysis is better than static analysis. To support the second
feature, multi-path exploration is needed to generically dismantle evasions when lacking prior knowledge
of conditions and implementations of evasions. Furthermore, to accelerate the exploration of evasions,
we study the characteristics of evasions and focus on how to explore them preferentially. To provide the
third feature, we should group different evasions and leave the necessary part of them for exploration.

3.1 Taxonomy of evasive techniques

This section will group evasive techniques to reduce exploration overhead by dismantling different groups
of techniques through multi-path exploration and active anti-evasion countermeasures accordingly.

The multi-path exploration covers both true and false branches affected by environmental information,
thus triggering hidden paths. And active anti-evasion countermeasures directly modify the information
returned to the sample to cloak the analysis environment. Compared to multi-path exploration, the latter
method dismantles evasions during each execution, resulting in overhead savings. However, modifying
environmental information is based on prior knowledge of evasions, namely their implementations and
conditions, including how evasions obtain environmental information and which values indicate analysis
environments.

To propose active anti-evasion countermeasures correspondingly, we have conducted a comprehensive
study on the implementations of evasive techniques and categorized them based on the semantics of the
operations, as shown in Table 1, following the approach of previous studies [6-9, 29].

Evasive techniques can be classified into four categories: hardware, software, timing, and running state.
The hardware method captures information related to hardware devices such as CPU, disk, display device,
keyboard, memory, mouse, network adapter, and their respective drivers and firmware. The software
method queries installed or running software to identify the presence and Wear-and-tear status of analysis
tools obtained from filesystems, processes, modules, and services. The timing method compares timing
differences between virtual and real environments, such as boot time, and time intervals for certain
operations. The running status method checks information about the running sample, such as debug
status and instruction address.

After obtaining the environmental information, evasive techniques check for specific values to deter-
mine whether the sample is executing in analysis environments. Some evasive techniques only return
two values, such as IsDebuggerPresent, which returns True when debuggers exist. However, other evasive
techniques may have various parameters, which we should group into two types based on whether they
are used to detect analysis environments. For example, NtQueryFileAttributes can be used for evasion
by querying “... VMware Tools”, but for legitimate purposes when querying system DLLs. Therefore,
blacklists need to be created to identify the values used for evasion and modify them to dismantle evasion.

Based on full knowledge of evasions, active anti-evasion countermeasures can be proposed to monitor
behaviors obtaining the environmental information and modify blacklisted values to prevent the disclosure
of the analysis environment. However, logic bombs are a unique type of evasion targeting special victims
based on uncertain conditions, which means that we cannot group related values into two types and
create generic blacklists for logic bombs in different samples. Thus, due to the lack of prior knowledge

Page 4 of 24

Security and Safety, Vol. 2, 2023023

Table 1. Evasive techniques and the low-level implementation

Category Instruction System call API
cpuid GetSystemInfo
CPU read memory WMI
GlobalMemoryStatusEx
GetDiskFreeSpace
registry? GetPwrCapabilities
Device NtUserCallTwoParam GlobalMemoryStatusEx
Hardware NtUserEnumDisplayDevices ~ SetupDiGetDeviceRegistryProperty
WMI
WNetGetProviderName
Driver GetDeviceDriverBaseName
Firmware NtQuerySystemInformation GetSystemFirmwaretable
Network adapter GetA(i;iﬁrsInfo
NtCreateFile
File NtQueryAttributesFile FindFirstFile
NtQueryDirectoryObject
. GetModuleFileName
Module NtQuerySystemInformation GetModuleHandle
Software Process g:gss:;llsgfitfmnggifg 212;):; Process32Next
Service EnumServicesStatusExW
QueryServiceConfig
System registry GetEnv
Window text NtUserFindWindowEx
Timing rdtsc NtQueryPerformanceCounter GetTickCount
Instruction address o
Running int 2¢ -
status NtQueryObject CheckRemoteDebuggerPresent

GetThreadContext
IsDebuggerPresent

NtQuerySystemInformation
NtQueryInformationProcess

Debugging read memory®

Note: WWMI represents WMI queries through WMI_Get(“SELECT ...”). Pregistry represents registry oper-
ations, including NtEnumerateKey, NtOpenKey, and NtQueryValueKey. ¥read memory represents accessing
specific memory addresses, like PEB.

of conditions or implementations of evasions, logic bombs, and other unsupported techniques will be
dismantled by multi-path exploration.

To implement countermeasures, we need to monitor and modify environmental information obtained
by evasions. Although information sources have different semantic categories, they can be classified into
more common sources. The fundamental source of information is instructions, followed by system calls
and APIs, which are common interfaces provided by the Windows system. Other sources such as memory
access, registry, and Windows Management Instrumentation (WMI) are integrated into the existing three
categories. This is because memory access is achieved by instructions, registry queries are implemented
by system calls, and WMI queries are conducted through calling APIs. So, we intercept behaviors at
three levels and modify blacklisted environmental information in parameters, and return values, which
are stored in memory and registers.

Some other techniques, such as time stalling and exception throwing, attempt to interrupt or delay the
analysis process to prevent the disclosure of sensitive information. Since the purpose of stalling techniques
is to interrupt the analysis rather than lead to multiple paths as evasions, we dismantle these techniques
appropriately to proceed with the analysis.

3.2 Exploring logic bombs

After dismantling evasions with full knowledge through environmental information modification, logic
bombs must be addressed. Logic bombs trigger malicious behavior only under specific conditions to evade
analysis. As these conditions vary among samples, modifying environmental information to a specific value
is insufficient to dismantle all logic bombs. Thus, multi-path exploration is necessary to explore multiple
execution paths, and selecting a small set of paths for exploration is crucial to avoid excessive overhead.
To automate analysis, the selection should depend on runtime information rather than preprocessing
results from other tools, such as disassembled code, which can be impeded by obfuscation.

Page 5 of 24

Security and Safety, Vol. 2, 2023023

Table 2. Evasive techniques using uncertain conditions

Category Technique

Time GetSystemTime
GetSystemTimeAsFileTime

Location GetLocalelnfo

GetTimeZonelnformation
GetKeyboardLayout
GetUserDefaultLangID

GetUserDefault UILanguage

Language

GetSystemDefaultLangID
GetSystemDefaultUILanguage
WMI(MUILANGUAGES)

Logic bombs can be categorized into three types: time, location, and language, as shown in Table 2.
The time method compares the current time with a predefined time to determine subsequent behaviors,
which can be used to launch attacks on different infected victims at the same time. The location method
obtains location information to target specific regions. The language method identifies the language of
the system and keyboard layout to target victims using specific languages.

Identifying branches altered by logic bombs is necessary for accelerating multi-path exploration.
Although logic bombs alter control-flow branches based on uncertain conditions, they obtain environ-
mental information in the same three levels as general evasive techniques. Thus, intercepting related
behaviors with the mechanism mentioned above is feasible. To determine which branches are affected by
logic bombs, we mark related parameters and return values rather based on taint analysis than mod-
ifying them. By contrast, since some evasive techniques have been dismantled by active anti-evasion
countermeasures, we identify branches related to these techniques to reduce unnecessary exploration
overhead.

Specifically, evasive techniques can be categorized into dismantled, evasive, and suspicious, represent-
ing no exploration, prioritized exploration, and exploration before normal paths, respectively.

The identification of dismantled evasion techniques involves comparing parameters and results to
predefined blacklists and altering environmental information. For instance, IsDebuggerPresent can be
dismantled by returning a false value, and querying a registry containing “VBOX” can be dismantled by
modifying the parameter or returned value. Multi-path exploration excludes branches with dismantled
taints and can be used to validate and locate the use of evasion.

Evasive techniques are logic bombs that require further exploration. For instance, the use of GetSys-
temTime to query the current time and trigger malicious behavior after a specific date. Since logic bombs
obtain environmental information and compare it with uncertain conditions, the addition of evasive taints
to the environmental information can help identify affected branches that require prioritized exploration.

Suspicious techniques are sensitive techniques that cannot be identified as evasion because they use
environmental information that is not included in predefined blacklists. Finite blacklists cannot identify a
new condition, resulting in no countermeasures being implemented. Therefore, we consider suspicious
taints as supplementary information to help identify techniques that have not yet been dismantled
effectively.

The malware category is not static, but rather dynamic. The category changes to dismantled when
an evasive or suspicious technique is mitigated. However, if the malware adapts to a new condition of a
previously dismantled technique, the corresponding countermeasure will no longer be effective, and the
category will revert to evasive.

3.3 Filtering behaviors

Dynamic analysis is a behavior-based method. In an ideal scenario, only malware behaviors are analyzed
while filtering out legitimate behaviors of system libraries. For instance, early-stage functions invoked
by another library function are excluded since the code inside libraries has been wrapped as higher-level
APIs and remains unchanged across various executions. Thus, monitoring parameters and return values
of APIs is sufficient for analysis.

Page 6 of 24

Security and Safety, Vol. 2, 2023023

Table 3. Dynamic executable regions

Category Technique
Allocated memory NtAllocateVirtualMemory
NtMapViewOfSection
NtProtectVirtualMemory
Child process CreateProcess
Injection NtOpenProcess
NtWriteVirtualMemory
Obfuscating API names GetProcAddress
GetModuleHandle
LoadLibrary
MapViewOfFile
Self-modifying write memory’

Note: (V' Write memory represents modifying the instructions of the executable under analysis.

Besides excluding system libraries, we should extend the monitored region in some cases. Malware can
evade analysis by performing behaviors outside the original executable, using techniques that are generally
intended to hinder static analysis but can also affect dynamic analysis. Prevalent techniques include the
allocated memory method, which writes code to memory allocated with execute permission and executes
it; the child process method, which performs behaviors in a child process to evade dynamic analysis that
only monitors the main process; the injection method, which writes code to another legitimate process
similar to creating a child process; the obfuscating API names method, which dynamically resolves API
addresses to prevent static analysis from correlating the address with the API; and the self-modifying
method, which overwrites executable instructions at runtime, potentially bypassing analysis. Table 3
provides a summary of these techniques.

3.4 Logging information

To support multi-path exploration and manual dissection, it is important to log information beyond
evasive techniques. Multi-path exploration requires the repeated execution of malware to uncover new
paths, which means that control flow must be recorded to distinguish branches that have not been
covered. Control flow can be divided into instructions, basic blocks, routines, and paths, but basic blocks
are preferred since they contain single control-flow transfers. Thus, information on each basic block should
be recorded, including address, size, branch, and frequency.

In addition, to control flow, it is also important to record and parse sensitive behaviors related to
strings, networks, files, registries, services, and processes, which can provide insight into malicious behav-
iors such as connecting remote servers, modifying system settings, and creating scheduled tasks. By
analyzing this information, analysts can locate critical branches that trigger malicious behaviors.

4 Analysis framework

The main workflow of Antitoxin is depicted in Figure 1. It performs analysis of a malware executable
without preprocessing and selects a new path for each execution through path planning. During execution,
Antitoxin records coverage, taints, and other sensitive behaviors. The path planning is guided by coverage
and taints and selects branches to be preferentially explored after each execution.

4.1 The design of analysis framework

We have developed an automatic analysis system for Windows x86 programs that actively dismantle
known evasive techniques through active anti-evasion countermeasures and defeats logic bombs and
unsupported techniques through multi-path exploration. To achieve this, we have employed dynamic

Page 7 of 24

Security and Safety, Vol. 2, 2023023

Path planning

Dynamic execution (Covcragc Executed path Taint-Guided
information Taints with taints path planning

D D P
Coverage 6 + O Normal branches |
(5 :> :> ! O Tainted branches E
p ! O Selected branches |
—
< /> :> p Taints :>

Probability-Guided
path planning

Coverage Executed path

@ Behaviors
CA= %ﬂ@
-

Figure 1. The workflow of Antitoxin

\
O Normal branches !

(
'

1 O Unexecuted branches H
1 O Selected branch !

Path planning
Evasion analysis Forced execution
Tainted branch g
L Branch switchin;
ogger identification £
Taint analysis (Libdft) Memory exception handler
Active anti-evasion

DBI (Pin)

Figure 2. The overall framework

analysis. Dynamic analysis can be implemented by different techniques such as virtual machine intro-
spection (VMI), emulator, bare-metal, DLL injection, and dynamic binary instrumentation (DBI). Among
these techniques, DBI has no semantic gap and can flexibly monitor and modify environmental informa-
tion obtained by evasive techniques. DBI also allows for the invocation of system libraries, which makes
it easier to integrate with existing countermeasures and implement other necessary functions. Therefore,
we use Intel Pin [14] to instrument behaviors and take full control of the execution.

Based on Pin, we register callback functions to analyze evasive techniques at three levels: instruction,
system call, and API. Figure 2 shows the overall framework of the system, which comprises several
modules that work together to detect malicious behaviors in malware samples.

The active anti-evasion module identifies and dismantles known evasive techniques based on predefined
blacklists, thereby reducing the overhead of exploration. The evasion analysis module adds various taints
to sensitive techniques, identifies branches affected by taints, and continuously records control flows to
facilitate multi-path exploration and manual analysis. After each execution, the path planning module
utilizes information from taint and coverage from the evasion analysis module to prioritize the exploration
of branches based on a probability and taint-guided algorithm. The forced execution module switches
selected branches and handles memory exceptions. Additionally, the framework traces all dynamically
generated executable regions of malware samples to capture stealthy malicious behaviors and distinguish
them from legitimate system library behaviors.

4.2 Functions and modules of framework

Based on the framework, we will demonstrate the functions of different modules and their
implementations.

Page 8 of 24

Security and Safety, Vol. 2, 2023023

4.2.1 Active anti-evasion
When full knowledge of evasions is available, we implement active anti-evasion countermeasures accord-
ingly. Specifically, we use Pin to identify and dismantle known evasive techniques by registering callbacks
at three levels. These callbacks parse parameters and return values, which are then matched against
predefined blacklists and modified to irrelevant or invalid values as needed. For instance, the Get-
ModuleHandle(“pin.exe”) function checks module information and can be dismantled by replacing the
module name with an invalid string. Similarly, the GetAdaptorInfo function checks for VM-related MAC
addresses, which can be dismantled by replacing the outcomes with normal or invalid MAC addresses.
To mitigate timing checks, we utilize the “time fast forwarding” countermeasure from BluePill [§],
which manually aggregates delays from multiple sources to achieve a consistent virtual time. Notably,
behaviors are often implemented by other low-level APIs or system calls. For instance, the API Enumer-
ateKey invokes the system call NtEnumerateKey, while GetCursorPos invokes NtUserCallTwoParam. To
prevent duplicate checks and missing low-level behaviors, we register callbacks at the lower level.

4.2.2 Evasion analysis

To accelerate the multi-path exploration of logic bombs with the lack of prior knowledge of conditions,
we first add various taints to environmental information. We use dismantled taints to reduce exploration
overhead, evasive taints to identify branches related to logic bombs, and suspicious taints to help detect
unsupported techniques. Next, we identify control-flow branches affected by tainted information to guide
the multi-path exploration process.

Following BluePill [8], taint analysis is implemented based on the fork of libdft [30], which provides a
byte-level mechanism for adding, querying, and propagating taints between memory and registers. When
adding taints, we mark the entire structure or specific element for fixed-size data structures and calculate
the length dynamically for variable-length data like strings. However, we conservatively mark the first
byte of unknown information to prevent false positives.

Normally, taints propagate effectively through libdft, even when invoking APIs such as memcpy and
strepy. However, there are scenarios where propagation may be interrupted, leading to bogus propaga-
tion. In our system, we have addressed these issues. On one hand, some countermeasures may interrupt
complete propagation. For instance, setting a string to empty will interrupt propagation because string
functions cannot read content from an empty string. However, as these techniques have been dismantled,
the interruption has little negative impact. In addition, we can temporarily deactivate corresponding
countermeasures to resume propagation for dissection. On the other hand, libdft may fail to trace some
APIs, such as the propagation interrupts in WCSToMBFEz. In such cases, we manually propagate taints in
these APIs to complement libdft. Additionally, bogus taints may arise in instructions like and operand,0
and or operand, Ozffff, where the taints of operands should be cleared, but are not considered in libdft.

Identifying the tainted branches. Evasive techniques compare environmental information with pre-
defined values and alter the control-flow branches accordingly. For example, the jee (conditional jump)
jumps to different targets depending on the comparison results of ¢mp instruction for evasive purposes.
We have found that flags set early by instructions like cmp affect the control-flow transfer when executing
instructions like jcc. As instructions set flags based on operands, we need to decide which operands should
be considered when analyzing taints. However, it is not appropriate to consider all the taints of operands
as the taints of flags. For instance, instructions like mov and zchg could contain tainted operands, but
they neither set flags nor affect control flow. To address this issue, we have categorized instructions that
set flags into two types. For instructions with only read operands, such as cmp and test, we consider the
union of taints from all operands. Otherwise, we only consider taints from write operand(s) since flags are
set based on the destination operands. In addition, implicit operands are included through the interface
of Pin.

As shown in Table 4, we categorize instructions related to flags into three categories: setting, using,
and resetting. Specifically, we refer to taints of flags that derive from the operands as flag taints. The
setting instructions modify flags, and we calculate flag taints from the operands as mentioned above. The
using instructions are control-flow transfers that involve flags and are affected by taints if the flag taints
are not empty. The resetting instructions are other control-flow transfers that do not depend on but
modify flags, so we clear flag taints. Additionally, setcc and movce are considered as using instructions,
which do not directly alter control flow but should still be noticed.

Page 9 of 24

Security and Safety, Vol. 2, 2023023

Table 4. Instructions related to flags

Category Instruction

Setting flags adc, add, and, dec, imul, inc, mul, neg, or, sub, test, xadd,
xor, bsf, bsr, bt, bts, btr, btr, btc, cmp, cmpsb, cmpxchg, cmpxchg8b,
lar, Isl, rcl, rcr, rol, ror, salc, sar,shl, shr, sbb, scasb, shld, shrd
Using flags jb, jbe, jexz, jecxz, jl, jle, jmp, jmp_far, jnb, jnbe, jnl, jnle, jno,
jns, jnz, jo, jp, jrcxz, js, jz, setb, setbe, setl, setle, setnb, setnbe,
setnl, setnle, setno, setnp, setns, setnz, seto, setp, sets, setssbsy, setz,
cmovb, cmovbe, cmovl, cmovle, cmovnb, cmovnbe, cmovnl, cmovnle,
CIMOVNO, CmMovNp, Cmovns, Cmovnz, CmMovo, CIMovp, Cmovs, CINovz
Resetting flags call(near), call(far),ret(near), ret(far), iret, iretd, iretq

In conclusion, we save flag taints of setting instructions, check flag taints when executing using
instructions, and clear the flag taints after the transfer of resetting instructions.

4.2.3 Path planning

Path planning selects the most likely evasion-related branches for multi-path exploration. We use multi-
path exploration to dismantle logic bombs and other unsupported evasive techniques, of which taint
analysis is used to identify branches related to logic bombs. However, in the case of unsupported evasive
techniques where no taint information is available due to lacking prior knowledge of their implementations,
the probability is calculated from coverage information to guide path planning in a more generic manner.
We first implement a generic multi-path exploration algorithm to uncover new paths and then implement
our path-planning algorithm to guide the exploration.

Multi-path exploration. Multi-path exploration executes the sample repeatedly and covers different
paths by selecting and switching certain branches. To avoid selecting unreachable branches, we refer to
X-Force [12] to adopt incremental path planning that attaches a newly selected branch to the sequence
of selected branches.

Algorithm 1 presents a generic multi-path exploration algorithm. Pool stores multiple executions
and explores one each round. Each execution is represented by a sequence of branches to be switched
(i.e., switches). A branch is defined as (Jec, Dst), indicating a conditional control-flow transfer and its
destination. During the initialization phase, Pool contains an empty sequence representing an execution
without any switching (line 1). In each round, a sequence of switches is selected from Pool using different
path-planning strategies (lines 4-8). After the execution, coverage information is updated to support path
planning (line 10). As described in incremental planning, if a branch after existing switches has not been
covered, it will be attached to existing switches to generate a new sequence for exploration (lines 11-18).
Furthermore, different path-planning strategies prioritize different branches for specific purposes (lines
4-7). The most straightforward algorithm is linear exploration, which explores all unsorted switches in
Pool one by one (lines 4 and 5). Based on our findings, we implemented a path-planning strategy to
accelerate the multi-path exploration of evasive techniques (lines 6 and 7), as shown in Algorithm 2.

Switches selection. The path-planning strategy sorts branches that have not been covered according to
user-defined criteria and selects switches to explore. Specifically, we have developed an algorithm guided
by taint and probability, which prioritizes the most likely evasion-related branches for exploration.

Taints guide multi-path exploration both directly and indirectly. Direct taints result from explicitly
marked evasive techniques, requiring accurate exclusion or prioritization of related branches based on the
taint category. Indirect taints, on the other hand, come from libraries outside the sample and can interrupt
taint propagation for various reasons, such as unsatisfied conditions, unmonitored processing techniques,
or variable value conversion. We address the first and second problems by manually propagating taints
from source to destination, while for the last problem, we add an indirect taint flag to N basic blocks after
a library returns. Unlike direct taints that propagate in memory and registers, indirect taints propagate
along N consecutive basic blocks. To minimize false positives, we mark only the first basic block after the
library return using taints.

Page 10 of 24

Security and Safety, Vol. 2, 2023023

When an operand has taints from multiple sources, branches are excluded only if the dismantled
category exists, indicating that corresponding evasive techniques have been dismantled. Otherwise, explo-
ration should consider the evasive and suspicious categories. Taints guide multi-path exploration with
different priorities as shown in Table 5. Direct taints have higher priority than indirect taints, and evasive
taints precede suspicious ones. Indirect dismantled taints are not propagated as they are not accurate
indicators, and indirect evasive taints are given lower priority.

Algorithm 1: Multi-path exploration algorithm

Output: E=x — the set of execution information (including the records of behaviors, coverage of branches,
evasion, etc.)
Input: FExecutable — the sample to be analyzed
Definition: switches: Jec X Dst — a sequence of branches to be switched in an execution
Pool — the set of switches
FEzxploringSpace — the candidate branches
1 Pool — {Nil}
2 Path «— Nil
3 while Pool is not Nil do
4 if Method is Linear then

5 ‘ switches < Pool.pop() #Linear exploration selects the last sequence from Pool
6 else
7 ‘ switches <« Pool.pop(SelectSwitches(Pool, Path)) #Path planning algorithm selects a sequence
8 end
9 Execute the Executable and switch branch outcomes in switches
10 Update Ex
11 Path < the sequence of executed branches
12 t «— index of the last switch of switches in Path
13 FEaxploringSpace < remove the first ¢ elements in Path
14 foreach (jcc,dst) € ExploringSpace do
15 dst_switch «— GetSwitch(jce, dst) #Switching to the branch that was not executed
16 if lcovered(jce, dst_switch) then
17 ‘ Pool — Pool U switches - (jcc, dst_switch) #Adding branches that are not covered to Pool
18 end
19 end
20 end

Evasive techniques hide malicious behaviors and trigger normal behaviors when analysis environments
are detected. Therefore, dynamic analysis is more likely to execute normal rather than malicious behaviors
when we do not deal with evasive techniques, which means paths containing malicious behaviors have
lower execution probabilities. Thus, probability guides multi-path exploration by selecting switches that
are less likely to be executed, thereby enabling the dismantling of evasive techniques even in the absence
of taints. That is, probability can guide multi-path exploration without prior knowledge of conditions and
implementations of evasions. Drawing inspiration from the ant colony system (ACS) [31], which selects
branches based on the probability calculated from execution frequency, we developed our algorithm based
on the following heuristics.

Heuristic 1. Hidden by evasive techniques, the branches leading to malicious behaviors have a lower
probability of execution.

Heuristic 2. Triggered after bypassing the evasive techniques, the branches leading to malicious
behaviors are on longer paths.

Algorithm 2 describes a probability and taint-guided switch selection algorithm derived from ACS.
Specifically, it accumulates pheromones of basic blocks (BBLs) during execution and calculates the
execution probability of branches based on pheromones. The updating rules are as follows:

(i) The pheromones of basic blocks are initially set to a default value.
(ii) The pheromones of all basic blocks evaporate each round.
(iii) The pheromones are deposited into executed basic blocks each round.
(iv) The pheromones of basic blocks of the longest path evaporate every M rounds.

Page 11 of 24

Security and Safety, Vol. 2, 2023023

Table 5. Priority of taints

Category Evasive Dismantled Suspicious
Direct taints 2 Do not explore 1
Indirect taints 1 No propagation 1

The formula for evaporating pheromone (lines 2 and 5) is as Equation (1):
pheromone, ., = (1 — p) - pheromone, . (1)

The formula for depositing pheromone (line 2) is as Equation (2):

Q

h = — 2
pheromone, ., pathlen (2)
where the length of the path is calculated as follows:
pathlen = Z BBLsize. (3)
BBLcPath

Algorithm 2: Taint-guided ant colony system algorithm

N

© O AW

10
11

12
13
14
15
16
17
18
19
20
21
22
23

Output: SelectSwitches — the selected switches returned
Input: Pool — the set of the switches
Path — the sequence of executed branches
Definition: FwvasivePool — the switches containing branches affected by evasive taints
Round — execution times
BestPath — the longest path ever
TaintCategory — the category of taints
FEvasivePool <+ Nil
Update Pheromones(Path) #Evaporating pheromones of all BBLs and depositing pheromones into the
executed path each round
if Round%M == 0 then
‘ Evaporate Pheromones(BestPath) #Evaporating the pheromones of the longest path each M round
end
if PathLen(Path) > PathLen(BestPath) then
‘ BestPath = Path
end
Remove duplicate switches in Pool
for switches € Pool do
category «— GetTaintCategory(switches[—1]) #The taint category of the branch to be switched,
which is the last branch of a sequence
if category is dismantled then
| Pool.pop(switches)
else if category is evasive then
‘ EvasivePool.push(switches) #Adding the sequence containing branches affected by evasive taints
end
end
if EvasivePool is not Nil then
\ SelectSwitches «+ Roulette(Evasive Pool) #Preferentially selecting sequences from Evasive Pool
else if Pool is not Nil then
‘ SelectSwitches < Roulette(Pool) #Selecting sequences from Pool based on execution probability
end
return SelectSwitches

Duplicate switches (line 9) and switches with dismantled taints (lines 12 and 13) are removed to

reduce exploration overhead. Switches with evasive taints are prioritized by moving to FvasivePool (lines

14,

15 and 18, 19). Roulette-wheel method [32] selects switches from EvasivePool or Pool (lines 20 and

21) based on the probability calculated as follows:

(TaintCategory + 1)°
pheromone®

P= (4)

Page 12 of 24

Security and Safety, Vol. 2, 2023023

Table 6. ACS parameters

Parameter Value Definition

«@ 1 Pheromone heuristic factor

8 0 Expectation heuristic factor

p 0.4 Pheromone decay parameter

Q 10 Pheromone intensity

M 10 The number of ants
PAMA

Base+0x000000 Base+0x1d2a74
Base+0x000004 Base+0x23d17¢]

Variables
a=Base+4 —> Base+0x23d17¢c
b=Base+0x3ffffc

Base+PAMASize-4 Base+0x3330c0]

Figure 3. Memory pre-planning

where TaintCategory refers to the categories of taints given in Table 5, and « and 3 determine the weight
of pheromones and taints, respectively, when calculating probabilities individually. Our ACS parameters
are shown in Table 6. We set 3 = 0 to calculate probability solely from pheromones, as dismantled and
evasive taints have already been considered in lines 12-16, and suspicious taints are currently used to
assist manual analysis by highlighting suspicious parameters of sensitive techniques. When setting 3 to
a positive value, branches affected by suspicious taints will be preferentially selected, and we will choose
a reasonable value based on more experiments in the future. Users can set different parameters based on
their findings.

4.2.4 Forced execution and exception handler

Forced execution explores new paths by forcefully setting outcomes of selected branches, which avoids the
overhead of tracing and solving conditions. However, this approach can sometimes disrupt the original
logic, such as initialization and validity checks, leading to memory exceptions. To handle such exceptions,
we have implemented a preventive method and an on-demand exception handler.

PAMA. Following [13], a preventive method is used to initialize variables in advance, which helps to
prevent memory exceptions. As shown in Figure 3, a memory area called PAMA (Pre-Allocated Mem-
ory Area) is pre-allocated and filled with carefully crafted random values that point to the area when
interpreted as addresses. This means that initializing a variable to a PAMA address can prevent memory
exceptions when accessed as a pointer. If the variable is later overwritten, the initializing will have no
effect on the original behavior.

Unhandled memory exception. Although PAMA can prevent most memory exceptions related to
initialization, an on-demand handler is needed to handle other exceptions.

First, a vectored exception handler (VEH) is registered to record the basic block (BBL) causing the
memory exception for accurate handling. While adding checks for all instructions is feasible, it incurs
significant overhead. Instead, the validity of memory accesses is checked inside the recorded BBL and
invalid memory addresses are replaced with PAMA addresses. Memory addresses are calculated from
registers and immediate, so the whole operand is replaced when only immediate exist. Otherwise, registers
are modified so that the new address falls into the PAMA. Additionally, memory dependencies inside the
recorded BBL are also captured for updating correlated variables. For example, in the code snippet in
Figure 4, eax derives from the address ebp+disp0. If eaz+displ is an invalid address, eaz will be modified
to make eaz+displ a PAMA address. With dependency identification, the content of ebp+disp0 is also
modified to avoid similar exceptions in the future.

Page 13 of 24

Security and Safety, Vol. 2, 2023023

.text:00406434 mov eax, [ebp+disp0]
.text:00406437 cmp [eax+displ], edi
.text:0040643D jge loc 4065DE

Figure 4. Memory dependency inside a basic block

4.2.5 Filtering addresses

To focus on malware behaviors, we filter out legitimate behaviors of system libraries and include exe-
cutable regions dynamically generated by samples. Addresses are used to identify behaviors executed by
malware. Specifically, instructions and APIs are filtered by instruction addresses and return addresses
accordingly. However, system calls are commonly invoked by APIs rather than directly invoked by malware
code, so we do not filter them.

Monitored regions begin with the main executable and dynamically include subsequent executable
regions. We identify allocated memory regions by tracing the allocation and permission modification of
memory and include regions where execution permission exists. The child process can be automatically
followed by Pin with the -follow_execv option enabled. However, path planning for multiple processes is
challenging. Therefore, we leave the multi-path exploration of child processes for future work. Additionally,
we manually create child processes from code inside memory regions for analysis, as Pin may fail to follow
them. The injection is redirected to a honeypot process under analysis, following a recent work [29]. The
self-modifying is identified by monitoring the write operation to addresses inside the trace, which is the
execution granularity of Pin.

5 Evaluation

We will now demonstrate the efficacy of Antitoxin in countering evasive techniques, such as logic bombs
and unsupported techniques. Firstly, we evaluated different path-planning strategies on validation sam-
ples. Subsequently, we conducted experiments on a set of representative evasive samples from security
vendors and blogs, illustrating how path planning and active anti-evasion countermeasures effectively
dismantle evasive techniques.

5.1 Experiment setup

We deployed our analysis framework on both VMware and VirtualBox, using a Windows 7 64-bit/32-bit
operating system, 4 CPU cores, and 8 GB of RAM. To avoid missing sensitive behaviors, we set a timer
of 10 min for each execution. Although most samples exhibit evasive behaviors within the first 2 min [33],
complex samples may perform more checks and behaviors. Additionally, it is worth noting that DBI and
callbacks may incur overhead.

5.2 Validation

Validation sample. This is a validation sample that includes multiple evasive techniques, such as
logic bombs and Command & Control (C2) that cannot be dismantled in advance. In this case study,
we demonstrate the implementations of evasive techniques and evaluate the effectiveness of probability,
taints, and active anti-evasion countermeasures in dismantling evasion. The simplified code for the sample
is shown in Figure 5. It starts with a time-based logic bomb and disguises itself as benign software for
querying the weather (lines 5-9), followed by a language-based logic bomb (lines 11-13). Next, it performs
a series of checks for timing (lines 16-21), hardware, and software (line 22). The check for the number
of recently used files (lines 26-32) is an unsupported technique used to evaluate multi-path exploration.
Finally, malicious behaviors are triggered through C2 (lines 35-44). In our experiment, the remote server
emulates the response of the “systeminfo” command (lines 39-41) to simulate cases that cannot be
naturally covered by other commands in the analysis (lines 36-38, 42-44).

We executed the validation sample with Antitoxin and recorded the rounds of multi-path exploration
when bypassing the evasive techniques, as shown in Table 7. Columns 1 and 2 list the different evasive

Page 14 of 24

Security and Safety, Vol. 2, 2023023

01 int main(int argc, const char **argv){

02 //Logic bombs

03 //Time-based logic bomb remaining dormant before 2024
04 SYSTEMTIME time;

05 GetSystemTime(&time);

06 if (time.wYear!=2024) {

07 Query Wethear(argv[1]);

08 terminate();//Cloaking itself as a benign software
09 }

10 //Language-based logic bomb targeting French

11 HKL layout = GetKeyboardLayout(0);

12 if (LOWORD(layout)!=0x040c)

13 terminate();

14 //Evasive techniques that can be dismantled by active anti-evasion
15 //Timing check

16 ULONGLONG uptime = GetTickCount64();

17 LARGE INTEGER delay;

18 delay.QuadPart = -1000*100000;

19 NtDelayExecution(&delay);

20 if (GetTickCount64()-uptime<10)

21 terminate();

22 ..//Other checks related to hardware, software, and timing
23 //Unsurppoted technique

24 //Check if number of files in recent folder is less than 50
25 int numberOfFiles = 0;

26 HANDLE hFind = FindFirstFileW(recentPath);
27 if (hFind!=INVALID HANDLE VALUE){

28 do{

29 numberOfFilest++;

30 } while (FindNextFileW(hFind));

31 if (numberOfFiles<50)

32 terminate();

33 ..

34 /IC2

35 recv(Socket, command, sizeof(command),0)

36 if(command=="download"){

37

38

39 else if(command=="systeminfo"){

40

41

42 else if(command=="screenshot"){

43 ..

44}

45 }

Figure 5. Simplified code of validation sample

techniques. Columns 3-5 show the rounds of Antitoxin, ACS, and linear exploration. Among them,
Antitoxin is guided by probability and taint, and the ACS algorithm is guided by probability alone.
The comparison between Antitoxin and ACS (columns 3 and 4) demonstrates the effect of taint, which
significantly accelerates the exploration of logic bombs (2, 4 rounds wvs. 31, 32 rounds). The comparison
between ACS and linear exploration (columns 4 and 5) demonstrates the effect of probability, which
generically guides the exploration to cover all evasion-related branches faster than linear exploration
(81 rounds ws. 120 rounds). Additionally, active anti-evasion countermeasures dismantled the checks for
timing, hardware, and software, preventing any increase in the number of rounds required to bypass them.

Linear exploration slightly outperforms Antitoxin for file-number check and “screenshot” command.
This is because the validation sample terminates execution as soon as the check fails, and linear explo-
ration traverses the control flow from back to front, thus selecting the key branches faster. However,
real-world samples have more complex control flows and may perform behaviors after the check. There-
fore, Antitoxin outperforms linear exploration when exploring the “download” command. Furthermore,

Page 15 of 24

Security and Safety, Vol. 2, 2023023

Table 7. Validation sample results

Results (rounds)
Antitoxin ACS Linear

Time-based logic bomb Checking the time 2 5 31

Category Evasive technique

Language-based logic bomb Checking the language 4 17 32
Timing Checking the time interval of behaviors 4 17 32
Checking the number of processors 4 17 32
Hardware Checking the size of RAM 4 17 32
Checking for specific MAC addresses 4 17 32
Software Checking for specific DLLs 4 17 32
Checking the number of files in specific folder 43 60 34
Unsupported technique C2 “download”: Downloading payload from 62 85 120
http server
C2 “systeminfo”: Sending the information of 43 60 34
victim to the server
C2 “screenshot”: Taking a screenshot and send 81 83 60
to the server
Total 81 85 120

Table 8. Pafish results

Results (rounds)

Category Evasive technique Antitoxn Lincar
Checking the click event 7 71

Unsupported technique Checking the double-click event 7 71
Checking the dialog event 13 74
Checking the dialog event and the position of cursor 113 75

Total 113 75

the path planning selects branches affected by a logic-bomb-related technique, GetSystemTimeAsFile-
Time, which is used to calculate security cookies during initialization. Comparing columns 3 and 4, we
can see that taints speed up the exploration of logic bombs at first, but exploring branches related to
security cookies slows down the overall progress.

Pafish. It is an open-source tool for detecting analysis environments. We tested multi-path exploration
against its Reverse Turning Test (RTT), while other evasive techniques have been dismantled by active
anti-evasion countermeasures. Table 8 shows the rounds of bypassing different checks.

Multi-path exploration bypass two checks for mouse-click events in the 7th round with the guidance
of probability, while linear exploration takes 71 rounds. The two checks register different event hooks to
set the check result but share the same code for returning results. Instead of switching branches of the
hooks, multi-path exploration directly switches the branch for returning different results to bypass the
check without prior knowledge of conditions or implementations.

However, in the case of two checks for dialog events, they are bypassed in the 13th and 113th rounds,
respectively, while linear exploration takes 74 and 75 rounds. These checks also register hooks and return
results, and the result of the second check is additionally affected by a mouse-event hook. Linear explo-
ration is faster because Pafish is a detection tool that prints the result rather than leading to different
behaviors after evasive techniques. However, Antitoxin is designed to explore different paths based on
probability. Since the exploration of the first dialog check has covered the branch bypassing the check in
the shared code, the result could lead to malicious behaviors in real-world samples.

In conclusion, Antitoxin proves to be effective in dismantling evasive malware. The use of active anti-
evasion countermeasures helps to save on exploration overhead, while the use of taints accelerates the
exploration of logic bombs. Moreover, even in the absence of these two speed-up strategies, probability

Page 16 of 24

Security and Safety, Vol. 2, 2023023

01 //Check for debuggers

02 NtQuerySystemInformation(0x23, &Info,-)

03 if (Info.DebuggerEnabled)

04 terminate();

05 //Check for sandbox modules

06 if (GetModuleHandleA("sbie.dll")||GetModuleHandle A("aswhook")

07 ||GetModuleHandleA("snxhk"))

08 terminate();

09 //Open and enumerate subkeys, check for v registries

10 if (check regkey("REGISTRY\MACHINE\System\CurrentControlSet\Enum\IDE")
11 |lcheck regkey("\REGISTRY\MACHINE\System\CurrentControlSet\Enum\SCSI"))
12 terminate();

13 //Check for processes (qemu-ga.exe, qga.exe, ...)

14 NtQuerySystemInformation(0x5, &Info,-)

15 if (check process(Info))

16 terminate();

17 //Check for modules exist (vinci.s, vmusbm, ...)

18 NtQuerySystemInformation(0Oxb, &Info,-)

19 if (check module(Info))

20 terminate();

Figure 6. Simplified code of Chaos

Table 9. Comparision of active anti-evasion countermeasures

Category Evasive technique BluePill ~ Brioscia Pepper Antitoxin
Running status NtQuerySystemInformation(0x23) DBI does not affect dubugging status
Module GetModuleHandle v v
Device NtEnumerateKey (0x0, Buffer) v v v
Null-pointer check of NtEnumerateKey Unknown v
Process NtQuerySystemInformation(0x5) v v v v
Module NtQuerySystemInformation(0xb) v v

alone can effectively guide multi-path exploration. While linear exploration has an advantage in disman-
tling evasive techniques that terminate immediately when checks fail, path planning guided by probability
is more efficient when exploring complex samples.

5.3 Active anti-evasion

Antitoxin dismantles most known evasive techniques with the active anti-evasion module, rather than
exploring multiple rounds to reduce exploration overhead.

Chaos (MD5:ba01f27b54d8db5 4 c/cedece800a8dbc). Tt is a highly obfuscated sample. Figure 6 shows its
simplified logic. It performs multiple checks for debugging status (lines 2 and 3), sandbox-related and
VM-related modules (lines 6, 7 and 18, 19), processes (lines 14 and 15), and registries (lines 10 and 11).
After all the checks, it injects the real payload into the process explorer.exe.

Regarding evasive techniques equipped by Chaos, Table 9 compares Antitoxin with existing works,
including BluePill [8], Brioscia [9], and Pepper [29].

First, only Pepper and Antitoxin dismantle the module check through GetModuleHandleA. Moreover,
Antitoxin collects more blacklist values and supports the wild-card version GetModuleHandleW. Second,
all works identify and dismantle the device check implemented by querying the registry, except for Pepper,
which only records the behavior. However, Chaos invokes NtEnumerateKey twice to query the size of the
buffer storing information and acquire the information accordingly. Thus, the buffer is empty in the
first invocation, which causes a memory exception when being parsed. Antitoxin adds a null-pointer
check before parsing, avoiding this problem. Finally, BluePill and Antitoxin dismantle another module
check through NtQuerySystemlInformation. However, BluePill only includes “VBox” in the blacklist, while
Antitoxin reuses the abovementioned blacklist of modules.

Page 17 of 24

Security and Safety, Vol. 2, 2023023

01 SYSTEMTIME time;

02 //orimodulePath is a hard-coded string initially set to NULL
03 char* orimodulePath = GetOriModulePath();

04 char* modulePath = GetModuleFileName();

05 char* dfenghPath = GetTempDir() + "dfengh.exe";

06 GetSystemTime(time);

07 if(time.wMonth!=9)

08 terminate();

09 if (orimodulePath && !exist file(orimodulePath))

10 terminate();

11 //"C:\Users\Administrator\AppData\Local\Temp\dfengh.exe"
12 if ({CompareString(modulePath, dfenghPath)) {

13 //Set orimodulePath to the path of September

14 WriteOriModulePath(modulePath);

15 CopyFile(modulePath, dfenghPath);

16 CreateProcess(dfenghPath);

17 }

18 else{

19 DeleteFile(orimodulePath)//The path of September

20 download("gov-l.com/go/da.exe");

21}
Figure 7. Simplified code of September
Table 10. September results
. . Results (rounds)
E h — -
Category vasive technique Antitoxn ACS Lincar
Time-based logic bomb Checking the time 1 11 7

In this experiment, Antitoxin successfully tackles static obfuscation and bypasses multiple checks. In
comparison to existing works, Antitoxin performs null-pointer checks on countermeasures and establishes
more comprehensive blacklists, making it more robust.

5.4 Exploring logic bombs

To defeat logic bombs based on known techniques that use uncertain conditions that could not be dis-
mantled in advance, we employ taint to uncover branches related to sensitive information and explore
them preferentially. We provide a case study to demonstrate how taints can accelerate path planning.

September (MD5: 9f68ae8267182bf1bee5bb6c75022b8). 1t is a time-aware Zbot downloader that stays
dormant except in September. Figure 7 shows its simplified code snippet. It dynamically resolves the
address of GetSystemTime and invokes the API to obtain the time. Then the member wMonth of the
SYSTEMTIME struct is compared to 9 (line 4). If the value equals 9, the sample copies itself to the %A TEMP%
folder and executes it (lines 16 and 17). Otherwise, the sample terminates to evade analysis. Table 10
shows the number of rounds needed to bypass the logic bomb.

Without the guidance of tainted information, linear exploration, and probability-guided ACS require
7 and 11 rounds, respectively. Similar to the validation sample, the ACS is slightly slower because the
sample immediately terminates execution when the condition is not satisfied, and linear exploration
traverses the control flow simply from back to front. However, complex evasive samples will continue to
perform some behaviors after checks, and the linear efficiency will be significantly affected due to the
exploration of a large number of non-critical branches. ACS, on the other hand, can exclude branches
generically leading to duplicate behaviors.

By contrast, Antitoxin, guided by taints, requires only one round to bypass the logic bomb. This is
because Antitoxin marks the SYSTEMTIME data structure, enabling the identification and prioritization of
the branch (line 7) responsible for checking time and altering control flow during path planning. Moreover,
unlike the validation sample, this sample doesn’t generate security cookies, eliminating any unnecessary
exploration overhead.

Page 18 of 24

Security and Safety, Vol. 2, 2023023

Table 11. Comparison of dynamic executable regions

Category Technique BluePill Brioscia Pepper Antitoxin
Allocated memory Executing code in memory regions v v
Child process Creating child processes v v v v

Dfength. This is the sample that September drops after bypassing the logic bomb. When we examine
the logs recorded by Antitoxin for both September and Dfengh, we observe that the two samples behave
identically up to a string comparison in memory, as illustrated in Figure 7. In conjunction with static
analysis, we find that the only difference is a hard-coded string (lines 2 and 3). Antitoxin has parsed
API related to strings, which reveals that the module path is compared with the path of Dfengh. Then,
September releases Dfengh (lines 13-16), while Dfeng further performs malicious behaviors (lines 19 and
20). First, Dfengh calls DeleteFile to delete the original September sample using the hard-coded string
(line 19), and then it downloads the next-stage payload through InternetConnect and HttpOpenRequest
(line 20). Antitoxin captures and parses all of these behaviors.

In the experiments on September and Dfengh, Antitoxin efficiently explores the time-based logic bomb
with the guidance of taints. As shown in Table 11, Antitoxin monitors a wider range of executable regions
than related works, including allocated memory and child processes. Although related works mentioned
the use of -follow_execv option of Pin, our experiments show the option fails to track child processes
created from the allocated memory, which has not been previously mentioned.

5.5 Exploring unsupported techniques

Complex samples often use multiple evasive techniques, some of which are not supported or even unknown
to analysis tools. Antitoxin uses probability-guided multi-path exploration to overcome these challenges.
Once the diversion of execution is detected, the behavior logs can assist in identifying unsupported
techniques. Additionally, by adding new taints to related environmental information, their usage can be
revealed, allowing for the extension of active anti-evasion countermeasures or new taints to accelerate
multi-path exploration. In the following case, we demonstrate in detail how Antitoxin assists in the
dissection of unsupported techniques.

Furtim (MD¥5:564ac87caf114edd6a84a005092f1285). 1t is a sophisticated trojan that was first spotted
in 2016 and employs 400 rigorous evasive checks, evading known sandboxes except for the bare-metal
environment of Joe Security. In a thorough and detailed analysis of Furtim, Joseph [34] identified a number
of evasions related to CPU, files, processes, DLLs, registries, devices, and window texts. Additionally,
D’Elia et al. [8] pointed out that Direct3D was used for detection. After bypassing all the checks, Furtim
drops puntosw.exe to the startup directory. We explore the last evasive technique of the complex sample,
Furtim, to demonstrate Antitoxin’s ability to defeat unsupported techniques. The simplified code snippet
is shown in Figure 8. Furtim obtains the device ID (lines 6 and 7) and extracts the vendor ID (line 8).
Then, it uses a blacklist to match VM-related IDs and terminates execution if there is a match (lines
10 and 11). Otherwise, it uses a whitelist to match machine IDs and ends the check if there is a match.
Finally, if the ID does not belong to either list, Furtim performs a mouse-movement check (line 15).
Furtim uses function pointers to obfuscate APIs and encrypts the .data section to hinder static
analysis. However, Antitoxin can dismantle and log checks for hardware, including CPU and device
name, as well as software, including file, DLL, and debugging status. The information is then used to
match blacklists related to analysis environments through functions such as wecsemp, CompareString, and
RtlCompare UnicodeString. In particular, a large number of files related to virtual machines, sandboxes,
and analysis tools are checked through NtQueryAttributesFile. The strings parsed by Antitoxin help
expand countermeasures for unsupported techniques. We now examine the last check used by Furtim.
Next, we focus on the invocation of CreateProcess used to drop puntosw.exe and compare the number
of rounds required for different exploration methods. Note our early experiments need to bypass all the
different checks to trigger the behavior, but Furtim has several branches that can bypass the check without
knowing the implementations of evasive techniques. Even if the environment information is not modified,
exploration can still bypass the checks by switching branches of other stages such as initialization. First,

Page 19 of 24

Security and Safety, Vol. 2, 2023023

01 void Direct3D AdapterCheck(){

02 DISPLAY_ DEVICE DisplayDeviceM;

03 int monitorNum = get_monitornum();

04 int monitorIndex = 0;

05 while (monitorIndex<monitorNum) {

06 if (Enum_monitor(monitorIndex, &DisplayDeviceM,)) {
07 deviceid = DisplayDeviceM.Deviceld;

08 int vendorid = GetVendorIDfromDeviceID(deviceid);

09 //check if vendorid in blacklist, if so, terminate immediately

10 if (vendorid==0x15AD || vendorid==0x80EE || vendorid==0x1513)

11 terminate();

12 //check if vendorid is not zero and in whitelist, if not, check cursor behavior
13 if (vendorid==0x8086 || vendorid==0x10DE || vendorid==0x1002 || vendorid==0)
14 break;

15 else check cursor();

16 1}

17 }

18 monitorIndex++;

19 }

Figure 8. Simplified code of Furtim

Table 12. Furtim results

Results (rounds)

Evasive technique Switching ACS ACS (Rerun) Linear Adding taints
Obtaining the address of Obtaining fails 35 22

API

Creating an object through Creating fails 7 291

Direct3DCreate9

Obtaining the number of The number is zero

devices through API_1

Obtaining the vendor ID Obtaining fails 4

through API_2

Matching the whitelist of ID The ID belongs to whitelist 12

Furtim obtains the address of Direct3DCreate9 from d3d9.dll and then creates a querying object to
invoke its interfaces. Next, an anonymous API_1 obtains the number of display devices. Then, a loop
repeatedly queries the vendor ID of each display device through API_2 and tries to match predefined
lists. Specifically, it terminates execution if the ID matches a blacklist and the check will be passed when
matching a whitelist. To ensure logical rationality, return values are checked for validity when obtaining
the API address, invoking Direct3DCreate9, API_1, and API_2. Thus, multi-path exploration can bypass
the whole check by switching any branch related to these validity checks, as shown in Table 12. Columns
1 and 2 show different branches used to bypass the check. Columns 3-5 list the rounds needed for taint-
guided ACS and linear exploration. Columns 3 and 4 result from two independent analyses that select
different branches because ACS introduces roulette for randomness in branch selection besides probability
priority. Column 6 lists the rounds after actively adding taints, which we will explain in detail later.

In column 3, ACS selects the branch related to Direct3DCreate9 in the Tth round and the branch
of obtaining API to bypass the check in the 35th, both triggering malicious behaviors. Additionally, in
column 4, another analysis using ACS selects the branch related to API_2 in the 4th round and the branch
of obtaining API in the 22nd round. In contrast, linear exploration requires 291 rounds to bypass the
check of creating the object due to the complex control flow of the sample. It’s important to note that
bypassing any of the checks in column 1 will trigger malicious behaviors, specifically in the 7th round in
column 3 and the 4th round in column 4, so it is not necessary to cover all the branches to achieve high
coverage.

In addition to multi-path exploration, Antitoxin can also assist in dissecting evasive techniques
through taint analysis and behavior logs. Combined with the findings of D’Elia et al. [8] and the logs
of Antitoxin, it is found that the anonymous function API_2, which obtains the vendor ID, leverages

Page 20 of 24

Security and Safety, Vol. 2, 2023023

NtUserEnumDisplayDevices to obtain the information about display devices. Additionally, RtlUnicodeTo-
MultiByteN and its underlying implementation, WCSToMBEz, convert the information from wide-char
strings to ANSI strings. Based on this discovery, we add taints to the environment information obtained
by NtUserEnumDisplayDevices to guide path planning. As shown in column 6, with the guidance of
taints, the branch related to matching the whitelist is switched in the 12th round. Although taint-guided
exploration takes more rounds, it provides comprehensive information about the evasive technique. With
the help of the whitelist we discovered, a new countermeasure can be implemented by modifying the
obtained vendor ID to a value in the whitelist.

In this experiment, Antitoxin explores Furtim using probability-based path planning, demonstrating
its efficiency in exploring complex control flow. Moreover, the results show that multi-path exploration
can overcome unsupported evasive techniques by switching between different branches without prior
knowledge of their conditions or implementations. In addition, taints can be added to environmental infor-
mation based on previous experience and experiments to help dissect unsupported techniques by tracing
obtained information and identifying affected control-flow branches. Finally, it is feasible to propose active
anti-evasion countermeasures, or retain taints, to guide the exploration of logic bombs.

In summary, the experimental results show that the probability calculated from coverage can effectively
guide multi-path exploration against evasive techniques, including unsupported techniques, and achieve
better efficiency than linear exploration for complex control flow. Furthermore, the control flow and
behavior information recorded by Antitoxin can assist in dissecting new evasive techniques. Based on
existing knowledge, we can add taints to accelerate the exploration of logic bombs and deploy active
anti-evasion countermeasures to reduce exploration overhead. In addition, Antitoxin employs a series of
optimization methods, such as monitoring allocated memory and child processes, which can defeat more
complex malicious samples.

6 Conclusion and future work

In this paper, we propose a method using multi-path exploration to generically dismantle evasions lacking
prior knowledge of conditions and implementations, particularly logic bombs and unsupported evasive
techniques. To accelerate the multi-path exploration, we introduce a path-planning strategy to explore the
most evasion-related paths, which effectively explores logic bombs and unsupported evasive techniques
with the guidance of taint analysis and probability calculation. We apply the proposed prototype, Anti-
toxin, to a set of samples that contain multiple evasive techniques. The experimental results demonstrate
that Antitoxin can generically identify evasion-related branches and successfully trigger hidden behaviors
with fewer rounds. Furthermore, Antitoxin proves to be significantly more efficient than linear exploration
methods for complex control flows.
Then, we list some open problems and future work to further improve the method’s efficiency.

Taint analysis. Antitoxin accelerates the exploration of logic bombs by adding taints to environmental
information obtained by specific evasive techniques, which may result in false positives. Some techniques
are used for normal purposes, such as the invocation of GetSystemTime for initializing security cookies,
which Antitoxin cannot distinguish. Nevertheless, these taints can be excluded within limited rounds
because they lead to fewer paths than evasive techniques. We should exclude these normal behaviors
based on dynamic execution information in the future.

Furthermore, Antitoxin adds taints based on existing knowledge, which means that we cannot explore
unknown techniques through taint-guided exploration. We only monitor a small list of techniques to avoid
false positives, and analysts can extend the list of techniques based on their findings. However, the exten-
sion needed is not endless and may not cover the majority of logic bombs. In addition, Antitoxin provides
probability-guided exploration and behavior logs that could help identify unsupported techniques. In
the future, we should aim to dynamically identify logic bombs and automatically add taints to guide
multi-path exploration.

Multi-path exploration. Antitoxin is capable of monitoring and applying anti-evasion countermeasures
to various regions related to the analyzed sample, including dynamically allocated memory, suspicious
DLLs, and child processes. However, exploring these regions together with the main module presents a
challenge due to dynamic addresses that vary across each execution. To overcome this hurdle, we can
separate DLLs and child processes as modules and calculate fixed offsets. Additionally, we should consider

Page 21 of 24

Security and Safety, Vol. 2, 2023023

the control flow in memory regions, such that a unique mark is generated using the offset from the base
address and the instruction address where the region is allocated.

Finally, Antitoxin only switches direct conditional branches. X-Force utilizes IDA Pro to identify

indirect jumps and calls, while Antitoxin collects coverage information through Pin’s interfaces during
execution, avoiding the need for static analysis. In future work, we should aim to dynamically identify
jump tables and support switching to multiple targets.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability

No data are associated with this article.

Authors’ Contributions

Fangzhou Xu wrote and constructed this paper. Wang Zhang mainly implemented the path planning algorithm and jointly
conducted the experiments. Weizhong Qiang guided the overall work, corrected typos, and jointly wrote this paper. Hai Jin
supervised the overall work.

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant No. 62272181).

References

(1]
2]

(3]

(4]

(5]

[6]

[7]

[9]
(10]
(11]
(12]
(13]
(14]
(15]

(16]

(17]

AV-TEST. Malware Statistics & Trends Report. https://www.av-test.org/en/statistics/malware/ (January
2023).

Moser A, Kruegel C and Kirda E, Limits of static analysis for malware detection. In: The 23rd Annual Computer
Security Applications Conference (ACSAC 2007), December 10-14, 2007, Miami Beach, FL, USA, 2007, 421-430,
doi: 10.1109/ACSAC.2007.21.

Aghakhani H, Gritti F and Mecca F et al. When malware is packin’heat; limits of machine learning classifiers
based on static analysis features. In: Network and Distributed Systems Security (NDSS) Symposium 2020. 2020,
doi: 10.14722/ndss.2020.24310.

Ji T, Fang B and Cui X et al. Framework for understanding intention-unbreakable malware. Sci Chin Inf Sci 2023; 66:
142104.

Chen X, Andersen J and Mao ZM et al. Towards an understanding of anti-virtualization and anti-debugging behavior
in modern malware. In: The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA. IEEE Computer Society, 2008, 177-86.

Polino M, Continella A and Mariani S et al. Measuring and defeating anti-instrumentation-equipped malware. In:
Polychronakis M and Meier M (eds.). Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA
2017. Lecture Notes in Computer Science. Vol. 10327. Cham: Springer, 2017.

D’Elia DC, Coppa E and Nicchi S et al. SoK: using dynamic binary instrumentation for security (and how you may get
caught red handed). In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security.
ACM, 2019, 15-27.

D’Elia DC, Coppa E and Palmaro F et al. On the dissection of evasive malware. IEEE Trans Inf Forensics Secur 2020;
15: 2750-65.

Galloro N, Polino M and Carminati M et al. A systematical and longitudinal study of evasive behaviors in windows
malware. Comput Secur 2022; 113: 102550.

Afianian A, Niksefat S and Sadeghiyan B et al. Malware dynamic analysis evasion techniques: a survey. ACM Comput
Surv 2019; 52: 1-28 .

Moser A, Kruegel C and Kirda E, Exploring multiple execution paths for malware analysis. In: 2007 IEEE Symposium
on Security and Privacy (SP’07). IEEE, 2007.

Peng F, Deng Z and Zhang X et al. X-force: force-executing binary programs for security applications. In: 23rd USENIX
Security Symposium (USENIX Security 14), San Diego, CA. 2014.

You W, Zhang Z and Kwon Y et al., Pmp: cost-effective forced execution with probabilistic memory pre-planning. In:
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, 1121-38.

Intel. Pin — A Dynamic Binary Instrumentation Tool. www.intel.com/content/www /us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html (January 2023).

Branco RR, Barbosa GN and Neto PD. Scientific but not academical overview of malware anti-debugging, anti-
disassembly and anti-vm technologies. Black Hat 2012; 1: 1-27.

Chenke L, Feng Y and Qiyuan G et al. Anti-reverse-engineering tool of executable files on the windows platform.
In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC). Vol. 1. IEEE, 2017, 797-800.

Cha SK, Avgerinos T and Rebert A et al. Unleashing mayhem on binary code. In: 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, 380-94.

Page 22 of 24

https://www.av-test.org/en/statistics/malware/
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.14722/ndss.2020.24310
www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

(18]
(19]
20]
21]
(22]
23]
[24]
[25]

[26]

27]

(28]

29]
(30]
(31]
(32]
(33]

(34]

Security and Safety, Vol. 2, 2023023

Chipounov V, Kuznetsov V and Candea G. S2E: a platform for in-vivo multi-path analysis of software systems. Acm
Sigplan Notices 2011; 46: 265-78.

Saudel F and Salwan J, Triton: a dynamic symbolic execution framework. In: Symposium sur la sécurité des technologies
de linformation et des communications, SSTIC, France, Rennes. 2015, 31-54.

Shoshitaishvili Y, Wang R and Salls C et al. Sok: (state of) the art of war: offensive techniques in binary analysis. In:
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, 138-57.

Boéhme M, Pham VT and Roychoudhury A. Coverage-based greybox fuzzing as markov chain. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016, 1032-43.

Zhao L, Duan Y and Yin H et al. Send hardest problems my way: probabilistic path prioritization for hybrid fuzzing.
In: Network and Distributed Systems Security (NDSS) Symposium 2019. 2019, doi: 10.14722/ndss.2019.23504.
Sebastio S, Baranov E and Biondi F et al. Optimizing symbolic execution for malware behavior classification. Comput
Secur 2020; 93: 101775.

Wang X, Yang Y and Zhu S. Automated hybrid analysis of android malware through augmenting fuzzing with forced
execution. IEEE Trans Mobile Comput 2019; 18: 2768-82.

Park K, Sahin B and Chen Y et al. Identifying behavior dispatchers for malware analysis. In: Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security. ACM, 2021, 759-73.

Wang Y, Jia X and Liu Y et al. Not all coverage measurements are equal: fuzzing by coverage accounting for input pri-
oritization. In: 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020.

Xu Z, Zhang J and Gu G et al. Autovac: automatically extracting system resource constraints and generating vaccines
for malware immunization. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems. IEEE,
2013, 112-23.

Schwartz EJ, Avgerinos T and Brumley D. All you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In: 2010 IEEE Symposium on Security and Privacy. IEEE,
2010, 317-31.

Maffia L, Nisi D and Kotzias P et al. Longitudinal study of the prevalence of malware evasive techniques. CoRR.
Preprint arXiv:2112.11289 (2021).

Kemerlis VP, Portokalidis G and Jee K et al. Libdft: practical dynamic data flow tracking for commodity systems. In:
Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments. ACM, 2012, 121-32.
Dorigo M and Gambardella LM, Ant colony system: a cooperative learning approach to the traveling salesman problem.
IEEE Trans Evol Comput 1997; 1: 53-66.

Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison Wesley,
1989.

Kiichler A, Mantovani A and Han Y et al. Does every second count? Time-based evolution of malware behavior in
sandboxes. In: Proceedings 2021 Network and Distributed System Security Symposium. 2021.

Landry J. Malware Discovered — SFG: Furtim Malware Analysis. https://www.sentinelone.com/blog/
sfg-furtims-parent/ (January 2016).

Page 23 of 24

https://doi.org/10.14722/ndss.2019.23504
https://arxiv.org/abs/2112.11289
https://www.sentinelone.com/blog/sfg-furtims-parent/
https://www.sentinelone.com/blog/sfg-furtims-parent/

Security and Safety, Vol. 2, 2023023

Fangzhou Xu is currently a master’s student in cyberspace security at Huazhong
University of Science and Technology (HUST), Wuhan, China. He received a B.E.
degree in information security from HUST, Wuhan, China, in 2020. His research
interests include malware analysis and evasion detection.

Wang Zhang is currently a master’s student in cyberspace security at Huazhong
University of Science and Technology (HUST), Wuhan, China. He received a B.E.
degree in information security from HUST, Wuhan, China, in 2021. His research
interests include adversarial malware detection and encrypted traffic classification.

Weizhong Qiang received a Ph.D. degree in computer engineering from
Huazhong University of Science and Technology (HUST), Wuhan, China, in 2005.
He is a professor at HUST. His topics of research interests include system security
about virtualization and cloud computing.

Hai Jin received a Ph.D. degree in computer engineering from Huazhong Univer-
sity of Science and Technology (HUST), Wuhan, China, in 1994. He is a Cheung
Kung Scholars Chair Professor of computer science and engineering with HUST.
His research interests include computer architecture, virtualization technology,
cluster computing and cloud computing, peer-to-peer computing, network storage,
and network security.

Page 24 of 24

