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Background: Uveal melanoma (UVM) is a primary intraocular malignancy that
poses a significant threat to patients’ visual function and life. The basement
membrane (BM) is critical for establishing and maintaining cell polarity, adult
function, embryonic and organ morphogenesis, and many other biological
processes. Some basement membrane protein genes have been proven to be
prognostic biomarkers for various cancers. This research aimed to develop a novel
risk assessment system based on BMRGs that would serve as a theoretical
foundation for tailored and accurate treatment.

Methods:We used gene expression profiles and clinical data from the TCGA-UVM
cohort of 80 UVM patients as a training set. 56 UVM patients from the combined
cohort of GSE84976 and GSE22138 were employed as an external validation
dataset. Prognostic characteristics of basement membrane protein-related genes
(BMRGs) were characterized by Lasso, stepwise multifactorial Cox. Multivariate
analysis revealed BMRGs to be independent predictors of UVM. The TISCH
database probes the crosstalk of BMEGs in the tumor microenvironment at the
single-cell level. Finally, we investigated the function of ITGA5 in UVM using
multiple experimental techniques, including CCK8, transwell, wound healing
assay, and colony formation assay.

Results: There are three genes in the prognostic risk model (ADAMTS10,
ADAMTS14, and ITGA5). After validation, we determined that the model is quite
reliable and accurately forecasts the prognosis of UVMpatients. Immunotherapy is
more likely to be beneficial for UVM patients in the high-risk group, whereas the
survival advantage may be greater for UVM patients in the low-risk
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group. Knockdown of ITGA5 expression was shown to inhibit the proliferation,
migration, and invasive ability of UVM cells in vitro experiments.

Conclusion: The 3-BMRGs feature model we constructed has excellent predictive
performance which plays a key role in the prognosis, informing the individualized
treatment of UVM patients. It also provides a new perspective for assessing pre-
immune efficacy.

KEYWORDS

uveal melanoma, basement membrane genes, machine learning, multi-omics, tumor
heterogeneity, cancer immunotherapy

1 Introduction

Uveal melanoma (UVM) is a rare yet aggressive primary
intraocular malignancy arising from ocular melanocytes,
constituting a small fraction of all melanomas (Singh et al., 2005;
Singh et al., 2011; Chattopadhyay et al., 2016; Chi et al., 2022). It
imposes significant threats to patients’ visual function and overall
survival, with a high mortality rate of up to 50% attributed to its
severe clinical presentation, malignancy, and limited treatment
options (Andreoli et al., 2015). Notably, UVM exhibits a
propensity for metastasis, with approximately half of the patients
developing distant organ metastases, most commonly involving the
liver, lung, and bone (Rusňák et al., 2020). Unfortunately, current
therapeutic modalities for UVM have shown limited efficacy in
managing metastatic disease (Augsburger et al., 2009; Damato,
2018). As a result, recent research endeavors have focused on the
development of targeted therapeutics and immunotherapeutic
strategies, including immune checkpoint inhibitors, vaccines, and
adoptive cell therapy, to address the unmet medical needs in UVM
(Curran et al., 2010; Larkin et al., 2015; Bol et al., 2016). However,
the underlying etiology and molecular mechanisms driving UVM
remain largely elusive (Smit et al., 2020; Derrien et al., 2021;
Katopodis et al., 2021). Consequently, there is a critical need to
identify novel prognostic biomarkers and molecular targets that can
accurately predict patient outcomes and facilitate personalized
treatment approaches, ultimately improving the quality of life for
individuals affected by UVM.

The basement membrane (BM) is a specialized extracellular
matrix located at the basal aspect of epithelial tissues, primarily
composed of collagen IV, laminin, heparan sulfate proteoglycans,
BM-40, and nidogen (Timpl, 1989). Its crucial role in establishing
and maintaining cellular polarity and providing mechanical support
to tissues is well-recognized (Banerjee et al., 2022). Moreover, BMs
play critical roles in various physiological processes, including
embryonic development, organ morphogenesis, and adult tissue
homeostasis (Li et al., 2003). Perturbations in BM protein expression
and turnover have been implicated in tumorigenesis, and
dysregulation of BM integrity has been associated with tumor
metastasis (Valastyan and Weinberg, 2011; Naba et al., 2014).
While BM-related genes have shown prognostic significance in
several cancers, their role, and prognostic implications in uveal
melanoma (UVM) remain poorly understood. To elucidate the
immunological status of UVM patients and accurately predict
prognosis, this study aimed to develop a novel risk-scoring
system based on BM-related genes. The objective was to establish
a theoretical foundation for personalized therapeutic interventions

tailored to individual patients. By comprehensively characterizing
the expression and functional relevance of BMRGs, this risk-scoring
system would enable precise prognostic stratification and facilitate
tailored treatment strategies in UVM.

Following the rapid advancement of bioinformatics (Song et al.,
2022a; Zhao et al., 2022a; Jin et al., 2022), a considerable amount of
research has been conducted to establish models for predicting the
prognosis of UVM through machine learning. For example, Zheng
et al. established an autophagy-related gene (ARG) risk model and
validated it with TCGA and four external independent UVM
cohorts, revealing that UVM patients with higher risk scores
exhibited higher levels of immune cell infiltration and
enrichment of tumor markers (Zheng et al., 2021); Lv et al.
constructed a UVM prognostic model based on the Epithelial-
mesenchymal transition (EMT) signature, which found that
patients with high EMT scores potentially had higher response
rates to immunotherapy (Lv et al., 2022); Yang et al. utilized
immune markers systematically to develop a prognostic six-
immune-gene signature via RNA sequencing data from TCGA
and GEO databases for predicting the overall survival outcome of
UVM patients (Yang et al., 2023). Meanwhile, several studies have
reported that BMRG signatures could predict the prognosis of
tumor survivors and provide a potential target for
immunotherapy (Cai et al., 2022; Shen et al., 2023). However,
BMRG-related models have not yet been established and
validated for prognostic prediction in UVM patients (Song et al.,
2022a).

In this study, we developed a prognostic model for UVM using
the TCGA-UVMcohort.We carefully selected three reliable basement
membrane-related genes (BMRGs) through a rigorous screening
process and employed two machine learning techniques to
construct the model. By integrating genetic information from
UVM patients, we aimed to explore the prognostic value of these
three BMRGs and develop novel tools to enhance therapeutic
strategies. Our analysis involved assessing the interaction between
BMRGs and the immunemicroenvironment, as well as evaluating the
impact of BMRGs on immunotherapy and chemotherapy sensitivity.
We eventually verified the functional role of the ITGA5, the gene with
the highest absoluteHR value, in UVM cells by an in vitro experiment.
By leveraging advanced computational methods and integrating
multi-dimensional data, we sought to gain insights into the role of
BMRGs in determining the prognosis of UVM, identify potential
avenues for improving treatment regimens, and offer possibilities for
developing personalized therapeutic approaches. These findings have
the potential to enhance patient outcomes and pave the way for
further advancements in UVM research and clinical practice.
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2 Materials and methods

2.1 Patient data sources

We utilized the TCGA-UVM cohort, obtained from the publicly
available TCGA database, as our training set, consisting of gene
expression profiles and clinical data from 80 tumor patients. To
ensure accurate analysis, we performed preprocessing steps on the
data. Initially, we converted the level 3 HTSeq-fragments per
kilobase (FPKM) data into transcripts per million reads (TPM)
to account for gene length and sequencing depth variations across
samples. This conversion was done using a formula that normalized
the TPM values. Subsequently, we applied a logarithmic
transformation to the TPM values to normalize the data and
enhance comparability between samples. It is important to note
that due to significant variation in sample sizes among UVM
patients at stages M and N, these stages were excluded from our
analysis to ensure robustness and reliability. Furthermore, we
incorporated two external validation datasets, GSE84976 and
GSE22138, from the GEO database. It is worth noting that
datasets GSE84976 and GSE22138 were merged together to act as
a validation set, and in order to mitigate the effects of batch
differences between the microarray expression data, we utilized
the ComBat function in the R package “sva” to achieve
correction for batch effects. For comprehensive details on these
datasets, see Supplementary Material. These datasets included
genetic profiles and clinical data from 56 UVM patients, and
their inclusion aimed to enhance the validity and generalizability
of our analyses. In the training cohort, we transcribed and analyzed
tissue samples from eye cancer patients for comparative analyses to
obtain genes that were aberrantly expressed in eye cancer patients.
While in the external validation set, we only included samples from
eye cancer patients analyzed. In addition, we required complete
patient follow-up and clinical information in the cohort and
complete micro-matrix data in the cohort to ensure data quality
for subsequent bioinformatics analysis. By employing these rigorous
preprocessing steps and integrating multiple datasets, we aimed to
improve the accuracy and reliability of our findings, providing
valuable insights into the molecular characteristics and clinical
implications of UVM.

2.2 Consensus clustering analysis

To gain deeper insights into the mechanistic implications of
BMRGs in UVM, we employed advanced analytical methodologies.
The “Consensus Cluster Plus” R package (Zhao et al., 2022b; Wang
et al., 2022) was leveraged to classify UVM patient samples into
distinct clusters based on the expression patterns of BMRGs, thereby
unveiling unique gene expression profiles associated with specific
subtypes. Differential expression patterns of BMRGs across clusters,
along with clinicopathological parameters, were visualized using the
“pheatmap” R package (Bhattacherjee et al., 2019; Song et al.,
2022b). To elucidate the distinct biological pathways and
processes underlying these clusters, we retrieved the “c2.
cp.kegg.v7.4. symbols.gmt” file from the MSigDB database
(Liberzon et al., 2015) for genomic variation analysis via GSVA.
Employing the “GSVA” R package (Hänzelmann et al., 2013), we

systematically analyzed pathway differences between clusters,
revealing noteworthy disparities in key pathways among diverse
UVM subtypes. Furthermore, the Single Sample Genome
Enrichment Analysis (ssGSEA) algorithm (Zhuang et al., 2021;
Huang et al., 2023) was applied to assess the infiltration levels of
immune cells and expression levels of immune checkpoints within
the identified clusters. This integrative approach shed light on
potential variations in the immune microenvironment across
UVM subtypes, offering crucial insights into the prospective
efficacy of immune checkpoint-based therapies in specific patient
cohorts.

2.3 Model construction and validation

The dataset of basement membrane (BM) genes was obtained
from the Basement Membrane BASE database (https://bmbase.
manchester.ac.uk), comprising a comprehensive collection of
224 genes associated with the basement membrane protein. To
explore the potential prognostic relevance of these genes, univariate
Cox regression analysis was performed, resulting in the
identification of 81 genes significantly associated with survival
outcomes. To further refine the gene set and mitigate the risk of
overfitting, we employed the LASSO (Least Absolute Shrinkage and
Selection Operator) method, a powerful machine learning approach
(Chi et al., 2023a; Chi et al., 2023b). The “glmnet” R package
(Engebretsen and Bohlin, 2019; Ren et al., 2023) was utilized to
implement LASSO, which involves adding a penalty term to the
regression model. This penalty encourages the coefficients of less
influential predictors to shrink toward zero, effectively selecting the
most informative subset of predictors. By applying LASSO, we
successfully narrowed down the candidate genes to eight.
Subsequently, a stepwise multi-factor Cox regression model was
employed to identify and estimate the coefficients of the core genes
from the selected set. Through this iterative procedure, we ultimately
derived a risk profile consisting of four BMRGs. For each patient, the
risk score was calculated by combining the expression levels of these
genes with their corresponding coefficients: Risk score =
ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 ×
CoefmRNA2 + ExpressionmRNAn × CoefmRNAn. By leveraging
these analytical approaches, we aimed to establish a robust and
concise set of BMRGs with prognostic implications in order to
facilitate risk stratification and inform personalized treatment
strategies for patients.

2.4 Correlation between clinicopathological
features and risk scores

Investigating the relationship between risk scores and relevant
clinical features in patients with uveal melanoma (UVM) can
provide valuable insights for clinical prognostic assessment. To
visualize the associations between clinical features and the
modeled genes, we employed the “pheatmap” R package (Lu
et al., 2021) to generate heat maps displaying multiple groups of
clinical features. To gain a deeper understanding of the differences in
risk scores among various patient subgroups, we performed clinical
analyses on the entire sample cohort. The patients were stratified

Frontiers in Pharmacology frontiersin.org03

Li et al. 10.3389/fphar.2023.1264345

https://bmbase.manchester.ac.uk
https://bmbase.manchester.ac.uk
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1264345


based on different clinical characteristics, including age
(≤65 and >65 years), sex (male and female), pathological stage
(II and III-IV), and T-stage (T2 and T3-4). Between-group
differences were assessed using the “ggpubr” package (Whitehead
et al., 2019). By examining the relationships between risk scores and
clinical subgroups, we aimed to identify potential variations in risk
profiles based on different demographic and pathological factors.
These analyses would contribute to a more comprehensive
understanding of the prognostic implications of risk scores in
UVM patients and their clinical relevance.

2.5 Independent prognostic analysis and
nomogram construction

To evaluate the independent prognostic value of the risk score in
predicting uveal melanoma (UVM) outcomes, we conducted both
univariate and multivariate Cox regression analyses. These analyses
aimed to assess whether the risk score could serve as a reliable
prognostic factor, independent of conventional clinicopathological
characteristics. The “rms” R package (Zhang et al., 2022) was
employed to construct a nomogram incorporating the risk score
and clinicopathological features. This nomogram provided a visual
tool for predicting the survival of patients in the TCGA-UVM
cohort, enabling clinicians to estimate individual patient
prognoses more accurately. To assess the predictive performance
of the nomogram, we utilized the “ggDCA” R package (Mao et al.,
2021) to develop decision curve analysis (DCA) and calibration
curves. The DCA allowed us to evaluate the clinical benefits of using
the nomogram compared to other predictive models or strategies.
Calibration curves were generated to assess the calibration accuracy
of the nomogram in predicting patient survival. These
comprehensive analyses aimed to validate the prognostic value of
the risk score and provide clinicians with a practical tool for
prognostic assessment in UVM patients. By integrating the risk
score with clinicopathological characteristics, the nomogram offered
improved prognostic accuracy, ultimately enhancing patient
management and treatment decision-making.

2.6 Establishing the equations for signatures

After scoring all UVM patients based on the risk model
equation, we determined the median risk score using the
‘survminer’ R package. Subsequently, we categorized the patients
into a low-risk group and a high-risk group. Survival curves were
plotted for both groups to visually compare their survival outcomes.
To evaluate the predictive performance of the risk model, we
calculated the C-index using the ‘pec’ R package. The C-index
provides a measure of concordance between predicted risk scores
and actual survival outcomes. To further assess the predictive power
of the genetic traits, we conducted an analysis of receiver operating
characteristic (ROC) curves using the ‘time-ROC’ R package. ROC
curves allow us to evaluate the sensitivity and specificity of the
genetic traits in predicting survival outcomes. Additionally, decision
curve analysis (DCA) was performed for the multi-factor Cox
regression model using the ‘ggDCA’ R package. DCA provides
insights into the clinical utility of the predictive model by

assessing the net benefits of different strategies or models across
a range of threshold probabilities. Through these analyses, we aimed
to assess the predictive accuracy and clinical usefulness of the risk
model in UVM patients. The survival curves, C-index, ROC curves,
and DCA plots provide valuable information for understanding the
prognostic value and potential application of genetic traits in UVM
patient management and treatment decision-making.

2.7 Enrichment analysis

To analyze the Gene Ontology (GO) pathway, we utilized the
“ClusterProfiler” R package (Song et al., 2023; Zhang et al., 2023). In
the generated graphs, a p-value of less than 0.05 indicated a
statistically significant difference, highlighting the enriched
pathways and functional categories associated with the genes of
interest. For further enrichment analysis, we conducted GSVA using
the “GSVA” R package. The data from “c2. cp.kegg.v7.5.1.
symbols.gmt” in the MSigDB database were utilized to explore
the functional annotation and enrichment pathways. To visualize
the results, heatmaps were generated using the ‘heatmap’ R package.
Adjusted p-values of less than 0.05, obtained through the ‘limma’ R
package, indicated the statistical significance of subgroup differences
in the heatmap. Through functional enrichment analysis, we aimed
to gain insights into the biological functions, pathways, and
processes associated with differentially expressed genes related to
BMRGs in UVM. These analyses contribute to a better
understanding of the molecular mechanisms underlying UVM
and provide valuable information on functional annotations and
enriched pathways associated with BMRGs in the context of UVM.

2.8 Immuno-infiltration analysis

Multiple methods have been developed to quantify immune
infiltration scores, including XCELL, TIMER, QUANTISEQ,
MCPCOUNT, EPIC, CIBERSORT, and CIBERSORT-ABS. These
methods offer diverse approaches for evaluating the presence and
abundance of immune cells within the tumormicroenvironment. To
investigate the association between immune cells and risk scores,
Spearman correlation analysis was employed, allowing for a
comprehensive understanding of the immune landscape in UVM.
Utilizing the immune cell profiles of UVM patients, we applied the
ssGSEA method to stratify patients into distinct low- and high-risk
groups based on their immune signatures. Furthermore, we
examined the differential expression of 20 suppressive immune
checkpoints between the identified high-risk and low-risk groups,
shedding light on the potential influence of immune checkpoint
blockade therapies. To assess and visualize the impact of
immunotherapy in UVM patients, we utilized the widely adopted
‘limma’ and ‘ggpubr’ R packages. To expand our understanding of
the genetic underpinnings related to cancer and immunity, we
referred to the curated collection of genes provided by Xu et al.,
available on their website (Xu et al., 2018). Employing the R package
“ggcor,” we explored the correlation between risk scores and these
two genetic traits, unraveling potential associations between genetic
alterations and disease prognosis in UVM. Additionally, to predict
immune infiltration estimates and immunotherapy response data,

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2023.1264345

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1264345


we leveraged the computational tool ImmuCellAI (Miao et al.,
2020). This powerful resource enables comprehensive analyses of
the immune landscape and aids in guiding immunotherapeutic
strategies for UVM patients.

2.9 TISCH analysis

The Tumor Immunological Single Cell Centre (TISCH) hosts a
comprehensive single-cell RNA sequencing database that focuses on
investigating the intricate tumor microenvironment (TME). This
valuable resource facilitates detailed annotation of various single-cell
types, enabling in-depth analysis of gene expression within distinct
cellular populations. By examining gene expression patterns across
different cell types, we can unravel the intricate variations within the
tumor microenvironment of individual UVM patients, thus
shedding light on the underlying heterogeneity of UVM. This
comprehensive characterization of the TME aids in elucidating
the complex dynamics and functional implications of different
cell types within the UVM context.

2.10 Cell culture

The human uveal melanoma cells (MuM-2B, OCM-1) utilized
in this investigation were generously provided by the Cell Resource
Center at Shanghai Life Sciences Institute. These cells were
cultivated under controlled conditions in Dulbecco’s Modified
Eagle’s Medium (DMEM) (Gibco, United States), supplemented
with 1% penicillin/streptomycin and 10% fetal bovine serum (FBS)
(Gibco, United States), within a humidified incubator set at 37°C
with a 5% CO2 atmosphere.

2.11 CCK-8 assay

To assess the impact of ITGA5 on the proliferative capacity of
uveal melanoma (UVM) cells, the Cell Counting Kit-8 (CCK-8)
assay was employed. UVM cells were cultured in 96-well microplates
in triplicate, with each well initially seeded with 5,000 cells.
Subsequent to transfection, the cells were subjected to treatment
at 37°C for a duration of 2 h, utilizing 10 μL of CCK-8 solution
(A311-01, vazyme, Nanjing, China) mixed with 90 μL of complete
media in each well at specific time points (0, 24, 48, 72, or 96 h).
Following the respective incubation periods, the absorbance of each
well was quantified at 450 nm using a microplate reader.

2.12 Wound-healing assay

The wound healing assay was employed to evaluate the
migratory behavior of MuM-2B and OCM-1 cells, providing
valuable insights into their migratory patterns. The transfected
cells were cultured in a six-well plate and incubated at 37°C until
they reached approximately 80% confluence. To create a
standardized wound, a sterile 200 μL pipette tip was carefully
used to generate a linear scrape across the cell monolayers.
Following this, the medium was replaced with serum-free

medium after two washes with phosphate-buffered saline (PBS)
to eliminate any cellular debris. The movement of cells into the
wound area was monitored at 0 h and 48 h using an inverted
microscope (Olympus, Japan), enabling the quantification of the
distance traveled by the cells into the wound surface.

2.13 Transwell assay

Cell migration was assessed using the Transwell migration assay,
which involved a 24-well Transwell plate equipped with 8 μm-pore
membrane filters. Briefly, the bottom chamber of the Transwell plate
was supplemented with media containing 10% fetal bovine serum
(FBS), while the top chamber was coated with 2 × 10̂5 cells
suspended in serum-free medium. Following a 48-h incubation
period, the cells that had migrated to the bottom chamber were
fixed in 4%methanol for 10 min and subsequently stained with 0.1%
crystal violet (Solarbio, Beijing, China) for 15 min.

2.14 Statistical analysis

The statistical analysis was conducted using R software version
4.1.3. To compare the overall survival (OS) between the high-risk
and low-risk groups, Kaplan-Meier (KM) survival curves and log-
rank tests were employed. In addition, Lasso regression analyses
were performed to assess the potential relevance of BMRGs. A
stepwise multivariate Cox regression analysis was then employed to
construct a BMRG signature. The predictive performance of the
model was evaluated using a time-dependent ROC curve. The
relationship between the risk score and immune cell infiltration
was assessed using Spearman correlation analysis. To compare the
ratios of tumor immune infiltrating cells (TIIC), immunological
checkpoints, and immune function between the two groups, the
Wilcox test was applied. Statistical significance was determined by
p-values <0.05, and a false discovery rate (FDR) < 0.05 was
considered statistically significant. The CCK-8 data analysis was
conducted using GraphPad Prism Software version 8.3.0. The mean
values ±standard deviation (SD) were determined based on data
obtained from three independent experiments. Statistical
significance was assessed using analysis of variance (ANOVA),
with a significance level set at p < 0.05.

3 Results

3.1 Consensus clustering determined the
molecular subtypes of BMRGs

The primary study design is presented in Figure 1, illustrating
the overall flow of the investigation. The cumulative distribution
function (CDF) values demonstrated an increasing trend in relation
to the consensus index, indicating successful classification. To assess
cluster composition and quantity, the consensus matrix serves as an
excellent visual tool. We generated a color-coded heat map based on
the consensus matrix, which revealed higher intra-cluster
correlations and lower inter-cluster correlations when considering
k = 2. These findings strongly support the acceptance of two
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subtypes (Cluster A and Cluster B) for categorizing UVM patients.
Based on the CDF curves and the Delta area, k = 2 represents the
optimal point to achieve maximal inter-cluster differences as the
clustering index “k” increases from 2 to 9. Consequently, we divided
the UVM patients into two subgroups (Figures 2A–D).

Furthermore, we investigated the differential survival
prognosis across clusters using the Cluster Survival R package.
The results indicated that patients in cluster A exhibited
significantly better survival prognoses than those in cluster B
(p < 0.001) (Figure 2E).

Principal component analysis (PCA) was performed to visualize
risk distribution among different patient groups. The PCA plot
(Figure 2F) demonstrated distinct differences between Cluster A and
Cluster B patients. Additionally, we conducted further analysis to
explore metabolic variations in BMRGs between clusters A and B.
The heat map revealed notable expression differences and clinical
traits associated with BMRGs in cluster B (Figure 2G).

To investigate potential biological pathways, we performed an
enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database on the clustered samples. We
explored correlations among various cancer-related pathways, such
as apoptosis, transporters, and the MAPK signaling pathway
(Figure 2H). Moreover, we employed the ssGSEA algorithm to
assess the distribution and correlation of 23 tumor-infiltrating

immune cells (TIICs) to guide immunotherapy. Notably, cluster
B exhibited higher levels of immune cell infiltration compared to
cluster A (Figure 2I). Considering the critical role of immune
checkpoints in tumor immunotherapy effectiveness and their
prominence within the tumor microenvironment (TME), we
evaluated immune checkpoint expression between the two patient
clusters. The analysis revealed significantly upregulated immune
checkpoint expression in Cluster B patients, except for TMIGD2 and
CD44. Based on these findings, we conclude that Cluster B
demonstrates a more favorable response and effectiveness toward
immunotherapy (Figure 2J).

3.2 Development and validation of the
BMRGs signature

We developed a risk score model based on BMRGs to identify
prognostic biomarkers in UVM patients. Differentially expressed
BMRGs with prognostic value were selected using LASSO regression
analysis, and the resulting LASSO regression curves and cross-
validation plots are shown in Figures 3A,B, respectively. To
address batch effects between GSE22138 and GSE84976 datasets,
we employed the R package “Combat” for batch effect removal
(Figures 3C,D). The prognostic index (PI) was calculated using the

FIGURE 1
Flow chart of this study.
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formula (−0.974 * ADAMTS10 exp.) + (1.015 * ADAMTS14 exp.) +
(0.026 * CSF2 exp.) + (2.973 * ITGA5 exp.), and the risk score for
each UVM patient was determined based on the median score using

the equation. The optimal number of genes for cross-validation plots
was 3, and the selected genes were ADAMTS10, ADAMTS14, and
ITGA5.

FIGURE 2
Consensus clustering determined the molecular subtypes of BMRGs. (A) Consensus clustering CDF with K = 2 to 9. (B) Consensus matrix heatmap
for K = 2 clusters. (C) CDF plot illustrating the consensus clustering results for K = 2 to 9. (D) Tracking plot displaying the sample classification across K =
2 to 9 clusters. (E) Kaplan-Meier survival curves comparing the survival outcomes between Cluster A and Cluster B. (F) Principal component analysis (PCA)
plot visualizing the distribution of samples. (G) Correlation analysis depicting the relationship between BMRGs expression and clinicopathological
parameters. (H) Enrichment analysis of KEGG pathways in Cluster A and Cluster B. (I) Comparison of immune cell infiltration levels between clusters. (J)
Differential expression of immune checkpoints between Cluster A and Cluster B. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ns > 0.05.
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Further analysis revealed a strong correlation between the
expression of the investigated BMRGs and the risk score. The
risk score correlation heatmap (Figure 3E) and dot plot
(Figure 3F) indicated that the expression levels of
ADAMTS10 and ITGA5 were positively correlated with the risk

score, while ADAMTS14 was negatively correlated. The TCGA-
UVM cohort was used as the training set, and the de-batched
GSE84976 dataset was used for validation. In the TCGA-UVM
cohort, the low-risk group demonstrated significantly better
prognostic outcomes (p < 0.001) (Figure 3G). The predictive

FIGURE 3
Development and validation of the BMRGs signature. (A) Ten-fold cross-validation for parameter selection using the LASSO model. (B) Profiles of
LASSO coefficients. (C) Principal component analysis (PCA) plot of GSE22138. (D) PCA plot of GSE84976 after removing batch effects using Combat. (E)
Heatmap illustrating the risk factors in high- and low-risk patients. (F) Correlation between three BMRGs and the risk score. (G, K) Kaplan-Meier curves
comparing overall survival between low- and high-risk groups in the TCGA-UVM cohort and the GSE84976 cohort. (H, L) Time-dependent receiver
operating characteristic (ROC) curves analysis of the TCGA-UVM cohort and the GSE84976 cohort. (I, M)Distribution of risk scores and survival status of
UVM patients in the low- and high-risk groups in the TCGA-UVM cohort and the GSE84976 cohort. (J, N) PCA plot of the TCGA-UVM cohort and the
GSE84976 cohort.
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model showed excellent performance as evidenced by the ROC
curves, with high sensitivity and specificity reflected by the AUC
values at 1, 2, 3, 4, and 5 years (0.831, 0.916, 0.913, 0.952, and 0.870)
(Figure 3H). Moreover, there was an observed increase in mortality
and a decrease in survival with higher risk scores (Figure 3I).
Principal component analysis (PCA) clearly distinguished low-
risk and high-risk patients from each other (Figure 3J). The
results obtained in the GSE41613 cohort replicated those of the
TCGA-UVM cohort (Figure 3K-N), indicating the reliability and
consistency of our predictive model. In conclusion, our prediction
model demonstrates high accuracy and reliability, providing
valuable guidance for clinical management.

3.3 Construction of nomograms based on 3-
BMRGs signatures with clinical features

Given the strong correlation between our constructed risk model
and poor prognosis, we conducted univariate and multivariate Cox
analyses to determine whether the prognostic characteristics based
on the 3-BMRGs could serve as independent predictors of prognosis
in UVM patients. In the univariate analysis, age (p = 0.011), T-stage
(p = 0.033), and risk scores (p < 0.001) showed significant
correlations with prognosis (Figure 4A). The subsequent
multivariate analysis confirmed that age (p = 0.009), T-stage (p =

0.011), and risk scores (p < 0.001) remained accurate and
independent predictors in this patient cohort (Figure 4B).

To enhance the clinical applicability and usability of the risk
model, we developed Nomogram plots that incorporated age,
gender, clinical stage, T-stage, and risk scores as predictors of
survival probability at 1, 2, and 3 years for UVM patients. The
risk score exhibited a substantial impact on predicting overall
survival (OS), as demonstrated by the model analysis, indicating
that the BMRGs-based risk model could provide more accurate
prognostic predictions for UVM patients (Figure 4C). Additionally,
we found that the risk score (AUC = 0.882) and Nomogram (AUC =
0.862) outperformed single independent clinical indicators in terms
of predictive performance and discriminatory power (Figure 4D).
Furthermore, the calibration analysis showed relatively consistent
results between the predicted and observed 1-year, 3-year, and 5-
year OS rates, as indicated by the calibration line closely aligning
with the ideal 45-degree line (Figure 4E).

3.4 Clinical correlation and survival analysis
of BMRGs in patients with UVM

A heat map was generated to visualize the correlation between
the prognostic risk model identified using the 3-BMRGs and the
clinical characteristics, risk scores, and expression levels of the 3-

FIGURE 4
Building nomograms based on clinical characteristics. (A) Univariate Cox regression analysis of the signature and various clinical profiles. (B)
Multivariate Cox regression analysis incorporating the signature and clinical characteristics. (C)Nomogram depicting age, gender, stage, T-stage, and risk
score. (D) Calibration curves of the nomogram for 1-, 3-, and 5-year survival. (E) Time-dependent ROC curve.
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BMRGs in all UVM patients from the TCGA dataset (Figure 5A).
Additionally, we compared the distribution of patients with different
clinicopathological features between the high-risk and low-risk
groups (Figure 5B). To further examine the association between
risk scores and clinicopathological characteristics, box plots were
constructed for different subgroups based on gender (male and
female), age (>65 and ≤65 years), clinical stage (II and III-IV), and
T-stage (T2, T3, T4). Notably, the analysis revealed that patients
with stage T4 had significantly higher risk scores compared to those
with stage T3 (p = 0.045) (Figures 5C–F).

Considering the significant differences in individual clinical
characteristics between the high-risk and low-risk groups for
overall survival (OS), we further divided UVM patients into
subgroups based on age (≤65 years, >65 years), gender (male and
female), pathological stage (II and III-IV), and T-stage (T2 and T3-
4). Remarkably, except for patients in stage T2, the low-risk
subgroup exhibited a significant survival advantage with longer

survival times compared to the high-risk subgroup (Figure 6).
Based on these analyses, the 3-BMRGs risk model demonstrated
its reliability as a clinical prediction tool for UVM patients.

3.5 3-BMRGs signatures exhibit superior
performance compared to others in
prognostic prediction

In order to assess the predictive performance of our BMRGs
signature in UVM patients, we compared it with five previously
published prognostic signatures, namely, the Xia signature, Xie
signature, Zhang signature, Shi signature, and Hu signature.
Using the same method, we calculated risk scores for each UVM
sample in the entire TCGA cohort and found that our signature
exhibited the highest correlation with survival outcomes
(Figure 7AB, IJ). Despite successfully stratifying UVM patients

FIGURE 5
Clinical correlation and survival analysis of BMRGs in UVMpatients. (A)Heatmap showing the relationship between clinical features and high-risk and
low-risk scores in UVM patients. (B) Histogram presenting the distribution of clinical characteristics, including stage, T-stage, gender, and age
percentages for each category. BMRGs can identify high-risk patients across different subgroups based on various clinicopathological traits. (C) Gender,
(D) T-stage, (E) age, and (F) stage were analyzed for clinical correlation and survival in UVM patients.
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into two subgroups with significantly different prognoses, the AUC
values of the five compared signatures at 1-, 3-, and 5-year survival
were lower than those of our model (Figures 7E,F,K,L). Additionally,
the C-index analysis demonstrated that our signature outperformed
the other signatures (Figure 7M). Overall, our study indicates that
our constructed BMRGs signature possesses excellent predictive
ability in prognosticating UVM patients.

3.6 Functional enrichment analysis of DEGs
in TCGA-UVM

In order to gain insights into the potential bioactivities and
signaling pathways involved in UVM, and to understand the
molecular mechanisms underlying UVM progression, we
conducted Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis and gene ontology (GO) functional analysis.
We applied stringent thresholds of FDR<0.05 and p < 0.05 to select
significantly enriched items, as depicted in Figure 8A and
Supplementary Table S1. The biological process (BP) analysis
revealed enrichment in various processes such as rhythmic
process, regulation of hormone levels, and circadian rhythm.
Cellular component (CC) analysis highlighted correlations with
neuronal cell body, presynaptic active zone, and terminal bouton,
among others. Molecular function (MF) analysis indicated
associations with functions such as G protein-coupled receptor
binding, receptor-ligand activity, and signaling receptor activator.
Furthermore, the KEGG enrichment analysis unveiled disease
pathways including Circadian entrainment, Allograft rejection,
and the Chemokine signaling pathway (Figure 8B). Moreover, the
Gene Set Variation Analysis (GSVA) identified 50 significantly
enriched pathways (Figure 8C). In-depth analysis revealed that in

the low-risk population, pathways related to the Regulation of
autophagy and RNA degradation were enriched. Conversely, in
the high-risk population, pathway enrichment primarily involved
immune and substance metabolism pathways such as leukocyte
transendothelial migration and antigen processing and presentation.
These findings contribute to our understanding of the molecular
mechanisms underlying UVM andmay provide valuable insights for
the development of effective therapeutic strategies for UVM
patients.

3.7 Risk score predicts TME and immune cell
infiltration

Interactions between cancer cells and the tumor
microenvironment (TME) play a crucial role in tumorigenesis,
progression, and treatment outcomes. Tumor-infiltrating immune
cells (TIICs) are integral components of the TME, and their
distribution and alterations are closely associated with tumor
progression. In this study, we investigated the relationship
between risk scores and immune cell infiltration in the context of
3 BMRGs using seven algorithms: XCELL, TIMER, QUANTISEQ,
MCPCOUNTER, CIBERSORT, CIBERSORT-ABS, and EPIC. Our
results revealed a positive correlation between risk scores and the
presence of T cell CD8+ cells across multiple algorithms (Figure 9A).
Furthermore, we analyzed the proportions of 22 immune cell
infiltrates between the high-risk and low-risk groups of TCGA-
UVM patients using the CIBERSORT algorithm. The results were
visualized using stacked plots, demonstrating differences in immune
cell composition between the two risk groups (Figure 9B). We also
utilized the immune AI portal to assess immunotherapy response in
UVM patients. Our analysis revealed that patients with higher risk

FIGURE 6
Clinical correlation and survival analysis of 3-BMRGs in UVM patients. (A, B) Age, (C, D) gender, (E, F) tumor grade, and (G, H) T-stage evaluated for
clinical correlation and survival in UVM patients.
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scores were more likely to benefit from immunotherapy (Figures
9C,D), while those with lower risk scores exhibited a survival
advantage. The ROC curves demonstrated the excellent
performance of the 3-BMRGs biomarkers in predicting treatment
outcomes for patients (Figure 9F). To further explore the immune
profile of the tumor microenvironment, we plotted a correlation
butterfly diagram to examine the relationship between risk scores
and various steps of the tumor immune cycle. The analysis revealed a
positive correlation between risk scores and most immune cycle
steps, suggesting potential implications for immune modulation in
UVM (Figure 9G).

3.8 Relationships between 3-BMRGs
signatures and tumor microenvironment

In order to investigate the expression patterns of the 3-BMRGs
in the tumor microenvironment, we utilized the cellular dataset
UVM_GSE139829 obtained from the TISCH database. The
distribution and numbers of 31 cell populations and 8 immune
cell types in the UVM_GSE139829 dataset were analyzed and
displayed (Figures 10A–D). Furthermore, we examined the
expression of the 3-BMRGs in different immune cell populations.
The expression of BMRGs was found to be lower in the

FIGURE 7
The BMRGs signature demonstrated superior prognostic prediction performance compared to other signatures. (A, E) Kaplan-Meier (KM) and
receiver operating characteristic (ROC) curves of the BMRGs signature. (B, F) KM and ROC curves of the Xia signature. (C, G) KM and ROC curves of the Xie
signature. (D, H) KM and ROC curves of the Zhang signature. (I, K) KM and ROC curves of the Shi signature. (J, L) KM and ROC curves of the Hu signature.
(M) C-indexes of the six risk models.
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ADAMTS14 immune microenvironment (Figure 10E). On the other
hand, ADAMTS10 and ITGA5 were expressed in various immune
cell populations, as demonstrated in Figures 10F,G, respectively.
Notably, ITGA5 showed predominant expression in CD8 Tex,
Mono/Macro, and CD8T immune cell populations. These
findings provide insights into the expression patterns of the 3-
BMRGs within the immune cell landscape of UVM.

3.9 ITGA5 facilitates the proliferation,
migration, and invasion of uveal melanoma
(UVM) cells

Considering the identification of ITGA5 as a high-risk gene
exhibiting a maximum absolute hazard ratio (HR) in uveal
melanoma (UVM) patients, we conducted additional in vitro
experiments to elucidate the specific role of ITGA5 in UVM.
Knockdown systems targeting ITGA5 were established in OCM-1

and MUM-2C cell lines. The CCK-8 assay, and colony formation
assay demonstrated a significant reduction in the proliferation rate
of UVM cells following ITGA5 silencing (Figures 11A,B). Moreover,
both the Transwell assay and the wound healing assay revealed
diminished migration and invasiveness of UVM cells after
ITGA5 knockdown, in comparison to cells transfected with si-
NC (Figures 11C,D). Collectively, these findings provide evidence
that ITGA5 functions as an oncogene, promoting the malignant
characteristics of UVM cells, including proliferation, invasion, and
migration.

4 Discussion

Although the prevalence of UVM is not extremely high, it
accounts for 85% of all ocular melanomas, with up to 50% of
patients of primary UVM developing distant metastases, 90%
with liver damage, and a median survival of 4–5 months

FIGURE 8
Functional enrichment analysis of Differentially ExpressedGenes (DEGs) in TCGA-UVMwas performed. (A)GeneOntology (GO) enrichment analysis
was conducted to investigate the differences in basement membrane x genes between UVM and normal samples. The analysis included biological
processes (BP), cellular components (CC), and molecular functions (MF). (B) KEGG enrichment analysis was performed to identify enriched pathways
associated with the DEGs. (C) Gene Set Variation Analysis (GSVA) was utilized to compare the enrichment scores between high-risk and low-risk
cohorts, providing insights into the functional differences between these groups.
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(Baggetto et al., 2005; Tabernero, 2007; Carvajal et al., 2017; Brouwer
et al., 2019). Additionally, the metastatic rates for UVM throughout
the course of 5 and 10 years are roughly 25% and 34%, respectively,
and the mortality rate for UVM 1 year after metastasis is 80%. After
diagnosis, the majority of patients with metastatic UVM have a
survival span of 6–12 months for which metastatic UVM is virtually
always challenging to treat. Due to the poor prognosis of UVM, few
individuals can receive possibly curative surgery (Singh et al., 2005;

Straatsma et al., 2018). Meanwhile, 5-year survival rates have
remained essentially unchanged over the past 3 decades despite
the development of efficient local therapy. There are currently no
effective adjuvant systemic medications that have been proven to
lower the risk of metastasis as well as actually extend survival,
according to a recent review study (Triozzi and Singh, 2014).

Actually, early diagnosis and therapy are crucial to improving
prognosis, while UVM diagnosis and prognosis prediction are

FIGURE 9
The risk score is predictive of the tumor microenvironment (TME) and immune cell infiltration. (A) An immune cell bubble plot was generated to
visualize the composition of immune cell types. (B) A stacked plot illustrates the differences in immune cell infiltration between the high-risk and low-risk
groups. (C, D) The expression levels of the 3-BMRGs were utilized to predict the response of patients to immune therapy. (E) Kaplan-Meier (KM) curves
compare the survival outcomes between the high-risk and low-risk groups after receiving immunotherapy. (F) The receiver operating characteristic
(ROC) curve analysis demonstrates the robust predictive performance of the marker model. (H) The correlation between risk scores and immune
checkpoint blockade (ICB) response characteristics was examined. (G) The correlation between risk scores and each step of the tumor immunization
cycle was investigated.
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currently reliant on clinical presentation and histological
examination, which are insufficient to identify tumor
heterogeneity and developmental patterns. Therefore, using the
TCGA-UVM dataset, this study constructed a multigene
prognostic model of genes related to basement membrane
proteins from a molecular perspective in order to better predict
the diagnosis and prognosis of UVM. It opens up new avenues for
the investigation of individualized treatment strategies and
prognosis prediction.

Defects in BMprotein expression and turnover play amajor role in
the development of cancer, fibrosis, and diabetes (Tsilibary, 2003; Naba
et al., 2014; Foster, 2017). Specifically, the overexpression of laminin, a
component of BM protein, is closely associated with the
overproliferation of certain tumor cells, such as those found in
colon and breast cancer (Jayadev and Sherwood, 2017). Moreover,
BM is significantly involved in the progression of tumors. During the
early development of breast cancer, cancer cells invade through the BM

foramen, which is a crucial step in metastasis (Sikic et al., 2022). In
addition, the level of netrin-4 in BM is highly correlated with the
prognosis of breast cancer, renal cancer, and uveal melanoma (Reuten
et al., 2021). Several recent studies have already attempted to mine
public databases to identify prognostic gene signatures related to BM
proteins in tumors. For example, Cai et al. identified a 7-gene signature
associated with basement membrane proteins that predicted the
prognostic status of breast cancer patients and provided insights for
immunotherapy (Cai et al., 2022); Zhou et al. developed a risk model
using 8 BMRGs, which revealed that clear-cell renal cell carcinoma
patients in the low-risk group had a better response to immunotherapy
(Zhou et al., 2022); Lin et al. established a 7-BMRG signature and
identified five small compounds that could potentially be used for the
treatment of pancreatic cancer patients, providing new perspectives for
a deeper understanding of this disease (Lin et al., 2023). Overall, these
studies highlight the significance of basement membrane proteins in
the precise treatment of tumors.

FIGURE 10
Association of BMRGs with the tumor microenvironment. Annotation of (A) 31 cell clusters and (B) 8 cell types in UVM_GSE139829. (C, D) The
distribution and proportion of each cell type, including CD8T cells, endothelial cells, B cells, etc. Expression and percentage of (E) ADAMTS14, (F)
ADAMTS10, (G) ITGA5.
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In our study, we selected three basement membrane related-
genes (ADAMTS10, ADAMTS14, and ITGA5) to create the novel
prognostic model by utilizing Lasso regression analysis, SVM-RFE,
and stepwise multiple COX regression analysis. Numerous studies
have proven that the ADAMTS (a disintegrin and metalloproteinase
with thrombospondin motif) family of proteins contributes to the
development of malignant tumors, cell proliferation, apoptosis,
migration, invasion, and angiogenesis (Held-Feindt et al., 2006;
Rocks et al., 2006; Filou et al., 2015; Sun et al., 2015). ADAMTSs
have a negative impact on the prognosis of patients with 24 tumors,
in particular the patients with Adrenocortical carcinoma, Uveal

Melanoma, Kidney renal clear cell carcinoma, Colon
adenocarcinoma, Thyroid carcinoma, etc. (Wu et al., 2021).
Although the precise mechanism by which ADAMTS play a role
in tumor progression and metastasis remains uncertain, several
research has explored these protein hydrolases and confirmed
their relevance in various tumor types. ADAMTS10 expression is
significantly downregulated in tumors (Sun et al., 2015).
Furthermore, a variety of ADAMTSs, including ADAMTS20,
ADAMTS10, and ADAMTS3, exhibit significant levels of
methylation in a range of tumors. Analysis of the relationship
between methylation and gene expression levels reveals a

FIGURE 11
ITGA5 facilitates the proliferation, migration, and invasion of UVM cells. (A) CCK-8 assay showed that the proliferative capacity of UVM cells was
significantly reduced after silencing of ITGA5. (B)Colony formation assays showed that the ability of UVM cells to form colonies was significantly reduced
after ITGA5 silencing. (C, D) In wound healing and transwell assays, silencing of ITGA5 significantly reduced the migratory and invasive capacity of MuM-
2B and OCM-1 cell lines.
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negative relationship between the two, suggesting that the main
function of ADAMTS methylation is to silence the ADAMTS gene,
leading to a decrease in its expression (Wu et al., 2021). Besides,
ADAMTS10 is frequently mutated in metastatic colorectal cancer,
and mutated ADAMTS10 transcripts are actively expressed in the
corresponding tumors implicating a possible role for ADAMTS10 in
tumor metastasis (Oga et al., 2019). According to numerous
research, the ADAMTS14 gene has been associated with an
elevated likelihood of developing tumors. The expression of
ADAMTS14 was identified to be considerably higher in human
breast cancer tissues, according to Porter et al. (2004). As reported
by Sheu et al., ADAMTS14 gene polymorphisms serve a part in the
progression of hepatocellular carcinoma (Sheu et al., 2017). The
expression of ADAMTS14 in oral squamous carcinoma (OSCC) is
low. In OSCC patients, the downregulation of ADAMTS14 may be
an effective independent prognostic marker for predicting overall
survival because it is predictive of unfavorable clinicopathological
characteristics (Lin et al., 2020). Furthermore, there is mounting
evidence that Integrin A5 (ITGA5), which plays a major role in the
adhesion, migration, and invasion of cancer cells, is highly expressed
in several malignancies and contributes to tumor progression
(Ohyagi-Hara et al., 2013). One of the markers of invasiveness in
head and neck squamous cell carcinoma has been identified as
ITGA5 (Yu et al., 2008). Additionally, a study demonstrated that
pancreatic ductal malignant adenomas upregulate the ITGA5 gene.
Silencing of ITGA5 inhibits the differentiation of human pancreatic
stellate cells and reduces connective tissue formation (Kuninty et al.,
2019). Furthermore, ITGA5 promotes the development, migration,
and invasion of cells that undergo an epithelial-mesenchymal
transition in oral cancer (Deng et al., 2019).

The 3-BMRGs we constructed proved to be an independent
prognostic factor for UVM. Based on median risk ratings, patients
with UVM were separated into high-risk and low-risk groups;
there were notable prognostic differences between the two groups.
The 3-BMRGs that we created turned out to be a reliable indicator
of UVM’s future. Based on median risk ratings, individuals with
UVM were separated into high-risk and low-risk groups; there
were notable prognostic differences between the two groups.
Additionally, evaluations of the ROC and calibration curves
revealed that the 3-BMRGs signature had excellent predictive
power. To extend the predictive ability of the 3-BMRGs
signature and to demonstrate its utility in the prognostic
evaluation of UVM patients, we plotted a line graph based on
clinical factors and risk scores. Meanwhile, we discovered that the
3-BMRGs signature has better predictive power than
clinicopathological features, which could offer clinicians a basis
for decision-making.

The tumor microenvironment (TME) is crucial to the
metastasis and progression of cancer (Zhao et al., 2022c; Gong
et al., 2022; Xiong et al., 2023). The TME comprises cancer cells,
surrounding stromal cells, and tumor-infiltrating immune cells,
with immune cells playing a dominant role in the TME (Hinshaw
and Shevde, 2019; Shen et al., 2022). Through the strengthening of
a weakened immune response to tumor cells and the resultant
production of an immunological-mediated anti-tumor impact,
immunotherapy has made significant strides in the treatment of
cancers in recent years (Zhang et al., 2021). As a result, we assessed
immune checkpoint expression and discovered that, with the

exception of TMIGD2 and CD44, it was highly elevated in the
high-risk group of UVM patients. Immune infiltration is closely
related to immunotherapy’s efficacy (Nishida and Kudo, 2020).
The high-risk group exhibited higher levels of immune cell
infiltration, which suggested that they responded more
favorably to immunotherapy, according to the ssGSEA
enrichment score. Meanwhile, we performed GO and KEGG
enrichment analysis to provide more light on the biological
pathways and putative molecular mechanisms associated with
the BMRG signature. We noted that in the high-risk
population, pathway enrichment mainly involved immune and
substance metabolism pathways, such as leukocyte
transendothelial migration, antigen processing, and
presentation. In contrast, pathways related to the regulation of
autophagy and RNA degradation were enriched in the low-risk
population.

Immune checkpoint blockade has shown significant benefits in
the treatment of malignant tumors. Nevertheless, its non-response
rate and side effects have posed challenges in clinical practice (Hodi
et al., 2010; Kennedy and Salama, 2020; Su et al., 2022). Thus, it is
critical to identify individuals who are responsive to different
immune checkpoint medicines based on the expression of
immune checkpoint genes. Our model has demonstrated
excellent results in this regard. In our study, we found that UVM
patients with higher risk scores were more likely to benefit from
immunotherapy, while patients with lower risk scores could have a
higher survival advantage. Furthermore, the TME is closely
correlated to the risk model that we built based on the BMRGs.

Our study suffers from the following limitations. Firstly, our
study is retrospective, and based on data analysis in public databases
with limited inclusion of UVM patients which still demands more
clinical data and prospective studies to validate the model and
improve the credibility of risk scores; Meanwhile, the
extrapolation of our findings is limited due to the possible
inherent bias and limitations of the TCGA-UVM and GEO
cohorts themselves; In addition, the mechanisms by which
BMRGs affect the prognosis of UVM patients are required to be
further explored in more in vivo experiments.

5 Conclusion

To sum up, we have developed a model of the BMRG prognostic
signatures including ADAMTS10, ADAMTS14, and ITGA5. Two
external validation cohorts were employed to verify the reliability
and applicability of the BMRGs scores. This constructed model
exhibited robust predictive ability which could act as an independent
prognostic factor for UVM, assisting clinicians to identify specific
subgroups of patients who may benefit from immunotherapy and
chemotherapy, and providing a novel strategy for individualized
treatment of UVM patients.
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