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Introduction: The husk tightness (HTI) in maize plays a crucial role in regulating

the water content of ears during the maturity stage, thereby influencing the

quality of mechanical grain harvesting in China. Genomic selection (GS), which

employs molecular markers, offers a promising approach for identifying and

selecting inbred lines with the desired HTI trait in maize breeding. However, the

effectiveness of GS is contingent upon various factors, including the genetic

architecture of breeding populations, sequencing platforms, and statistical

models.

Methods: An association panel of maize inbred lines was grown across three

sites over two years, divided into four subgroups. GS analysis for HTI prediction

was performed using marker data from three sequencing platforms and six

marker densities with six statistical methods.

Results: The findings indicate that a loosely attached husk can aid in the

dissipation of water from kernels in temperate maize germplasms across most

environments but not nessarily for tropical-origin maize. Considering the

balance between GS prediction accuracy and breeding cost, the optimal

prediction strategy is the rrBLUP model, the 50K sequencing platform, a 30%

proportion of the test population, and a marker density of r2=0.1. Additionally,

selecting a specific SS subgroup for sampling the testing set significantly

enhances the predictive capacity for husk tightness.

Discussion: The determination of the optimal GS prediction strategy for HTI

provides an economically feasible reference for the practice of molecular

breeding. It also serves as a reference method for GS breeding of other

agronomic traits.

KEYWORDS

husk tightness, sequencing platforms, population structure, genomic selection (GS),
marker density
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1252298/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1252298/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1252298/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1252298/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1252298&domain=pdf&date_stamp=2023-09-26
mailto:zhangao7@syau.edu.cn
mailto:cuizhenhai@iga.ac.cn
https://doi.org/10.3389/fpls.2023.1252298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1252298
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2023.1252298
1 Introduction

Maize has been the first top staple grain crop in production

worldwide and its production is still increasing, an estimation

showing that it will overtake wheat as the most widely grown

crop by 2030 (Erenstein et al., 2021). A prolonged growth period is

beneficial to achieve a higher grain yield because of the longer

duration available for leaf photosynthesis to produce more biomass

in maize. For pursuing higher yield, in the most of maize planting

zones in China, the maturity is delayed as late as possible, as a result,

a marginal period is left for completing ear dehydration to reach the

suitable moisture for mechanical harvesting, whose higher efficiency

mainly depends on the lower moisture of ears. Therefore, it is

necessary for the ears to rapidly decrease their water content at the

maturity stage.

The water dissipation of maize ear is closely relevant to its husk,

which consists of multiple layers of leaves tightly wrapping the ear.

Maize husk protects the ear from pests, diseases and dehydration

during the ear formation process, on the one hand; and it impedes

water dissipation from the kernels during the maturity stage

decreasing the quality of mechanical harvesting, on the other

hand. The water diffusivity of the husk is affected by its

architecture, including husk length (HL), husk width (HW), husk

thickness (HT), husk layer number (HN), and husk tightness (HTI)

(Yan and Li, 1994; Gao et al., 1999). Relative to the HL, HW, HT

and HN, the HTI is a comprehensive trait, directly related to the

water dissipativity of husk. The looser wrapping of husk at the

maturation process is helpful for the ear to rapidly decrease its

moisture (Gao et al., 1999). In our previous study (Jiang et al., 2020),

the genome-wide association study (GWAS) found that the

loosening degree of husk at the maturity stage was significantly

and negatively correlated with HT and HW, indicating that the

thicker and wider husk leaves will wrap the ear more tightly. The

dissection of genetic basis revealed that the architecture of maize

husk is a quantitative trait governed by multiple genes (Jiang

et al., 2020).

Marker-assisted selection (MAS) and Genomic selection (GS)

are both used in plant and animal breeding programs to speed up

and improve the accuracy of breeding to develop new and improved

cultivars or breeds. The MAS is underlain by the establishments of

significant linkages between special DNA sequences (molecular

marker, e.g. single nucleotide polymorphisms, SNPs) and the

chromosomal loci of the genes controlling the traits to be

selected. The MAS approach cannot be used to select the

quantitative traits affected by many small-effect genes.

Consequently, the application of MAS on the selection of

complex quantitative traits in the breeding is severely constrained

(Hospital, 2009; Platten et al., 2019; Hasan et al., 2021). The GS is an

advanced method to predict the breeding values of individuals by

analyzing the entire genome. The genomic estimated breeding value

(GEBV) of individuals in the breeding populations from GS

depends on the genotyping data of the breeding populations and

the prediction model derived from a training population (Crossa

et al., 2017; Cui et al., 2020a). The training population is used to

establish the prediction model based on its phenotypic and

genotyping data for calculating the GEBVs. The breeders can
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select the individuals with higher genetic gain based on the

GEBVs into next breeding process (Heffner et al., 2009). An

advantage of GS over MAS in breeding is its unbiased prediction

using the genome-wide markers associated with both major genes

and small-effect genes (Meuwissen et al., 2001). Currently, how to

maximize the prediction ability of GS schemes in the breeding

program is one of the hotspots in GS research.

There are many factors that affect the accuracy of GS prediction,

including genome sequencing platform, statistical model, ratio of

the training population to testing (breeding) population, population

genetic structure and molecular marker density throughout

genome. With the constantly striving, more varieties of

sequencing approaches have been developed and the acquisition

of genotyping data is more convenient. Genotyping by sequencing

(GBS) (Elshire et al., 2011), RNA sequencing (RNA-seq), and gene

chips (Ganal et al., 2011; Unterseer et al., 2014) have become

common means of genotyping. Facing different sequencing

platforms, it is often difficult for breeders to determine the most

suitable one for their breeding in the absence of prior research basis.

Taking price into consideration, RNA-seq and low-density

sequencing platforms such as 50K chip are considered as high

and low cost genotyping platforms, respectively.

The ability of GS prediction is also affected by mathematical

method of modeling. The fixed regression-least squares (FR-LS),

random regression-BLUP (rrBLUP), genomic best linear-unbiased

prediction (gBLUP) and Bayesian methods are commonly used

statistical methods for GS modeling (Habier et al., 2007; VanRaden

et al., 2009). gBLUP and rrBLUP possess an equivalent relationship

(Meuwissen et al., 2001), in which the marker effects are assumed to

have a normal distribution with the same variance for all markers

(Meuwissen et al., 2001; Strandén and Garrick, 2009). Bayesian

methods assume a more flexible distribution of marker effects that

does not necessarily follow a normal distribution, including BayesA

(Meuwissen et al., 2001), BayesB (Meuwissen et al., 2001), BayesC

(Habier et al., 2011), Bayesian LASSO (BL) (Park and Casella, 2008)

and Bayesian ridge regression (BRR) (Park and Casella, 2008). In

general, Bayesian methods tend to outperform the rrBLUP method

for traits that are influenced by a few large QTL. Conversely, for

traits that are influenced by multiple small-effect QTLs, gBLUP or

rrBLUP is likely to achieve better or comparable performance

compared to Bayesian methods (Chen et al., 2014).Thus, by

comparing the accuracy of various genomic selection

methodologies, it is possible to determine which method is

capable of achieving higher accuracy for the genetic evaluation of

HTI in maize.

Whether an established GS model is suitable for the breeding

populations is also affected by the coverage of markers and the

representativeness of training population. Linkage disequilibrium

coefficient r2 is commonly used to evaluate whether the marker

coverage is suitable for GS. For traits with higher heritability, a

suggested average adjacent marker r2 = 0.15 is sufficient to achieve

high prediction ability; but for low heritability traits, r2 is required

to increase to 0.2 (Calus and Veerkamp, 2007). A training or

modelling population used to establish the prediction model is

usual ly taken out from the breeding populat ion, i ts

representativeness depends on its proportion in the breeding
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population, the genetic structure of the breeding population and the

selection method. Generally, a higher proportion of the modeling

population can obtain a higher prediction ability and the breeding

population with complicated genetic structure need a larger size of

training population (Akdemir et al., 2015; Cui et al., 2020a), but the

oversized training population will increase the cost of breeding

cycle. In one breeding population containing multiple subgroups,

the prediction ability of the training population from any subgroup

is better within subgroups than across subgroups (Cui et al., 2020a).

Therefore, it is very important to organize the training population.

In this study, we used the phenotypic data from an association

panel of 438 maize inbred lines grown in three sites for two years to

mainly investigate the effects of SNP data from three different

sequencing platforms on the ability of GS prediction on HTI.

Meanwhile, we analyzed the effects of the statistical model, ratio

of the training population to testing population, population genetic

structure and molecular marker density on the GS prediction, trying

to find out what strategy can be selected to achieve the highest

accuracy of GS prediction and maximize the benefit in term of HTI.

The results suggested that the sequencing platforms significantly

affected the accuracy of GS prediction on the HTI of maize ear.
2 Materials and methods

2.1 Association panel and
experimental design

The association panel used in this study has already been

reported by Yang et al. (2011), which consists of 508 maize

inbred lines with tropical, subtropical, and temperate

backgrounds. In this study, only 438 lines from this panel were

used to ensure the balance of data for analysis, which include 121

lines of the non-stiff stalk (NSS) subgroup, 30 of the stiff stalk (SS),

186 of the tropical-subtropical (TST) and 101 of the admixed

(MIXED) according to a previous report (Yang et al., 2011). The

subgroup SS, NSS and MIXED belong to temperate germplasms.

The maize lines were grown under three environments: Sanya

(SY, 108° 39’ E, 18° 24’ N) of Hainan Province in 2015 (15SY) and

2016 (16SY), in Fushun (FS, 121° 74’ E, 42° 14’ N) of Liaoning

Province in 2016 (16FS) in China. The experiments were carried out

in a randomized complete block design with two replications in

each environment (Jiang et al., 2020). All plants were grown under

open-pollination conditions. Each line was planted in a single row

of ten plants per plot, measuring 2 meters in length and 0.6 meters

in width, with a 0.4 meters aisle in the middle. In 16FS, a majority of

the TST subpopulation exhibited late flowering and tall plant

height, indicating a light-sensitive phenotype.

The kernel moisture content is expressed using AUDDC (area

under the dry-down curve) (Yang et al., 2010). The instantaneous

kernel water contents of associated populations were determined by

a water content meter at 34, 40, 46, 52 and 58 days after pollination

(Li et al., 2021). Five plants of each line were selected for

determination and each plant was measured twice. The finally

obtained average value of 10 measurements of each line served as

the instantaneous kernel water content of each line, which was
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converted into AUDDC according to the formula:

AUDDC = o
n−1

i
½(g i + g i+1)=2�(ti+1 − ti)

Where n is the number of measurements; i is the ith

measurement time; g is the converted meter reading and t is the

number of days after pollination.

The husk tightness (HTI) can be calculated by the formula:

HTI =
loose husk perimeter  −  tight husk perimeter

loose husk perimeter
�  100%

Therefore, the larger the HTI value is, the looser the husk is. For

obtaining the loose husk perimeter, soft meter rulers were used to

measure the perimeter of the middle of the maize ear husks under

the natural growth state; the tight husk perimeter was measured by

tightening the husk so that it tightly surrounds the ear. The detail of

investigation for HTI was described in Figure S1.

HTI index was measured at 50th day after pollination, and the

measurements were repeated 6 times for each line. The final

calculation was carried out according to the protocol reported in

our previous work (Jiang et al., 2020). In addition, to analyze the

relationship between HTI and grain field dry down, the area under

the dry-down curve (AUDDC) index proposed by Yang et al. (2010)

was used in the same association panel as this study, grown under

five locations over two years (Li et al., 2021; 13HN for Sanya in

2013; 14JL for Gongzhuling in 2014; 14SY for Shenyang in 2014;

14HeN for Xinxiang in 2014; and 14WH for Wuhan in 2014, http://

maizego.org/Resources).
2.2 Phenotypic correlation, BLUP and
heritability estimation

Pearson correlation coefficients between the HTI and the

AUDDC were calculated by cor() function in stats package in R

program to define the effect of HTI on maize grain water content.

The phenotypic variation of HTI was analyzed using R

software 3.5.3.

The best unbiased linear predictor (BLUP) was calculated for

the phenotypic data of the three environments of HTI, and the final

BLUP value was obtained by adding the mean value to the estimated

value through a mixed linear model:

yijk  = m  +  ei  +  r(e)ij  +  f k  +  f � eik  +  ϵilk

where i, j and k represent the number of environments,

replications, and individuals, respectively; m is the overall average

of HTI, ei is the environmental effect of the i-th environment, and r

(e)ij is the effect of the j-th replication in the i-th environment, fk is

the genotypic effect of the k-th individual, f ∗ eik is the interaction of

genetic and environmental effects, ϵilk is the residual error.

The proportion of the total variance explained by the genetic

variance is defined as heritability. Heritability was estimated by the

PROC MIXED program in SAS software (Release 9.1.3; SAS

Institute, Cary, NC, United States). The broad sense heritability

was calculated as:
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h2 =
s2
g

s2
g +

s  2
ge  
e + s2

e
re

In this formula, e represents the total number of environments,

and r represents the number of replicates of the lines contained in

each environment. Where s2
g and s2

e are the genotypic and

residual error variance components, respectively. s  2
ge was the

interaction of genotype and environment (Knapp et al., 1985).

Among three environments (15SY, 16SY, 16FS), the average

heritability of HTI was estimated to be approximately 41%, a

moderate heritability level (Jiang et al., 2020).
2.3 Genotyping platforms and marker data

The association panel was genotyped using five methods,

including four sequencing platforms, the Illumina maize SNP50

array (50K), the Affymetrix Axiom Maize 600K array (600K),

genotyping by sequencing (GBS), RNA sequencing (RNA-seq), and

an integrated SNP maker data set (Integration). The integration set

was synthesized by three steps: (1) merging the data from the

MaizeSNP50 BeadChip (Ganal et al., 2011) and the RNA-

sequencing (Fu et al., 2013) using the identity by descent (IBD)

based projection and the k-nearest neighbour (KNN) algorithm to

increase marker density and fill in missing genotypes, respectively

(Yang et al., 2014); (2) using the data from GBS (Elshire et al., 2011)

and Affymetrix Axiom Maize 600K array (Unterseer et al., 2014) to

conduct SNP allele calling and imputed of missing genotypes for

complementing the data from the platforms of 50K, 600K, GBS, and

RNA-seq (Liu et al., 2017); (3) The genotypes of the four genotyping

platforms were merged, and the priority order of 600K>50K>RNA-

seq>GBS was adopted when there was a difference between multiple

platforms for a specific locus. After removing SNPs with a deletion

rate higher than 90%, Beagle v4.0 (Browning and Browning, 2007)

was used for genotype imputation. Eliminating SNPs with a minor

allele frequency less than 5%, a multi-platform integrated genotype

data was obtained. All genotype files can be found on the website

(http://maizego.org/Resources).

All genotype data were preliminarily filtered in TASSEL v5.2

according to the adoption criteria of MAF>=0.05 and missing

rate<=0.2. Then, the missing values in the preliminary filtered

data by TASSEL v5.2 in the beagle v5.2 software were filtered

again in TASSEL according to the same adoption standard. After

the intersection comparison between the filtered genotype data, the

remained SNP markers from the GBS, 50K, 600K, RNA-seq and

Integration were 887, 47368, 436972, 524320 and 1243316

(designed as 1.0 of marker density, no pruning any markers),

respectively. At last, the inbred lines with both the genotype data

and phenotype data were 380, 438,133, 315 and 438 lines,

respectively, for the GBS, 50K, 600K, RNA-seq and Integration.

The marker data from 600K were not used in the subsequent

analysis, because of less available inbred lines genotyped.

In addition, the plink software was used to filter the SNP loci of

each genotype data from the different platforms with different

linkage disequilibrium (LD) coefficient, that is, r2 = 0.01, 0.1, 0.2,

0.5, 0.8, 1.0 and the left number of markers were: (1) 940, 52098,
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131428, 333074, 569514 and 1243316, respectively, for the

Integration; (2) 113, 8485, 18292, 29537, 35964 and 47368,

respectively, for 50K; (3) 428, 4524, 33568, 111713, 172319 and

436972, respectively, for 600K; (4) 64, 676, 743, 801, 817 and 887,

respectively, for GBS; (5)388, 16182, 56582, 157164, 256702 and

524320, respectively, for RNA-seq. The larger the value of r2 is, the

more SNP markers is remained.
2.4 Prediction models for
genomic selection

In this study, we used six models, rrBLUP (Ridge Regression

Best Linear Unbiased Prediction), BayesA, BayesB, BayesC, BL and

BRR in the R package BGLR (Pérez and De, 2014) to predict the

HTI trait of husk in maize and evaluated their prediction abilities.

rrBLUP was a commonly used GS model (Whittaker et al., 2000;

Meuwissen et al., 2001), belonging to the indirect prediction

method. Classical rrBLUP model is as follows (Endelman, 2011):

y = WGm + ϵ

Where y is the observation vector; W is the design matrix

relating lines to y, G represents the genotype matrix, m is marker

effects vector; ϵ is the residual random residual vector. Compared

with the direct method, rrBLUP does not operate in units of

individuals, but in units of markers, as a result, the obtained GS

prediction ability was often higher. After the R package rrBLUP is

loaded into R, we modeled the marker effect as random effect

through a function called mixed.solve, and then used the rrBLUP

model for GS analysis to predict marker effects or breeding values.

The Bayesian model is as follows(Wang et al., 2014):

y = Xb +o
q

k=1

zkgk + e

where y is the phenotype observation vector; b is the fixed

effect vector, X is the fixed effect correlation matrix; q is the

number of SNPs, zk is the genotype vector of the kth SNP, and gk is

the effect value of the kth SNP; e is the residual random

residual vector.

The BGLR package is mainly used for the research of parametric

and semiparametric Bayesian methods, which has built-in multiple

Bayesian regression models and integrates multiple algorithms.

Bayesian methods assume some prior distribution for the

variance of marker effects and allow each marker to have a

different effect variance (Sun et al., 2012). The differences between

different Bayesian methods are mainly reflected in the effect value of

each marker, as well as the distribution of marker effects and

their variances.
2.5 The proportion of training population
to breeding population

To explore the impact of the proportion of the training

population in the association panel on the GS prediction
frontiersin.org

http://maizego.org/Resources
https://doi.org/10.3389/fpls.2023.1252298
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1252298
accuracy, we took out 10% to 90%, at an interval of 10%, of inbred

lines in the association panel to form the training population, that

is, the size of the testing or predicted population is 90% to 10% of all

inbred lines in the association panel.
2.6 Prediction ability across subgroups

We randomly took out 10% to 90%, at an internal of 10%, of

the inbred lines from each subgroup (NSS, SS, TST, MIXED) in

the association panel as a training population for establishing the

prediction model to evaluate the prediction abilities on: (1) the

remaining inbred lines (as testing population) in the same

subgroups; (2) the inbred lines (as testing population) from the

remaining individuals of the same subgroups plus individuals

from other subgroups. The prediction ability was calculated from

the Pearson correlation analysis between true breeding value

(TBV) and genomic estimated breeding value (GEBV) based on

BLUPs from 100 replicates.
2.7 Cross-validation

The prediction abilities of the marker data from different

sequencing platforms were judged by the 80% of inbred lines in

the association panel as the training population and the remaining

20% of inbred lines as the testing population (known as five-fold

cross-validation). For more practical application, we used the 70%

of inbred lines in the association panel as the training population

and the remaining 30% of inbred lines as the testing population to

explore the effects of the marker density. However, when studying

the effect of population genetic structure on the prediction ability of

GS, we still chose 10%-90% of the panel as modeling population.

Both cross-validations were repeated for 100 times.
3 Results

3.1 Correlation between husk tightness and
grain moisture content

According to the HTI formula, a larger value of HTI represents

a husk that is more loosely attached to the ear. The HTI values and

corresponding AUDDCs demonstrated a significant negative

correlation across the whole association panel, as well as in the

NSS and MIXED subgroups for BLUP (Figure 1). In the SS

subgroup, the negative correlations were observed below the

significant level, with the exception of 16SY. In the TST

subgroup, correlation coefficients were the lowest across any of

the environments compared to other subgroups. These findings

suggested that a loosely attached husk can aid in the dissipation of

water from kernels in temperate maize germplasms across most

environments but not nessarily for tropical-origin maize.
Frontiers in Plant Science 05
3.2 GS prediction abilities of
different genotyping platforms
and statistical models

To identify the most suitable statistical model and genotyping

platform for GS of HTI, we conducted a comparison of the prediction

accuracies of BayesA, BayesB, BayesC, BL, BRR, and rrBLUP models

across the different genotyping platforms (GBS, 50K, RNA-seq and

Integration) (Figure 2). Here, 80% of individuals in the association

panel served as the training population, while the remaining 20%

were used as the testing population. The results showed that the

rrBLUP model demonstrated the highest GS prediction accuracy

across all sequencing platforms tested. Conversely, the other models

displayed lower and similar prediction accuracies.

Using the most suitable rrBLUP model, we evaluated the

prediction abilities of markers from different genotyping

platforms for HTI (Figure 2). The prediction abilities, as

expressed by the Pearson coefficients between TBVs and GEBVs,

were 37.03%, 36.24%, 35.43% and 34.73% for RNA-seq, Integration,

50K and GBS, respectively. Interestingly, the predictive abilities of

RNA-seq, Integration, 50K, and GBS were similar, with RNA-seq

demonstrating slightly higher abilities and GBS slightly lower one.

Due to its poor performance on other genotyping platforms, GBS

was not included in the subsequent analyses.
3.3 Prediction abilities of different training
population proportion

In general, the prediction ability of GS tend to increase as the

proportion of individuals in the training population rises in an
FIGURE 1

The correlation plot between HTI and AUDDC in the association
panel and its constituent subgroups under three environments. HTI:
husk tightness; AUDDC: area under the dry-down curve (BLUP value
of 13HN, 14JL, 14SY, 14HeN, 14WH); All: the association panel;
MIXED: admixed, NSS: non-stiff stalk; SS: stiff stalk; TST: tropical-
subtropical; 15SY, 16SY and 16FS represented Sanya of Hainan
Province in 2015 and 2016, Fushun of Liaoning Province in 2016 in
China, respectively. BLUP value comes from the three environments
of 15SY, 16FS and 16SY. *a significant difference at P≤ 0.05; **a
significant difference at P≤ 0.01.
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association panel. To investigate this trend, we randomly selected

10-90% of individuals as the training population and the remainder

as the testing populations, to predict HTI using marker data from

50K, RNA-seq and Integration by the rrBLUP model. As shown in

Figure 3 and Table S1, as the proportion of the training population

increased or decreased in the testing population, the prediction

ability of GS exhibited an upward trend. The testing population of

10% was initially excluded due to the high breeding cost, despite

having the highest prediction accuracy. All testing population

proportions equal to or greater than 50% were also excluded due

to the rapid decline in prediction accuracy. For the testing

population of 20% to 40%, compared to 10%, there was a decline

in accuracy of 2.2%, 2.5%, and 4.9% in the 50K dataset, 3.9%, 2.7%,

and 2.8% in the RNA-seq dataset, and 2.9%, 3.0%, and 5.7% in the
Frontiers in Plant Science 06
integration of datasets. The decrease in prediction accuracy is

relatively smaller when the testing population is 30%. Therefore, a

testing population proportion of 30% was selected for GS analysis in

the following context.
3.4 Effects of Marker densities on
prediction abilities

The effects of marker density on the GS prediction abilities of

different genotyping methods on husk tightness were evaluated

using rrBLUP model. Marker densities were achieved by screening

the linkage disequilibrium (LD) coefficient r2 value of 0.01, 0.1, 0.2,

0.5, 0.8, and 1.0. 70% of individuals in the association panel were

selected as the training population, with the remaining 30% serving

as the testing population. The results showed no significant

differences in prediction abilities under most marker densities

among the three genotyping methods, except for the density with

r2 = 0.01 (Figure 4). For marker densities ranging from r2 of 0.1 to

1.0, prediction abilities did not significantly increase as marker

density increased. The highest average prediction abilities were

achieved at r2 of 1.0, with values of 34.53% for 50K, 36.04% for

RNA-seq, and 35.17% for Integration. However, the prediction

abilities significantly declined at r2 of 0.01 for all three

genotyping methods.
3.5 Effects of population genetic structure
on prediction abilities

To investigate the impact of population genetic structure on GS

prediction abilities, the rrBLUP model was employed to predict the

HTI using marker densities with LD coefficient r2 of 0.01, 0.1, 0.2,

0.5, 0.8 and 1.0 from the three genotyping methods: 50K, RNA-seq,

and Integration. The analysis involved the following procedures: (1)

randomly selecting 10-90% at internals of 10% of individuals from
FIGURE 3

GS prediction abilities of husk tightness under different testing
population proportion by the rrBLUP model. Randomly taking 10%
to 90%, at an internal of 10%, of individuals in the association
population as the testing populations and the remaining individuals
as the training population. 50K: the Illumina maize SNP50 array;
RNA sequencing; Integration: integrated SNP maker data set. Each
prediction was repeated for 100 times.
FIGURE 2

Prediction abilities of six GS models on husk tightness using markers from five genotyping methods. Randomly taken 80% of individuals in the
association panel served as the training population and the remaining 20% as the testing populations. Each prediction was repeated 100 times. 50K:
the Illumina maize SNP50 array; GBS: genotyping by sequencing; RNA-seq: RNA sequencing; Integration: integrated SNP maker data set. The
Duncan statistical method was used for the significance test, and the significance was shown in the letters a~d on the figure.
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different genetic structure populations with four subgroups as the

training populations to predict the remaining individuals within the

same populations; (2) randomly selecting 10-90% at internals of

10% of individuals from the four subgroups (MIXED, NSS, SS, and

TST, respectively) as the training populations to predict the

remaining of individuals within the same subgroup (within

subgroup) (Figure 5A); and (3) using the training population with

10-90% of individuals from one subgroup to predict the other

subgroups (across subgroup) (Figure 5B).

The different population structures have a significant impact on

the prediction ability. Generally, the GS prediction ability

demonstrated an increasing trend as the sampling proportion of
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the training population increased within and across subgroups,

using all genotyping methods. Within subgroups (Figure 5A, Table

S2), the prediction accuracies from high to low in the order of SS,

NSS, TST, and MIXED subgroups. As the proportion of the training

population increased or decreased in the testing population, the

prediction ability of GS exhibited an upward trend except for

MIXED. Regarding different genotyping methods, the prediction

ability of RNA-seq was slightly higher than 50K and Integrated. The

highest prediction accuracy appeared in the SS subgroup under all

the population structures and the sequencing platforms.

Across subgroups (Figure 5B, Table S3), taking the 70%modeling

population as an example, the accuracy of prediction the NSS and SS
FIGURE 5

Effects of the population genetic structure on GS prediction abilities of husk tightness using the rrBLUP model. The six marker densities with the
linkage disequilibrium (LD) coefficient r2 of 0.01, 0.1, 0.2, 0.5, 0.8, and 1.0, respectively, from the three genotyping methods; Randomly taking out
90-10% of individuals in the association panel served as the training populations and the remaining of individuals as the testing populations; 50K: the
Illumina maize SNP50 array; RNA sequencing; Integration: integrated SNP maker data set. Each prediction was repeated for 100 times. The Duncan
statistical method was used for the significance test, and the significance was shown with the letters a~f on the figure. Prediction ability of husk
tightness of GS under different population structures, within (A) and across (B) subgroups. The different colors bar in the legend represents how
many groups are selected as the testing population. The X-axis represents different sequencing platforms. All of which were randomly selected 100
times from each of the four subgroups (MIXED, NSS, SS, TST).
FIGURE 4

Effects of marker densities on GS prediction abilities of husk tightness using the rrBLUP model. The six marker densities with the linkage
disequilibrium (LD) coefficient r2 of 0.01, 0.1, 0.2, 0.5, 0.8, and 1.0, respectively, from the three genotyping methods; Randomly taking out 70% of
individuals in the association panel served as the training populations and the remaining 30% of individuals as the testing populations; 50K: the
Illumina maize SNP50 array; RNA sequencing; Integration: integrated SNP maker data set. Each prediction was repeated for 100 times. The Duncan
statistical method was used for the significance test, and the significance was shown with the letters a~f on the figure.
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improved, while the prediction accuracy of the TST and MIXED

decreased compared to without subgroup distinction (Figure 4). As

same as within subgroups, the prediction ability of RNA-seq was

slightly higher than the others in across subgroup. As the proportion

of the training population increased or decreased in the testing

population, the prediction ability of GS exhibited an upward trend

except for SS and MIXED by RNA-seq. The SS subgroup also has the

highest prediction accuracy, indicating that the SS subgroup has a

narrower genetic diversity for HTI in this association penal.

The comparison within and across subgroups showed that each

sampling proportion across subgroups achieved higher prediction

accuracies for MIXED, TST, and NSS by 50K, for MIXED and TST

by RNA-seq, and for MIXED and SS subgroups by Integration.

Conversely, the prediction accuracies for NSS by RNA-seq and TST

by Integration were better within subgroups than across subgroups.

For most cases, the upward trend in prediction accuracy with

increasing training populations was more significant within

subgroups than across subgroups.
4 Discussions

Low moisture content of maize grain at maturity is one of the

main breeding aims affecting the efficiency of mechanical harvesting

(Chai et al., 2017; Wang and Li, 2017), while the husk is the primary

barrier to physical dehydration of maize grain (Sweeney et al.,

1994). HTI is a complex and quantitative trait that is controlled by

multiple genes and determined by the width, length, and thickness

of the husk leaves (Jiang et al., 2020). Consequently, it serves as the

most appropriate index among husk traits in GS. The use of GS

breeding method can significantly reduce the cost of obtaining HTI

phenotype.To efficiently predict HTI, in this study, we compared

the effects of factors such as genotyping methods, statistical models,

the proportion of the training population in the association panel,

marker density and population genetic structure on GS.
4.1 The relationship between HTI
and grain moisture levels differs
significantly between tropical and
temperate maize subgroups

In temperate areas, the mechanical harvesting of maize often

takes place during colder weather, necessitating the rapid

dehydration of the grains (Hicks et al., 1976). Therefore, a loosely

attached husk is suitable in such areas. On the other hand, in

tropical and subtropical areas, where pest damage and pathogen

infections are more prevalent and intense (Renfro and Ullstrup,

1976; Afolabi et al., 2007), a tight husk is favored to provide

protection. However, the relationship between husk tightness and

kernel water contents in different population structures has been

rarely mentioned in research. In this study, it is evident that there

are significant differences in the correlation between HTI and kernel

water contents among various subgroups.For the SS subgroup, a

small number of lines can affect the accuracy of correlation

coefficient calculation. For the TST subgroup, tropical-origin
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maize, due to its high tropical temperatures and good sunlight,

does not require the complete loosening of the husk leaves for grain

dehydration, so it is not directly related to the HTI. However, for

temperate-origin maize, due to temperature and sunlight

limitations during the harvest period, requires rapid dehydration

of the grains under loose husk conditions to ensure timely

harvesting. Therefore, the HTI is closely related to grain

dehydration in temperate-origin subgroup.
4.2 HTI prediction ability is affected by the
genotyping methods

There are several sequencing platforms and genotyping

methods available today, each with different costs, marker

densities, and accuracies. Therefore, maize breeders must choose

the most suitable one for their breeding programs based on their

requirements and cost effectiveness. In this study, the abilities of GS

prediction on HTI varied depending on the genotyping methods.

Among the four methods examined, RNA-seq, 50K and Integration

showed higher prediction abilities, while GBS showed a lower

prediction ability. HTI is regulated by multiple genes that not

evenly distributed throughout the genome. Due to the

inconsistent distribution, accuracy, and density of markers from

different genotyping methods, they inevitably cause differences in

HTI prediction ability.

In this study, the markers obtained from RNA-seq represent the

gene expression status at thematurity stage, which narrows the range of

genes analyzed for GS of HTI and thus increases the significance of

genes strongly associated with HTI, resulting in a higher prediction

ability. However, RNA-seq is not be practical due to its higher cost.

Nevertheless, RNA-seq can served as a reference for prediction abilities

of other genotyping method. Integration, which involves combining

data from multiple sequencing platforms, also demonstrated a higher

ability for GS of HTI. The complementary effect of this multi-

sequencing platform in terms of marker distribution, density, and

accuracy has also shown a significant promotion effect on other husk

traits (Cui et al., 2020b). Although the prediction accuracy for HTI of

the 50K and GBS methods is not the highest (50K is better than GBS),

due to their cost advantage, they are still a good choice for GS.
4.3 rrBLUP model is suitable
for HTI prediction

It was clear that the comparison between rrBLUP and Bayesian

methods mainly depends on these three factors: the population

genome structure, the trait genetic architecture, and the size of the

training set (Daetwyler et al., 2010). The rrBLUP statistical model

demonstrated a significantly higher prediction ability for HTI

compare to BayesA, BayesB, BayesC, BL and BRR. Regarding the

first factor of population genetic structure, the associated

population in this study consists of multiple subgroups with

globally diverse variations. In the case of large populations and

massive markers, Bayesian methods experience an increased

demand for computation, which may result in problems with
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multicollinearity (Gianola et al., 2009). Regarding the second factor

of trait genetic architecture, the HTI performance is governed by

several major genes with relatively lower contribution values, as well

as multiple small effect genes, and is largely affected by

environmental conditions (Jiang et al., 2020). Regarding the third

factor of size of the training set, there was no significant difference

observed between rrBLUP and Bayesian methods such as Bayesia

under different training population proportions for HTI. Thus, it is

possible that the rrBLUP is better suited to the genetic

characteristics in this association panel and can better evaluate

the association of SNP markers from various sequencing platforms

for HTI than Bayesian methods.
4.4 Reducing marker density
appropriately does not affect the
prediction accuracy of GS for HTI

On the one hand, marker density affects sequencing costs, and on

the other hand, it impacts the prediction accuracy of GS (Combs and

Bernardo, 2013; Zhang et al., 2017). Therefore, striking a balance

between the two is a critical issue that must be considered in GS

breeding applications. Our study showed that reducing the marker

density within a certain range (r2 = 0.1~1.0) did not have a significant

impact on the GS ability of HTI. These findings are consistent with a

previous report in which the use of 5 to 27,000 markers for GS of

traits showed that the prediction ability ceased to increase

significantly once the number of markers exceeded 2,000 (An et al.,

2020). Here, the GS prediction ability declined significantly when the

number of markers decreased to r2 = 0.01. Within the range of 0.01-

0.1 for LD (Figure S2), except for a rapid increase from 0.02 to 0.04 at

50K, the predictive accuracy of the three sequencing platforms

gradually increases with the increase in the number of markers. In

all cases, the predictive accuracy is highest when LD is 0.1. Therefore,

for low marker density, selecting 0.1 as the LD threshold for HTI

would yield the best genomic selection prediction. Therefore, even

with a lower marker density beyond a certain threshold, HTI can still

achieve a greater prediction accuracy, which is sufficient for general

purposes.This result can significantly reduce the expenses associated

with genotyping in practical breeding programs.
4.5 Population genetic structure has a
significant effect on HTI prediction ability

The genetic systems governing the agronomic traits vary among

different maize germplasms (Xiao et al., 2017; Wu et al., 2022).

Therefore, the prediction performance within a subgroup differs

from that in a multiple-subgroup population or cross subgroups

(Guo et al., 2014; Dong et al., 2018; Cui et al., 2020a). In this study,

there was a significant variation in GS prediction accuracy among

subgroups. Compared with the whole association panel, prediction
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accuracies increased within NSS and SS, while they decreased

within MIXED and TST. When a training population of 70% was

selected, the prediction accuracy of TST was less than 30%, but that

of SS could reach 50% within both the same subgroup or cross

subgroup. The superior GS prediction accuracy displayed by the

NSS and SS subgroups, concerning individual subgroups, might be

attributed to their germplasm belonging to temperate kinship.

Despite the small sample size of only 151 individuals (which

represented just 34% of the total), the best prediction accuracy of

HTI was observed in the NSS and SS subgroups under almost all

cases, which may be related to their temperate genetic background.

Possible reasons could be that within the NSS and SS subgroups,

HTI has narrower genetic and phenotypic variations compared to

the TST subgroup (Jiang et al., 2020). In the MIXED subgroup, the

prediction accuracy was notably low both within and across

subgroups compared to other subgroups. MIXED subgroup has a

highly diverse population structure, which leads to lower predictive

accuracy compared to other subgroups with relatively clear

population structure.

In addition, this study has revealed that different subgroups

possess unique characteristics in GS, as some subgroups perform

better prediction performance within the same subgroup, while

others excel in predicting across subgroups. Notably, GS on the SS

subgroup showed a marked improvement within the subgroup as

compared to the whole population. Our previous research has

demonstrated that GS showed a higher efficacy for the traits of

HN, HT and HW in both the whole association panel and SS

subgroup (Cui et al., 2020a). However, it is puzzling that in the SS

subgroup, the prediction accuracy within subgroups is lower than

across subgroups in some cases. Due to a low number of individuals

in SS, the standard variances within subgroup were mostly higher

than across subgroup for SS. This may be the primary reason for the

decrease in prediction accuracy.These findings indicate that

choosing an appropriate population structure when studying a

specific trait may greatly enhance the accuracy of GS.
5 Conclusions

This study demonstrated that the HTI of temperate maize

germplasms in the association penal was significantly and

negatively correlated with the moisture content of grains in the

majority of tested environments. Additionally, the accuracy of HTI

in GS was affected by the genotyping method, statistical model,

proportion of training population in the association panel, marker

density, and population genetic structure. The accuracy of HTI

varied according to the genotyping method used among the four

methods tested, the 50K and GBS were more cost efficient and

adequate for average GS performance of HTI. The rrBLUP model

was more suitable for predicting HTI comparing to other methods.

The prediction accuracy of HTI increased with the proportion of

training population in the association panel, but the amplification of
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prediction accuracy was negligible in the case of the SS subgroup at

the proportion of training population ranging from 60% to 90% due

to cost inefficiency. The marker densities with r2 = 0.1~1.0 had no

significant effect on the GS ability, hence, genotyping methods with

low marker density or low cost can be adopted for GS of HTI in

maize. The genetic structure of the association panel had a

significant impact on the GS ability of HTI. Therefore, GS based

on the constituent subgroups of the breeding population is an

important method to enhance the prediction ability. Understanding

the genetic structure and inherent molecular mechanisms of HTI in

various subgroups can contribute to molecular breeding in maize.
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C. G., et al. (2017). Genomic selection in plant breeding: methods, models, and
perspectives. Trends Plant Science. 22 (11), 961–975. doi: 10.1016/j.tplants.2017.08.011

Cui, Z., Dong, H., Zhang, A., Ruan, Y., He, Y., and Zhang, Z. (2020a). Assessment of
the potential for genomic selection to improve husk traits in maize. G3: Genes Genomes
Genet. 10 (10), 3741–3749. doi: 10.1534/g3.120.401600

Cui, Z., Dong, H., Zhang, A., Ruan, Y., Jiang, S., He, Y., et al. (2020b). Denser markers
and advanced statistical method identified more genetic loci associated with husk traits
in maize. Sci. Rep. 10 (1), 8165. doi: 10.1038/s41598-020-65164-0

Daetwyler, H. D., Pong-Wong, R., Villanueva, B., and Woolliams, J. A. (2010). The
impact of genetic architecture on genome-wide evaluation methods. Genetics. 185 (3),
1021–1031. doi: 10.1534/genetics.110.116855

Dong, H., Wang, R., Yuan, Y., Anderson, J., Pumphrey, M., Zhang, Z., et al. (2018).
Evaluation of the potential for genomic selection to improve spring wheat resistance to
frontiersin.org

https://doi.org/10.6084/m9.figshare.23694426.v1
https://www.frontiersin.org/articles/10.3389/fpls.2023.1252298/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1252298/full#supplementary-material
https://doi.org/10.1094/PDIS-91-3-0279
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1186/s12870-020-02676-x
https://doi.org/10.1086/521987
https://doi.org/10.1111/j.1439-0388.2007.00691.x
https://doi.org/10.1111/j.1439-0388.2007.00691.x
https://doi.org/10.1371/journal.pone.0101544
https://doi.org/10.3835/plantgenome2012.11.0030
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1534/g3.120.401600
https://doi.org/10.1038/s41598-020-65164-0
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.3389/fpls.2023.1252298
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1252298
fusarium head blight in the pacific northwest. Front. Plant science. 9. doi: 10.3389/
fpls.2018.00911

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., et al.
(2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity
species. PloS One 6 (5), e19379. doi: 10.1371/journal.pone.0019379

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with
R Package rrBLUP. Plant Genome . 4 (3) , 250–255 . doi : 10 .3835 /
plantgenome2011.08.0024

Erenstein, O., Chamberlin, J., and Sonder, K. (2021). Estimating the global number
and distribution of maize and wheat farms. Global Food Security. 30, 100558.
doi: 10.1016/j.gfs.2021.100558

Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., et al. (2013). RNA
sequencing reveals the complex regulatory network in the maize kernel. Nat. Commun.
4, 2832. doi: 10.1038/ncomms3832

Ganal, M. W., Durstewitz, G., Polley, A., Bérard, A., Buckler, E. S., Charcosset, A.,
et al. (2011). A large maize (zea mays L.) SNP genotyping array: Development and
germplasm genotyping, and genetic mapping to compare with the B73 reference
genome. PloS One 6 (12), e28334. doi: 10.1371/journal.pone.0028334

Gao, S., Wang, Y., Yang, X., and Ma, Z. (1999). The breeding of maize for reducing
grain water content at harvest. Modernizing Agriculture. 235 (2), 4–6.

Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E., and Fernando, R. (2009).
Additive genetic variability and the Bayesian alphabet. Genetics. 183 (1), 347–363.
doi: 10.1534/genetics.109.103952

Guo, Z., Tucker, D. M., Basten, C. J., Gandhi, H., Ersoz, E., Guo, B., et al. (2014). The
impact of population structure on genomic prediction in stratified populations. Theor.
Appl. Genet. 127 (3), 749–762. doi: 10.1007/s00122-013-2255-x

Habier, D., Fernando, R. L., and Dekkers, J. C. M. (2007). The impact of genetic
relationship information on genome-assisted breeding values. Genetics. 177 (4), 2389–
2397. doi: 10.1534/genetics.107.081190

Habier, D., Fernando, R. L., Kizilkaya, K., andGarrick, D. J. (2011). Extension of the Bayesian
alphabet for genomic selection. BMC Bioinf. 12 (1), 186. doi: 10.1186/1471-2105-12-186

Hasan, N., Choudhary, S., Naaz, N., Sharma, N., and Laskar, R. A. (2021). Recent
advancements in molecular marker-assisted selection and applications in plant breeding
programmes. J. Genet. Eng. Biotechnol. 19 (1), 128. doi: 10.1186/s43141-021-00231-1

Heffner, E. L., Sorrells, M. E., and Jannink, J. L. (2009). Genomic selection for crop
improvement. Crop Science. 49 (1), 1–12. doi: 10.2135/cropsci2008.08.0512

Hicks, D. R., Geadelmann, G. L., and Peterson, R. H. (1976). Drying rates of frosted
maturing maize. Agron. J. 68, 452–455. doi: 10.2134/agronj1976.00021962006800030004x

Hospital, F. (2009). Challenges for effective marker-assisted selection in plants.
Genetica. 136 (2), 303–310. doi: 10.1007/s10709-008-9307-1

Jiang, S., Zhang, H., Ni, P., Yu, S., Dong, H., Zhang, A., et al. (2020). Genome-wide
association study dissects the genetic architecture of maize husk tightness. Front. Plant
Science. 11. doi: 10.3389/fpls.2020.00861

Knapp, S. J., Stroup, W. W., and Ross, W. M. (1985). Notes exact confidence intervals
for heritability on a progeny mean basis 1. Crop Science. 25 (1), 192–194. doi: 10.2135/
cropsci1985.0011183X002500010046x

Li, W., Yu, Y., Wang, L., Luo, Y., Peng, Y., Xu, Y., et al. (2021). The genetic
architecture of the dynamic changes in grain moisture in maize. Plant Biotechnol. J. 19
(6), 1195–1205. doi: 10.1111/pbi.13541

Liu, H., Luo, X., Niu, L., Xiao, Y., Chen, L., Liu, J., et al. (2017). Distant eQTLs and
non-coding sequences play critical roles in regulating gene expression and quantitative
trait variation in maize. Mol. Plant 10 (3), 414–426. doi: 10.1016/j.molp.2016.06.016

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total
genetic value using genome-wide dense marker maps. Genetics. 157 (4), 1819–1829.
doi: 10.1093/genetics/157.4.1819
Frontiers in Plant Science 11
Park, T., and Casella, G. (2008). The bayesian lasso. J. Am. Stat. Assoc. 103 (482),
681–686. doi: 10.1198/016214508000000337
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