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The human brain’s remarkable motor adaptability stems from the formation

of context representations and the use of a common context representation

(e.g., an invariant task structure across task contexts) derived from structural

learning. However, direct evaluation of context representations and structural

learning in sensorimotor tasks remains limited. This study aimed to rigorously

distinguish neural representations of visual, movement, and context levels crucial

for multi-context visuomotor adaptation and investigate the association between

representation commonality across task contexts and adaptation performance

using multivariate decoding analysis with fMRI data. Here, we focused on

three distinct task contexts, two of which share a rotation structure (i.e.,

visuomotor rotation contexts with −90◦ and +90◦ rotations, in which the mouse

cursor’s movement was rotated 90 degrees counterclockwise and clockwise

relative to the hand-movement direction, respectively) and the remaining one

does not (i.e., mirror-reversal context where the horizontal movement of the

computer mouse was inverted). This study found that visual representations

(i.e., visual direction) were decoded in the occipital area, while movement

representations (i.e., hand-movement direction) were decoded across various

visuomotor-related regions. These findings are consistent with prior research and

the widely recognized roles of those areas. Task-context representations (i.e.,

either −90◦ rotation, +90◦ rotation, or mirror-reversal) were also distinguishable

in various brain regions. Notably, these regions largely overlapped with those

encoding visual and movement representations. This overlap suggests a potential

intricate dependency of encoding visual and movement directions on the context

information. Moreover, we discovered that higher task performance is associated

with task-context representation commonality, as evidenced by negative

correlations between task performance and task-context-decoding accuracy

in various brain regions, potentially supporting structural learning. Importantly,

despite limited similarities between tasks (e.g., rotation and mirror-reversal

contexts), such association was still observed, suggesting an e�cient mechanism

in the brain that extracts commonalities from di�erent task contexts (such

as visuomotor rotations or mirror-reversal) at multiple structural levels, from

high-level abstractions to lower-level details. In summary, while illuminating the
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intricate interplay between visuomotor processing and context information, our

study highlights the e�ciency of learning mechanisms, thereby paving the way

for future exploration of the brain’s versatile motor ability.

KEYWORDS

context representation, sensorimotor adaptation, multi-task, structural learning, shared

representation, meta-learning, multi-voxel pattern analysis (MVPA)

Introduction

The human brain’s remarkable versatility inmotor skills enables

individuals to adapt flexibly to various real-world situations, such

as navigating streets, ascending stairs, and manipulating utensils

(Wolpert et al., 2011; McDougle et al., 2016). This adaptive

function stems from the formation of context representations, which

help the brain encode and store information from different task

contexts in a structured manner, improving the management of

multiple visuomotor tasks (Badre et al., 2021; Heald et al., 2021).

For instance, catastrophic interference—experiencing rapid and

significant loss of prior knowledge when learning new information

(McCloskey and Cohen, 1989)—in sensorimotor adaptation tasks

can be mitigated (Kitago et al., 2013; Heald et al., 2021) by

retaining latent memory traces with contextual information from

prior adaptations and enabling more effective overcoming of

interference and restoration or consolidation of previously learned

skills when needed (Heald et al., 2021). Moreover, the brain utilizes

structural learning, a process that extracts an invariant task-context

representation that captures the commonalities across different

tasks (e.g., a shared task structure), facilitating adaptation to new

environments while reducing interference (see details in Braun

et al., 2010a). In this sense, structural learning can be viewed

as one form of meta-learning (i.e., learning to learn) since it

involves extracting meta-information (e.g., task structure) that can

be generalized across multiple tasks (due to the invariance of

information), resulting in optimization of the learning process itself

(Kemp and Tenenbaum, 2008; Kemp et al., 2010; Lansdell and

Kording, 2019). Indeed, studies on visuomotor rotation contexts

have shown that the motor control process can extract the common

task structure inherent in rotational transformations, resulting in

structure-specific facilitation of learning, interference reduction,

and exploration (Braun et al., 2009; Genewein et al., 2015). In

summary, the human brain’s ability to form context representations

and employ structural learning during this process contributes to

its remarkable adaptability in various motor tasks.

Neuroimaging research has highlighted the importance of

various brain regions in managing multiple representations related

to different contexts: For instance, the prefrontal cortex (PFC) is

involved in context representation and switching or updating them

based on context transitions and sensory cues (Botvinick, 2008;

Donoso et al., 2014; Marton et al., 2018; Anderson and Hulbert,

2021; Soltani and Koechlin, 2022); the hippocampus is responsible

for encoding and retrieving context-dependent memories (Savin

et al., 2014; Wikenheiser and Schoenbaum, 2016; Behrens et al.,

2018); and the cerebellum also contributes to such memories

(Batsikadze et al., 2022), while many other areas are implicated

in certain aspects of context information. Although it is thought

that the same brain regions can be largely shared for managing

context information during sensorimotor tasks (Heald et al., 2023),

more direct evaluation of sensorimotor tasks is relatively scarce.

This is partly due to the complexity of distinguishing among

sensory, movement, and task-context representations since the

mapping between two fundamental elements (the sensory input

and motor output) is dependent on the task context, leading to a

complication in interpreting results on the context representations.

However, a few significant multi-voxel pattern analysis (MVPA)

studies address this issue, successfully assessing task-context

representations during visuomotor adaptation: One study (Ogawa

and Imamizu, 2013) demonstrated that the sensory and motor

areas represent different visuomotor contexts; meanwhile, another

study (Haar et al., 2015) indicates that direction-selective fMRI

patterns in the posterior parietal cortex suggest the storage of

the novel context in this region. However, these arguments

deserve further confirmation due to their examination of limited

visuomotor-adaptation scenarios and the need for more rigorous

verification of their results; and importantly, the association

between context representation commonality (possibly achieved by

structural learning) and task performance is yet to be addressed.

MVPA can provide insights into the context representation

commonality resulting from structural learning. If structural

learning takes place, the brain should create a common

representation across task contexts, reflecting the shared task

structure (Braun et al., 2010a,b; Friedman, 2013). This common

representation leads to a similar neural response to different

task contexts, resulting in high representation similarity and low

decoding accuracy in MVPA (Kriegeskorte et al., 2008; Hebart

and Baker, 2018). Consequently, if structural learning enhances

multi-task performance, a correlation between task performance

and MVPA output (i.e., representation similarity or decoding

accuracy) can be identified. Thus, utilizing MVPA may uncover

crucial information about how structural learning contributes to

multi-task performance by examining the relationship between

representation commonality and performance outcomes.

In this study, we conducted a multi-context visuomotor-

adaptation task and aimed to make a rigorous distinction of

the neural representations of three different levels (i.e., visual,

movement, and context) crucial for carrying out multi-context

visuomotor adaptation, as well as the association between

the commonality (i.e., shareability or invariance) of neural

representations across task contexts and visuomotor-adaptation

performance (i.e., task performance) using MVPA with fMRI data.
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We focused on three distinct visuomotor-adaptation contexts (i.e.,

task contexts), which are commonly examined in single-context

visuomotor-adaptation studies. Two of the three were visuomotor

rotation contexts (or “rotation contexts” for brevity): −90◦ and

+90◦ rotations. In the−90◦ and+90◦ rotation contexts, the mouse

cursor’s movement was rotated 90 degrees counterclockwise and

clockwise relative to the hand-movement direction, respectively.

These two task contexts share the predominant task structure (i.e.,

rotation), allowing participants to benefit from learning a common

structure when performing both contexts.

A mirror-reversal context (or “mirror context” for brevity)

was included as an additional context among the three to

further examine the relationship between contexts with limited

shared structure. In the mirror-reversal context, the horizontal

movement of the computer mouse was inverted, which is

different from rotation. This creates a challenge in establishing a

connection between learning the rotation structure and mirror-

reversal context, leading to minimal benefit from structural

learning (However, despite their differences, the mirror-reversal

and rotation contexts share some minor structures, such as

computer mouse sensitivity and the screen’s viewing angle in

front of the participant—since the same mouse and screen were

used across task contexts—among other aspects. Therefore, the

possibility that the mirror context benefits from a common

representation—between mirror and rotation contexts—within

the current experimental paradigm cannot be completely ruled

out.). In sum, examining these three visuomotor-adaptation

contexts allows for a more comprehensive understanding of

multi-context representations and structural learning in the brain,

considering both the representations shared between task contexts

with significant structure (i.e., rotation) and those with only

minor structure.

To rigorously differentiate various levels of neural

representations (i.e., visual, movement, and task context)

during the visuomotor process in the brain, we employed a

conjunctional multivariate decoding analysis (Kahnt et al., 2010).

In this analysis, by partitioning the data into training and test

sets that enable generalization (i.e., transfer from a training set

to a test set) using information exclusively from the desired

representation level, it is possible to classify the desired level while

minimizing the influence of information from other representation

levels. Further details are provided in later sections. Based on the

insight that similar neural responses between conditions restrict

the classifier’s decoding capability, we hypothesized that low

context-decoding accuracy indicates a high context representation

commonality due to structural learning, while the opposite

scenario is indicated by high accuracy. Thus, a negative correlation

between context-decoding accuracy and task performance can

be expected if the common representation benefits performance.

However, it is noteworthy that some theoretical works suggest

that low context representation commonality can result in high

performance, in contrast to the previous scenario (Musslick

et al., 2017; Musslick and Cohen, 2019; Sagiv et al., 2020; Badre

et al., 2021). This can occur when there is limited or no shared

structure across task contexts (e.g., rotation vs. mirror), as relying

on common resources during learning would lead to competition

for processing and subsequent interference. Therefore, we

remained open to this possibility, i.e., open to both positive and

negative correlations.

The current study is mainly delineated into three separate

stages. (1) Initially, a mass-univariate analysis was executed to

explore the brain regions implicated in the visuomotor-adaptation

task under investigation (i.e., which brain area is activated

during the task). (2) Subsequently, a conjunctional multivariate

decoding analysis was conducted to rigorously ascertain the

specific brain area responsible for visual, movement, or task-

context representations. (3) Finally, a correlation analysis between

decoding accuracy and visuomotor-adaptation performance was

conducted to examine the impact of context representation

commonality on task performance.

Materials and methods

Subjects and ethics statement

A total of 23 participants (nine female participants, mean

age: 22.9 years, standard deviation: 1.8 years), all right-handed,

normal or corrected to normal vision, and with no reported history

of neurological or psychiatric disorders, were recruited for this

study. One female participant (age: 22) was excluded due to an

inability to complete the entire MRI scanning session because

of the numbness in her arm. Consequently, the final sample

consisted of 22 subjects. All participants provided written informed

consent, and the Institutional Review Board of the Korea Advanced

Institute of Science and Technology approved the study (approval

number: KH2019-164).

Task description

Participants completed two consecutive experimental sessions

over 2 days, with one session conducted each day. The initial

session (day 1) was performed outside an MRI scanner, while the

second session (day 2) took place inside the scanner. The initial

session aimed to familiarize the subjects with the experiment and

was carried out in a pseudo-MRI environment that simulated the

conditions of the MRI scanner. In this simulated (i.e., pseudo-

MRI) environment, participants were asked to lie on a bed and

execute the given task while viewing the presented stimuli through

a mirror positioned in front of them, which closely resembled the

MRI setting. The main analysis in this study utilized data from the

second session conducted inside the actual MRI scanner.

During the task (i.e., both on days 1 and 2), participants

focused on a computer screen projected onto a projector screen

via a mirror placed in front of them. On day 1 (i.e., the pseudo-

MRI environment), the screen was positioned 1.35m from their

eyes, with dimensions of 0.4 × 0.3m and a resolution of 800

× 600. On day 2 (i.e., inside the MRI scanner), the screen

was positioned 2.7m from their eyes, with dimensions of 0.8 ×

0.6m and a resolution of 800 × 600. Consequently, the viewing
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FIGURE 1

Task descriptions: (A) The experimental session, conducted each day, comprised 15 experimental blocks, with the adaptation context changing in

each block. The three adaptation contexts (rotation −90◦, rotation +90◦, and mirror-reversal) were repeated five times each, resulting in a total of 15

experimental blocks. The order of the experimental blocks was permuted for every session. (B) A single experimental block consisted of 17 erasing

trials [maximum duration of 3.5 s per trial and an inter-trial interval (ITI) of 6 s], including four distinct types: leftward, rightward, upward, and

downward. Participants were instructed to sequentially erase a line composed of seven white square dots using a red circle cursor, following a

specific direction (e.g., starting from the bottom in an upward erasing trial). The trial sequence was permuted using a type 1 index 1

continuous-carryover sequence, ensuring equal precedence and succession of each erasing direction, with distinct continuous-carryover sequences

for each run and participant. At the beginning of each block, a preparation stimulus was presented, informing participants about the upcoming task

context (i.e., −90◦, +90◦, or mirror). The inset displays the three distinct preparation stimuli corresponding to these three task contexts. For further

details, refer to the Methods section.

angle of the experimental stimuli remained consistent across

both sessions.

Each session comprised 15 experimental blocks, consisting

of three types of visuomotor-adaptation contexts (i.e., rotation

−90◦, rotation +90◦, and mirror-reversal) repeated five times

each (Figure 1A). The order of the experimental blocks was

randomized for every session. The task involved three visuomotor-

adaptation contexts: two visuomotor rotations (−90◦ and +90◦)

and a mirror-reversal. In the −90◦ rotation context, the mouse

cursor’s movement was rotated 90 degrees counterclockwise

relative to the hand-movement direction (i.e., the physical

computer mouse’s movement; “movement direction” for brevity).

Conversely, in the +90◦ rotation context, the mouse cursor’s

movement was rotated 90 degrees clockwise relative to the
movement direction. In the mirror-reversal context, the horizontal
movement of the computer mouse was inverted, while the
vertical movement remained unchanged. These three contexts
can be represented using the following 2x2 transformation

matrices—transformations from the hand’s position to the mouse

cursor’s coordination on the computer screen if we use left-handed

cartesian coordinates:

Trot−90 =

[

cos (−π/2) -sin (−π/2)

sin (−π/2) cos (−π/2)

]

,

Trot+90 =

[

cos (π/2) -sin (π/2)

sin (π/2) cos (π/2)

]

,

Tmirror =

[

−1 0

0 1

]

.

The task context for the upcoming block is introduced through

a preparation stimulus for 8 s (see Figure 1B). Thus, during

this preparation period (8 s), the participants were allowed to

understand and prepare for the upcoming visuomotor-adaptation

context. This preparation stimulus includes a specific phrase

that announces the type of visuomotor-adaptation context they
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will encounter next (either “−90◦ rotation task”, “+90◦ rotation

task”, or “mirror-reversal task”) and a schematic diagram that

visually illustrates the relationship between the movement of the

participant’s hand and the corresponding movement of the mouse

cursor on the computer screen. The inset of Figure 1B displays

the three different preparation stimuli used to cue each of the

visuomotor-adaptation contexts. Following the completion of each

experimental block (i.e., at the end of each block), the mean

performance measures for the respective block are displayed in the

form of the average number of erased dots and the time taken to

erase them with a duration of 4 s.

Each experimental block comprised 17 erasing trials

(Figure 1B), with four distinct types: leftward, rightward, upward,

and downward erasing trials. Participants were required to erase a

given line in a specified direction in each trial. For example, in an

upward erasing trial (i.e., the first trial in Figure 1B), the line would

be displayed in an upward direction relative to the mouse cursor

(i.e., the red circle) at the center of the screen. The participant

would then move the mouse cursor upward to erase the line. The

lines were composed of seven white square dots (16 pixels wide and

16 pixels high) against a black background. The same arrangement

of seven dots was utilized for all subjects. The mouse cursor was

depicted as a red circle with a diameter of 12 pixels. The dot would

be erased when the cursor’s center overlapped with a target square

dot. The line had to be erased sequentially, meaning participants

could not erase dots from the middle. In an upward erasing trial,

for instance, the line could only be erased starting from the bottom.

In summary, in this study, “erasing” refers to the action of moving

the mouse cursor over specific points in a sequential manner,

causing them to disappear when hovered over.

Note that in the mirror context, vertical motions such as

upward and downward erasing are involved. During these motions,

the direction of the mouse cursor on the screen (visual direction)

aligns with the actual physical movement of the hand (movement

direction). Specific examples of this alignment can be seen in the

third and fourth pairs in Figure 2A and the fifth and last pairs in

Figure 2B.

The sequence of trials was permuted for each experimental

block. The order within each experimental block was structured

as a type 1 index 1 continuous-carryover sequence (Aguirre,

2007). Consequently, the trials comprised four trials for each

erasing direction (i.e., left, right, up, and down) along with

one additional erasing trial (one of the four erasing directions),

ensuring that each erasing direction preceded and succeeded

every other erasing direction an equal number of times. It is

noteworthy that the continuous-carryover sequence has been

mainly utilized for studying repetition-suppression effects (i.e.,

the reduction in neural response that occurs when a stimulus

or cognitive component is repeated) with fMRI (To avoid any

confusion, it is also important to clarify that while these effects

have sometimes been termed “adaptation,” in this study, we are

using “adaptation” exclusively to refer to “behavioral adjustment

for adapting to the perturbed environment in motor contexts.”). In

the current study, the sequence was used to minimize the carryover

effects (i.e., the influence of a prior stimulus on the response

to the current or subsequent stimulus) in the decoding analyses.

Since the continuous-carryover sequence ensures that each erasing

direction preceded and succeeded every other erasing direction an

equal number of times, it is possible to extract BOLD activation

profiles of particular erasing direction while encompassing all

possible carryover effects in every direction that could precede.

By encompassing all carryover effects, the decoding analyses are

more likely to utilize the BOLD activation profiles unique to that

direction rather than being influenced by the repeated presentation

of that direction or the carryover effects of previous directions,

thereby eliminating potential biases from the analyses. A distinct

continuous-carryover sequence was employed for each run, and a

separate set of sequences was generated for every participant. The

order template was as follows: (1, 2, 2, 3, 4, 4, 1, 1, 3, 3, 1, 4, 2, 4, 3,

2, 1). Each of the four erasing directions was randomly assigned to

one of the four numbers to produce the trial sequence.

Prior to the experiment, participants were informed that

they would engage in three visuomotor-adaptation contexts (i.e.,

rotation −90◦, rotation +90◦, and mirror-reversal) in a given

environment (i.e., day 1: in a pseudo-MRI environment; and day

2: inside an MRI scanner) using a computer mouse. They were

provided with an explanation of how the movement mapping

between the mouse cursor and their hand would vary (i.e., an

explanation about the three distinct contexts: rotation −90◦,

rotation +90◦, and mirror-reversal). Participants were instructed

that their objective was to erase a given stimulus as quickly as

possible, with a maximum erasing time of 3.5 s. Thus, if the

maximum erasing time (i.e., 3.5 s) was surpassed, the trial would

be terminated irrespective of the participants’ completion status

in erasing the stimulus. On the other hand, if the participants

completed the trial before the maximum erasing time was reached,

the display would change to the fixation screen, and it would remain

on this screen until the maximum erasing time had passed. To

discourage reckless movements (such as aggressive wiping), they

were cautioned that excessive force might cause the computer not

to recognize the movement of the mouse.

Following the instructions, participants comfortably lay down

in the MRI scanner, and their heads were positioned using a head

retention device to minimize potential head movement. A mouse

pad was placed under the subjects’ right pelvis, and they held

an MRI-compatible mouse (Nata Technologies) with their right

hand. We allowed the participants to freely move the mouse with

no applied transformations (i.e., unaltered movement: no rotation

and no mirror-reversal) to familiarize themselves with using the

mouse while lying down. Subsequently, we displayed five numbers

on the screen (one through four positioned at the four corners

and five at the center) and assessed whether they could reach any

number on the screen using the normal mouse with no applied

transformations. Once they confirmed that using the mouse was

comfortable, the experiment commenced.

Task performance

In this analysis, task performance for each trial was defined as

the “erasing speed,” which represented the number of dots erased

per second by the participant and served as an indicator of their

proficiency in performing the given visuomotor-adaptation tasks.

This quantity is calculated by the following formula:

(

erasing speed
)

=
(number of erased dots)

(trial duration)
.
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FIGURE 2

Training-test set pairs for decoding visual direction (i.e., visual representation) and movement direction (i.e., movement representation). The black

arrows represent the designated mouse cursor’s movement corresponding to the given line direction on the screen. The red arrows represent

movement direction relative to the mouse cursor in the −90◦ rotation context, green arrows for the +90◦ rotation context, and blue arrows for the

mirror context. (A) An exhaustive list of pairs for visual direction decoding independent of movement direction or task context, ensuring that the

classifier (SVM) cannot rely on movement direction or task context when generalized from the training set to the test set because training and test

sets possess di�erent movement directions for corresponding labels and originate from distinct contexts. (B) An exhaustive list of training-test set

pairs for decoding movement direction, where the classifier cannot depend on the visual direction or task context when generalization. In both

analyses, any training set can potentially serve as a test set and vice versa, which results in 12 pairs for each decoding analysis. Accuracies from all 12

pairs were averaged, and then the chance (i.e., 50%) was subtracted from this averaged value, generating a single accuracy-minus-chance map of

the entire brain for each participant. Note that the mirror context includes vertical motions (i.e., upward erasing and downward erasing); in these

cases, the direction of the mouse cursor during erasing (i.e., visual direction) matches the actual direction in which the hand is moving (i.e.,

movement direction) [see the third and fourth pairs in (A) and the fifth and last pairs in (B)]. For further details, refer to the Methods section.

MR imaging and pre-processing

For each participant, a single MRI run was conducted for

the entire experimental session of 2nd day using a 3.0T Siemens

Verio scanner. Functional images were acquired through a GE-EPI

sequence, producing 3D functional images with a 3 × 3 × 3mm

resolution for planar images (TR= 2300ms, TE= 30ms, flip angle

= 90 degrees, FOV = 166 × 163 × 126mm). Structural images

were obtained before the functional runs, using a 3D-MPRAGE

sequence to acquire a structural image with a 1 × 1 × 1mm

resolution for the entire brain.

Functional images were pre-processed using SPM12. For

mass-univariate analysis, spatially aligned, unwarped (without

field-map), slice-timing corrected, spatially normalized (using a

deformation field obtained from the unified segmentation of

the structural image), and spatially smoothed (using an 8-mm

FWHM 3-D Gaussian kernel) functional images were generated.

Meanwhile, for multivariate pattern analysis, spatially aligned,

unwarped (without field-map), slice-timing corrected, and spatially

smoothed (using a 2-mm FWHM 3-D Gaussian kernel) functional

images were produced. Outlier scans (framewise displacement

more than 0.9mm or global BOLD signal changes more than

5 standard deviations) were detected from the realigned and

slice-timing corrected functional images using the ART toolbox

implemented in CONN toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2012; Nieto-Castanon, 2020).
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Mass-univariate analysis

SPM12 was used for a mass-univariate analysis. In the first-

level analysis, the general linear model (GLM) incorporated

several types of task-related regressors: (1) erasing-related, (2)

preparation stimulus for presenting upcoming task context, (3)

score presentation, and (4) instruction stimulus for presenting

the termination of each experimental block. For erasing-related

regressors, three box-car regressors were constructed for erasing

trials within each of the three visuomotor-adaptation contexts

(i.e., rotation −90◦, rotation +90◦, and mirror-reversal) and

convoluted with the hemodynamic response function. In some

trials, participants explored the mouse cursor too much during

erasing, possibly due to confusion about the currently required task

information (e.g., task rule or adequate visuomotor mapping). To

reduce the effect of such outlier trials, we omit the trials where the

participants move their mouse cursors further than the one-and-a-

half line length (i.e., 1.5× 7 (dots)× 16 (pixels)= 168 pixels) when

constructing the erasing-related regressors. Then, we add outlier-

trial regressors (i.e., one regressor for each outlier trial) in the GLM

as confounding regressors.

Confounding regressors further included movement-related

regressors (i.e., six motion regressors and their gradients) and

outlier spike regressors (i.e., one regressor for each outlier scan),

where the outlier scans were flagged in the pre-processing pipeline

(see previous section). The BOLD time series were high-pass

filtered (1/128Hz cutoff) to eliminate low-frequency noise and

signal drift.

Group analysis was conducted using the beta values of the

relevant regressors: i.e., (1) the erasing-related beta values for

task activation analysis for each context; and (2) the preparation

beta value for analysis of activation during preparing upcoming

visuomotor adaptation. That is, this analysis focuses on identifying

the areas where activation increased—compared to the implicit

baseline of the fMRI signal—during (1) erasing—i.e., motor

execution—or (2) preparing upcoming visuomotor-adaptation

context. The random-field theory was used to control the family-

wise error.

Multivariate decoding analysis 1: decoding
visual direction independent of movement
direction or task context

In the first-level analysis, a general linear model was

constructed per-experimental-block basis, i.e., incorporating task-

related regressors for each block. For each block, four erasing-

related regressors were included for each erasing direction (i.e.,

left, right, up, and down) and an additional null regressor for the

first erasing trial. Outlier trials were excluded when constructing

erasing-related regressors and added as separate outlier-trial

regressors (as described in the previous section). Consequently,

each block contained four erasing-related regressors (i.e., left, right,

up, and down), one null regressor, one preparation regressor, one

score-presenting regressor, and one session-termination regressor.

Confounding regressors were the same as those in the previous

mass-univariate analysis (i.e., accounting for movement and outlier

scans). A multi-voxel pattern decoding analysis was then carried

out using the Decoding Toolbox (Hebart et al., 2015). The support

vector machine, implemented in the LIBSVM package, was used

as a decoding algorithm (i.e., classifier). Beta maps from the first-

level GLM, corresponding to the erasing-related regressors (i.e.,

four regressors per block), served as features for classification.

Searchlight analysis was employed, encompassing the entire brain

within searchlight spheres (9 mm radius).

To examine the neural representation of visual direction (i.e.,

visual representation) independent of movement direction or task

context, a classifier was trained to differentiate between upward and

downward (or between leftward and rightward) visual directions of

a single context (e.g., −90◦ rotation) and subsequently tested on

its ability to classify the upward and downward (or leftward and

rightward) visual directions of another task (e.g., +90◦ rotation

or mirror) (refer to Figure 2A for a comprehensive overview

of training-test set pairs). In this scenario, the classifier cannot

rely on movement direction information as the corresponding

movement directions in the training and test sets are different.

For instance, in the training-test set pairs illustrated at the top of

Figure 2A, the training set demonstrates that the corresponding

movement for the upward visual direction is rightward, while for

the downward visual direction, it is leftward. In contrast, in the test

set, the corresponding movement for the upward visual direction

is leftward, and for the downward visual direction, it is rightward.

Moreover, the classifier cannot rely on visuomotor-adaptation

context information as the training and test sets originate from

different contexts.

Then, the accuracies from all the training-test set pairs were

averaged, and then, the chance (i.e., 50%) was subtracted from this

averaged value, yielding a single accuracy-minus-chance map of the

entire brain for each participant. The accuracy-minus-chance maps

for each participant were spatially normalized using a deformation

field obtained from the unified segmentation of the structural

image, spatially smoothed (using an 8mm FWHM 3-D Gaussian

kernel), and then used in the group-level analysis (i.e., t-test).

In the group-level analysis, threshold-free cluster enhancement

(TFCE) was used to control the family-wise error (Smith and

Nichols, 2009), where a distribution of maximum TFCE values was

generated by 5000 permutations.

Multivariate decoding analysis 2: decoding
movement direction independent of visual
direction or task context

A comparable analysis investigated the neural representation

of hand-movement directions (i.e., movement representation)

independent of visual direction or task context. To this end,

a classifier was trained to differentiate between upward and

downward (or between leftward and rightward) movement

directions of a single context (e.g.,−90◦ rotation) and subsequently

tested on its ability to classify the upward and downward

(or leftward and rightward) movement directions of another

context (e.g., +90◦ rotation or mirror) (refer to Figure 2B for a

comprehensive overview of training-test set pairs). Consequently,

the classifier could not rely on visual direction or adaptation context
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information, as corresponding visual directions and visuomotor-

adaptation context differ between the training and test sets (see

previous section for related arguments). The accuracies from all

training-test set pairs were averaged, and then the chance (i.e.,

50%) was subtracted from this averaged value, yielding a single

accuracy-minus-chance map per participant. Then, the accuracy-

minus-chance maps were spatially normalized, spatially smoothed

(using an 8-mm FWHM 3-D Gaussian kernel), and used in group-

level analysis (i.e., t-test). The TFCE was used to control the family-

wise error, where a distribution of maximum TFCE values was

generated by 5000 permutations.

Multivariate decoding analysis 3: decoding
task context independent of visual
direction or movement direction

A similar analysis was conducted to investigate the neural

representation of task context (i.e., task-context representation)

independent of visual or movement directions. To account for

the considerable behavioral difference between rotation and mirror

contexts (see Behavior results section), two separate analyses were

conducted: one decoding the two rotation contexts (−90◦ vs.+90◦)

and the other decoding rotation and mirror contexts (i.e., −90◦ vs.

mirror and +90◦ vs. mirror) while including the absolute value of

performance difference between rotation and mirror contexts as a

confounding variable in the latter.

In the first decoding analysis (i.e., −90◦ vs. +90◦), a classifier

was trained to differentiate these two task contexts using the same

visual or movement direction, and then it was tested using different

visual or movement directions. Thus, the classifier could not rely

on the visual direction or movement direction when decoding task

contexts (see previous sections for related arguments). For example,

in the training-test set pairs illustrated at the top of Figure 3A, the

classifier was trained using a set consisting of the upward visual

direction of the −90◦ context and the upward visual direction of

the +90◦ context; subsequently, it was tested to classify the −90◦

and+90◦ contexts with a data set consisting of the rightward visual

direction of the −90◦ context and the leftward visual direction of

the +90◦ context. A comprehensive overview of training-test set

pairs can be found in Figure 3A.

Note that each training-test set pair was further subdivided

using a leave-two-block-out cross-validation (CV) scheme,

as temporally adjacent BOLD signals (i.e., within a single

experimental block) may exhibit similarity irrespective of the

actual neural signal present. For each CV fold, two temporally

adjacent experimental blocks with different labels were excluded

from the training set, resulting in each training-test pair being

divided into five separate CV folds. Consider an example where we

perform decoding analysis with the first pair shown in Figure 3A:

In particular, when the training set consists of data from an upward

visual direction trial with either −90◦ or +90◦ rotation, while

the testing set includes downward movement direction data with

rotations of −90◦ and +90◦. As each task context was repeated

five times (in other words, five experimental blocks), there are five

data points for each label (−90◦ or +90◦) in both the training and

testing sets. We then further broke down this training-test pair

into five smaller pairs. Let us number the blocks as −90◦ #1 to #5

and+90◦ #1 to #5, where the number signifies the sequential order

of execution. In the first of these sub-pairs, the test set comprises

the downward movement direction data of block −90◦ #1 and

block +90◦ #1, while the training set includes the upward visual

direction data of block −90◦ #2–#5 and block +90◦ #2–#5. In the

second sub-pair, the test set consists of the downward movement

direction data of block −90◦ #2 and block +90◦ #2, while the

training set includes upward visual direction data of block−90◦ #1,

#3, #4, #5 and block +90◦ #1, #3, #4, #5. The remaining sub-pairs

were divided in the same manner. This process of subdivision

was applied to all training-test set pairs illustrated in Figure 3A,

resulting in five sub-pairs (i.e., five CV fold) for every training-test

set pair depicted in the same figure.

The accuracies from all CV folds of the training-test set pairs

were averaged, and then, the chance (i.e., 50%) was subtracted

from this averaged value, yielding a single accuracy-minus-chance

map for each participant. Then, the accuracy-minus-chance maps

were spatially normalized, spatially smoothed (using an 8-mm

FWHM 3-D Gaussian kernel), and used in the group-level analysis

(i.e., t-test). The TFCE was used to control the family-wise

error, where a distribution of maximum TFCE was generated by

5000 permutations.

The same analysis was performed in the second context-

decoding analysis (i.e., rotation vs. mirror). An overview of

training-test set pairs can be seen in Figure 3B. Those pairs

were also subdivided using a leave-two-block-out CV scheme as

we described above. The accuracies from all CV folds from all

the training-test set pairs were averaged, and then the chance

(i.e., 50%) was subtracted from this averaged value, yielding a

single accuracy-minus-chance map for each participant. Then, the

accuracy-minus-chance maps were spatially normalized, spatially

smoothed (using an 8-mm FWHM 3-D Gaussian kernel), and

used in the group-level analysis. Since a significant difference in

task performance between rotation and mirror contexts exists, it

is challenging to ascertain whether decoding significance arises

from distinct context representations or differing kinematics (i.e.,

different movement speeds between rotation and mirror contexts)

in this analysis. To address this, a group-level GLM analysis

with an additional confound was conducted: The absolute value

of the difference between the mean rotation context and mean

mirror context performances was included as a confounding

variable. Specifically, the group-level GLM analysis incorporated

the confounding variable without centering, and the statistical test

was executed for the intercept variable (i.e., constant regressor),

thus corresponding to a t-test that considers the confound.

The TFCE was used to control the family-wise error, where

a distribution of maximum TFCE values was generated by

5000 permutations.

Multivariate decoding analysis 4:
correlation between context-decoding
accuracy and task performance

For this correlation analysis, additional decoding analyses

were conducted. The methodology was fundamentally similar to
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FIGURE 3

Training-test set pairs for decoding task contexts (i.e., task-context representation). The black arrows represent the designated mouse cursor’s

movement corresponding to the given line direction on the screen. The red arrows represent movement direction relative to the mouse cursor in the

−90◦ rotation context, green arrows for the +90◦ rotation context, and blue arrows for the mirror context. (A) An exhaustive list of pairs for “−90◦ vs.

+90◦” task-context decoding independent of visual or movement direction. (B) An exhaustive list of pairs for “rotation vs. mirror” task-context

decoding independent of visual or movement direction. Both analyses ensure that the classifier (SVM) cannot rely on the visual direction or

movement direction when generalized from the training set to the test set because training and test sets possess di�erent visual or movement

directions for corresponding labels. Any training set can potentially serve as a test set and vice versa, resulting in a total of eight pairs for (A) and 16

pairs for (B). For further details, refer to the Methods section.

the prior context-decoding analyses, with two separate decoding

analyses conducted: one for decoding −90◦ vs. +90◦ and the

other for decoding rotation vs. mirror. The training-test set

pairs remained consistent with the previous analyses. However,

the leave-two-block-out CV was not employed to maximize

the subject difference in accuracy as the focus was on the

difference in accuracy rather than the exact value. Consequently,

the training-test set pairs were not subdivided. These analyses

resulted in two accuracy-minus-chance maps for each participant

(i.e., one for −90◦ vs. +90◦ and the other for rotation

vs. mirror). The accuracy-minus-chance maps were spatially

normalized, spatially smoothed (using an 8mm FWHM 3-D
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Gaussian kernel), and used in the group-level analysis (i.e.,

GLM analysis).

First, a regression (i.e., correlation) analysis was performed

to examine the relationship between the mean rotation context

performance and the decoding accuracy for the “−90◦ vs.

+90◦” condition. Second, a correlation analysis was conducted

to investigate the association between the mean mirror-context

performance and the decoding accuracy for the “rotation vs.

mirror” condition. In the second analysis, the absolute value

of the difference between the mean rotation context and mean

mirror context performances was included as a confounding

variable. The TFCE was used to control the family-wise error,

where a distribution of maximum TFCE values was generated by

5000 permutations.

Multivariate decoding analysis 5: decoding
task context from the preparation-period
data

Two separate decoding analyses were conducted to decode

task context from the preparation-period data (i.e., during the

presentation of the upcoming visuomotor-adaptation context),

following a procedure similar to the previous context-decoding

analyses: one for decoding −90◦ vs. +90◦ and the other for

decoding rotation vs. mirror. The beta maps of the preparation-

related regressors in the 1st level general linear model (GLM)

were utilized as features. In the first decoding analysis (i.e., −90◦

vs. +90◦), a leave-two-out cross-validation (CV) approach was

employed, excluding two temporally adjacent data points with

different labels from the training set and resulting in five separate

CV folds. The accuracies from all five CV folds were averaged, and

then the chance (i.e., 50%) was subtracted from this averaged value,

yielding a single accuracy-minus-chance map for each participant.

In the second decoding analysis (i.e., rotation vs. mirror), leave-

two-out CV was employed for both “−90◦ vs. mirror” and “+90◦

vs. mirror” decoding analyses, generating five separate CV folds

for each. The accuracies from all 10 CV folds (five for each) were

averaged, and then the chance (i.e., 50%) was subtracted from this

averaged value, generating a single accuracy-minus-chance map for

each participant.

The accuracy-minus-chance maps were spatially normalized,

spatially smoothed (using an 8mm FWHM 3-D Gaussian kernel),

and used in the group-level analysis (i.e., t-test). The TFCEwas used

to control the family-wise error, where a distribution of maximum

TFCE was generated by 5000 permutations.

Results

Behavior results

Participants exhibited a slight improvement in task

performance (i.e., erasing speed) on the second day compared to

the first day, with an average erasing speed of 1.7 dots per second for

the rotation contexts (i.e.,−90◦ and+90◦) and 2.4 dots per second

for the mirror-reversal context (Figure 4A). The task performance

of the two rotation contexts became more comparable on the

second day than the first day (−90◦ vs. +90◦–day 1: p∼0.1886,

day 2: p∼ 0.9870, Wilcoxon signed-rank test), while the task

performance of the mirror-reversal context was significantly higher

than the rotation contexts on both days (−90◦ vs. mirror—day 1:

p∼0.0002, day 2: p∼0.0017;+90◦ vs. mirror—day 1: p∼0.0010, day

2: p∼0.0012, Wilcoxon signed-rank test). The task-performance

measure exceeding zero for all three contexts signifies that the

participants effectively moved the mouse cursor in the designated

direction during each visuomotor-adaptation context. Indeed, for

all task contexts, it was observed that they generally adhered to

the requisite directional trajectory for erasing, indicating effective

movement in the intended direction (Figure 4B).

BOLD activation during erasing and
preparation periods

Initially, mass-univariate analysis was conducted to examine

the brain regions activated during visuomotor adaptation. Within

all three visuomotor-adaptation contexts (−90◦, +90◦, and

mirror), there was a significant increase in BOLD activation in

various visuomotor areas during erasing (pFWE < 0.05, corrected

for the whole brain, cluster-level correction with uncorrected

threshold p< 0.001, n= 22, one-sided, random-field theory). These

areas encompass the lateral occipital cortex (LOC) (comprising

superior and inferior parts), primary sensory area (S1), primary

motor area (M1), premotor area (PM), supplementary motor area

(SMA), posterior parietal area (PPA) (e.g., superior and inferior

parietal lobules and precuneus), basal ganglia (BG), cerebellum,

and dorsolateral prefrontal cortex (DLPFC) (Figure 5A). Notable

differences were not observed between the activated regions across

the visuomotor-adaptation contexts.

Then, we explored the activated regions during the preparation

period—when the information about visuomotor-adaptation

contexts (i.e., rotation +90◦, rotation −90◦, or mirror-reversal)

was presented (i.e., before performing each session). This is

when participants are first provided with information about the

visuomotor-adaptation context of the upcoming session, allowing

them to prepare or deduce the visuomotor mapping necessary for

performing the session without the need for movement execution.

Intriguingly, the activation region (pFWE < 0.05, corrected for the

whole brain, cluster-level correction with uncorrected threshold p

< 0.001, n= 22, one-sided, random-field theory) largely coincided

with the activated region during task performance, encompassing

LOC, S1, M1, PM, SMA, PPA, anterior cingulate cortex (ACC),

and occipital pole (OP) (Figure 5B). The major distinction was

the substantially reduced or absence of significant activation in

the DLPFC, BG, and cerebellum, while the OP exhibited more

significant activation, indicating their distinctive roles between

task preparation and real-time visuomotor control.

Decoding results for visual, movement, and
task-context representations

Subsequently, we aimed to differentiate the (1) visual, (2)

movement, and (3) task-context representations. As detailed in
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FIGURE 4

Behavioral results. (A) Subject-averaged erasing speed (i.e., performance) for each adaptation context, with error bars denoting 95% confidence

intervals. A slight improvement can be observed on day 2. Performance measures surpassing zero demonstrate that participants successfully

navigated the mouse cursor in the intended direction for each adaptation context. (B) The mouse cursor trajectories for all participants are depicted

in the coordinates of the mouse cursor on the computer screen, with each color (blue, red, green, and black) representing a specific visual direction,

indicating the intended direction for mouse cursor movement (left, right, up, and down). That is, these trajectories are derived from transformations

of the hand’s position into the mouse cursor’s coordinates on the screen. As illustrated in the figure, the alignment of the trajectory directions with

the given visual directions signifies that the participants e�ectively adapted to all the environmental changes (−90◦, +90◦, and mirror) by generating

appropriate movements (e.g., generating upward movement when the leftward visual direction presents during −90◦ rotation context).

the Methods section, within the current experimental paradigm,

(1) the visual representation denotes the line directions displayed

on the screen, which also corresponds to the intended and

actual cursor movement in the visual field; (2) the movement

representation denotes the intended and actual direction of the

computer-mouse (i.e., hand) movement on the mouse pad; and

(3) the task-context representation denotes the three distinct

visuomotor-adaptation contexts (i.e., −90◦, +90◦, and mirror).

For this differentiation, we employed a conjunctional analysis (see

Methods section). As a result, we found that the visual directions

(i.e., visual representation) were decoded from the occipital area

(pFWE < 0.05, corrected for the whole brain, n = 22, one-

sided, TFCE), corresponding to the well-known role as a visual

area. See Figure 6 for the results of the visual direction decoding

analysis. In contrast, the movement directions were decoded from

various brain regions (pFWE < 0.05, corrected for the whole brain,

n = 22, one-sided, TFCE), such as M1, BG, PM, cerebellum,

SMG (supramarginal gyrus), DLPFC, ACC, temporal area, and

thalamus. These findings imply that a complex interplay of diverse

cognitive processes, spanning from implicit to explicit, contributes

to generating propermovements duringmulti-context visuomotor-

adaptation tasks. See Figure 7 for the results of the movement

direction decoding analysis.

The decoding analysis for task-context representations was

done with caution, given the considerable difference in behavioral

performance between rotation and mirror contexts (see Behavior

results). Therefore, we performed two separate analyses: one

decoding the two rotation contexts (−90◦ and+90◦) and the other

decoding rotation and mirror contexts (i.e., −90◦ vs. mirror and

+90◦ vs. mirror). In the latter, the absolute value of performance

difference between rotation and mirror contexts was included

as a confounding variable to regress out a factor attributable

to the performance disparity between rotation and mirror (See

Methods section for details). As a result, we discovered that the

two rotation contexts were significantly distinguishable in various

regions of the brain, such as precuneus, superior parietal lobule

(SPL), SMG, BG, M1, SMA, ACC, middle temporal gyrus (MTG),

temporal pole (TP), hippocampus, and cerebellum (pFWE < 0.05,

corrected for the whole brain, n = 22, one-sided, TFCE; Figure 8).

However, we could not find any significant result for the decoding

analysis for rotation vs. mirror. Despite no significant result, this

does not necessarily mean that the brain does not encode task-

context representations differentiating these two contexts. The

lack of a significant finding may be due to the strict control of

the confounding factor (i.e., performance difference). Therefore,

we proceeded to perform a more careful examination (i.e., ROI

analysis) of this decoding analysis for rotation vs. mirror.

To this end, we next examined the possibility of task-

context differentiation during the preparation period to investigate

the brain regions where representational differences emerge in

preparation for appropriate visuomotor mapping (Note that the

previous context-decoding analysis was done using the BOLD

signal during erasing.). To this end, we conducted a searchlight

decoding analysis utilizing the signal from the preparation period

(see Methods section). As a result, we discovered that rotation

and mirror contexts were distinguishable in OP (pFWE < 0.05,
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FIGURE 5

Mass-univariate analysis results. (A) Significant BOLD activation during visuomotor rotation +90◦ context (pFWE < 0.05, corrected for the whole brain,

cluster-level correction with uncorrected threshold p < 0.001, n = 22, one-sided, random-field theory). The BOLD activation during rotation −90◦

and mirror-reversal tasks is identical to the one during rotation +90◦ context, thus not depicted here. (B) Significant BOLD activation during the

preparation period (pFWE < 0.05, corrected for the whole brain, cluster-level correction with uncorrected threshold p < 0.001, n = 22, one-sided,

random-field theory). In this period, the orientation stimulus, which informed participants of the context they would perform in the upcoming

experimental block, was displayed at the beginning of the corresponding block. OP, occipital pole; LOC, lateral occipital cortex; SPL, superior parietal

lobule; Motor, motor area that encompasses primary motor area, premotor area, supplementary motor area; Cereb, cerebellum; BG, basal ganglia;

DLPFC, dorsolateral prefrontal cortex. For both (A) and (B), the upper panels present a glass-brain view, while the lower panels present a sectional

view. The color scales for both (A) and (B).

corrected for the whole brain, n = 22, one-sided, TFCE), whereas

no significant result was found for the two rotation contexts (−90◦

and +90◦). The results are illustrated in Figure 9. For a more

in-depth understanding of the topological distribution of regions

differentiating the contexts, Figure 9 displays voxels with weak

control for multiple comparisons (i.e., FDR < 0.05, corrected for

the whole brain, n = 22, one-sided, TFCE). This suggests that the

cerebellummight also differentiate between the rotation andmirror

contexts during the preparation period.

Then, we hypothesized that the same regions (i.e., OP and

cerebellum) differentiate between the two contexts during the

execution of the task. Thus, we conducted an ROI analysis for

the OP and cerebellum using the erasing trial data. Within the

ROIs that shows significant result in the decoding analysis utilizing
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FIGURE 6

Visual direction decoding results. (A) A t-value map from the group-level analysis of searchlight decoding analysis for visual representations (i.e.,

visual direction) is presented. Only significant voxel t-values are displayed (pFWE < 0.05, corrected for the whole brain, n = 22, one-sided, TFCE). (B) A

subject-averaged accuracy map from the group-level analysis of searchlight decoding analysis for visual representations (i.e., visual direction) is

presented. Only accuracies that are greater than chance are displayed (>50%). OP, occipital pole; LOC, lateral occipital cortex; L, left; R, right.

the data from the preparation period, a t-test was performed with

the absolute value of performance differences between rotation

and mirror contexts as a confounding variable (Specifically, we

employed a general linear model analysis with two regressors:

a constant regressor and the absolute value of the performance

difference between the rotation and mirror contexts. Then, our

statistical analysis was focused on the constant regressor.). As a

result, we found significant results in the OP (t = 2.7390, p =

0.0063, one-sided, ROI: the area in the OP, displaying significant

decoding results from the preparation data, as shown in Figure 9)

and the cerebellum (t = 3.9781, p = 0.0004, one-sided, ROI: the

area in the cerebellum, displaying significant decoding results from

the preparation data, as shown in Figure 9). This suggests that

the OP and cerebellum also encode task-context representations

regarding rotation and mirror structures while performing the

task (i.e., erasing).

Task-context representation commonality
correlates to task performance

Finally, we sought to investigate the impact of task-context

representation commonality on task performance. To achieve

this, we conducted a correlation analysis between behavioral task

performance and task-context level decoding accuracy, with the

understanding that high representation commonality may result in

low decoding accuracy. This correlation analysis was also split into

two parts as the previous context-decoding analysis: one examining

the correlation between the mean performance of rotation contexts

and the decoding accuracy of the two rotation contexts (−90◦ and

+90◦) and the other examining the correlation between mirror

context performance and decoding accuracy of rotation and mirror

contexts (i.e., −90◦ vs. mirror and +90◦ vs. mirror), including the

absolute value of performance difference as a confounding variable

(see Methods section).

Consequently, we identified a negative correlation between

mean rotation context performance and decoding accuracy of the

two rotation contexts in various brain regions, such as PM, M1,

SMA, SFG (superior frontal gyrus), ACC, DLPFC, MTG, TP, and

cerebellum (pFWE < 0.05, corrected for the whole brain, n = 22,

one-sided, TFCE; Figure 10A). Also, a negative correlation between

mirror context performance and decoding accuracy for rotation

vs. mirror contexts was observed in various brain regions, such as

OP, LOC, S1, M1, PM, SMA, PPA, BG, thalamus, hippocampus,

temporal area, frontal pole, and DLPFC (pFWE < 0.05, corrected

for the whole brain, n = 22, one-sided, TFCE; Figure 10B). These
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FIGURE 7

Movement direction decoding results. (A) A t-value map from the group-level analysis of searchlight decoding analysis for movement

representations (i.e., movement direction) is presented. Only significant voxel t-values are displayed (pFWE < 0.05, corrected for the whole brain, n =

22, one-sided, TFCE). (B) A subject-averaged accuracy map from the group-level analysis of searchlight decoding analysis for movement

representations (i.e., movement direction) is presented. Only accuracies that are greater than chance are displayed (>50%). PreCu, precuneus; SPL,

superior parietal lobule; SMG, supramarginal gyrus; M1, primary motor area; PMv, ventral premotor area; SMA, supplementary motor area; Cereb,

cerebellum; BG, basal ganglia; Thal, thalamus; DLPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; ACC, anterior cingulate cortex; OFC,

orbitofrontal cortex; STG, superior temporal gyrus; ITG, inferior temporal gyrus; L, left; R, right.

negative correlations correspond to what we hypothesized based on

structural learning: The high context representation commonality

(indicated by low decoding accuracy) is associated with higher

task performance.

Discussion

In the current study, we set out to unravel the complexities

of visuomotor adaptation, particularly focusing on the neural

representations that govern these processes across multiple

contexts. Our conjunctional analysis demonstrates that various

brain regions participate in processing visuomotor information

while encoding distinct levels of representation (i.e., visual,

movement, and task contexts) necessary for multi-context

visuomotor adaptation. This successful distinction leads to the

main finding in this study, which is that the commonality of task

contexts (signified by low decoding accuracy) positively correlates

with multi-task performance, suggesting the potential advantages

of structural learning. These findings provide significant insights

into how the brain processes contextual information to perform

multi-context visuomotor adaptation tasks efficiently. We will

discuss these insights for this efficient visuomotor process more

thoroughly, focusing on the following key aspects: (1) structural

learning in visuomotor adaptation, (2) structural learning between

task contexts with limited shared structure and implications

of specific brain regions on structural learning in visuomotor

adaptation, (3) differentiating rotation from mirror structure and

distinguishing rotations angles, (4) the indication of interplay

between context representation and other levels of representation,

and (5) limitations of the study.

Structural learning in visuomotor
adaptation

Structural learning constitutes a process through which a

system acquires general representations governing a set of contexts.

This means that the representations remain common and invariant

Frontiers inHumanNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1221944
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Song et al. 10.3389/fnhum.2023.1221944

FIGURE 8

Task-context (−90◦ vs. +90◦ rotations) decoding results. (A) A t-value map from the group-level analysis of searchlight decoding analysis for

task-context representations, −90◦ vs. +90◦ rotations, is presented. Only significant voxel t-values are displayed (pFWE < 0.05, corrected for the

whole brain, n = 22, one-sided, TFCE). (B) A subject-averaged accuracy map from the group-level analysis of searchlight decoding analysis for

task-context representations, −90◦ vs. +90◦ rotations, is presented. Only accuracies that are greater than chance are displayed (>50%). PreCu,

precuneus; SPL, superior parietal lobule; SMG, supramarginal gyrus; M1, primary motor area; SMA, supplementary motor area; S1, primary sensory

area; Cereb, cerebellum; BG, basal ganglia; IFG, inferior frontal gyrus; ACC, anterior cingulate cortex; Hippo, hippocampus; MTG, middle temporal

gyrus; TP, temporal pole; L, left; R, right.

across contexts, thereby effectively minimizing the dimensionality

of the exploratory parameter space required for adapting to

mutable environments via the use of common information (Kemp

and Tenenbaum, 2008; Braun et al., 2009, 2010a). An instance of

this can be understood in the two visuomotor rotation contexts (i.e.,

−90◦ and +90◦) undertaken in this study. The pivotal common

structure, in this case, is rotation. Given that structural learning

occurred, the learning of these two task contexts could lead to the

extraction of a shared representation, potentially indicative of the

rotation structure. As such, the brain, when transitioning between

the two rotation contexts, does not necessitate an adjustment

of entire internal parameters to establish appropriate visuomotor

mappings. Rather, the adjustment of a single parameter—the

rotation angle—is sufficient since the common representation (in

this instance, the rotation structure) is utilized. This common

information reduces the dimensionality of the problem and

amplifies learning efficiency. Consequently, it can expedite the

learning process, reduce interference, enhance the transferability of

tasks, and essentially facilitate a “learning to learn” mechanism (see

Braun et al., 2010a, for a thorough review).

Previous studies (Braun et al., 2009; Genewein et al.,

2015) indeed showed that structural learning regarding the

rotation structure can occur, resulting in such positive effects

in multi-context visuomotor learning. The current analysis

provides the neural evidence for this phenomenon. In this

study, a negative correlation was observed between rotation

context performance and context-decoding accuracy (−90◦ vs.

+90◦) in various brain areas (Figure 10). This finding can be

interpreted as representational commonality associated with multi-

task performance since a common representation between two task

contexts can result in low context-decoding accuracy due to their

insignificant difference. This interpretation supports that structural

learning takes place during visuomotor adaptation. This means that

if structural learning took place during visuomotor adaptation, a

common representation is extracted, positively influencing multi-

task performance. To fully understand this observation, it is
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FIGURE 9

Task-context (rotation vs. mirror) decoding using the preparation-period data. (A) A t-value map from the group-level analysis of searchlight

decoding analysis for task-context representations (in particular, rotation vs. mirror) using the preparation-period data is presented. T-values of

significant voxels from two distinct multiple comparison controls are displayed: one is weakly controlled (i.e., FDR < 0.05) and the other is strictly

controlled (i.e., pFWE < 0.05). Both are corrected for the whole brain (n = 22, one-sided, TFCE). The weakly controlled voxels (FDR < 0.05) are

depicted as transparent with gray-colored region labels, while the strictly controlled voxels (pFWE < 0.05) are depicted as opaque with black-colored

region labels. (B) A subject-averaged accuracy map from the group-level analysis of searchlight decoding analysis for task-context representations

(in particular, rotation vs. mirror) using the preparation-period data is presented. Only accuracies that are greater than chance are displayed (>50%).

No significant voxel was found for “−90◦ vs. +90◦ rotations” decoding using the preparation-period data. OP, occipital pole; Cereb, cerebellum.

crucial to consider and address potential alternative explanations

to confirm whether the negative correlation truly stems from the

positive effects of structural learning.

One potential alternative explanation for the observed results

(i.e., the negative correlations between task performance and

context-decoding accuracy) is that distinct information processes—

requiring distinct representations for the four erasing directions

(i.e., up, down, left, and right) within each task context—minimize

interference, thereby enhancing performance (Musslick et al., 2017;

Musslick and Cohen, 2019; Sagiv et al., 2020; Badre et al., 2021).

When partitioning the training and test sets in the context-

decoding analysis, data from the same context were partitioned in

a manner that ensured the same visual or movement directions

were not present in both training and test sets, preventing the

decoding from depending on visual or movement directional

information (see Methods section). Thus, differing direction-

specific representations within the same context could lower

decoding accuracy as visual or movement directions vary between

the training and test sets. For instance, training to decode task

contexts with upward erasing data and testing with rightward

erasing data could result in low accuracy if upward erasing in the

+90◦ rotation differs from rightward erasing in the +90◦ rotation.

Then, lower decoding accuracy might be associated with better

task performance if these distinct processes and representations

for each erasing direction are advantageous for behavior. Under

this possibility, decoding accuracy of the four directions within

each context should positively correlate with task performance.

However, we found no significant positive correlation in ROI

analysis at the same brain areas (correlation between decoding

accuracy of the four directions within each ROI in −90◦ context

and mean −90◦ context performance: p > 0.2 for all ROIs;

correlation between decoding accuracy of the four directions

within each ROI in +90◦ context and mean +90◦ context

performance: p > 0.1 for all ROIs; n = 22, ROI mask: the clusters

that showed the significant negative correlation between rotation

context performance and “−90◦ vs. +90◦” decoding accuracy as

shown in Figure 10A). Therefore, we speculate that this explanation

is unlikely to account for the observed findings.
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FIGURE 10

Correlation analysis results between task performance and decoding accuracy for task context. (A) A t-value map from the correlation analysis

between decoding accuracy for “−90◦ vs. +90◦ rotations” and mean rotation-context performance. (B) A t-value map from the correlation results

between decoding accuracy for “rotation vs. mirror” and mean mirror context performance. For both maps, only significant voxel t-values are

displayed (pFWE < 0.05, corrected for the whole brain, n = 22, one-sided, TFCE). Notably, no significant positive correlations were observed in this

analysis. LOC, lateral occipital cortex, PreCu, precuneus; SPL, superior parietal lobule; SMG, supramarginal gyrus; M1, primary motor area; PMv,

ventral premotor area; SMA, supplementary motor area; S1, primary sensory area; Cereb, cerebellum; BG, basal ganglia; Thal, thalamus; DLPFC,

dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; FP, frontal pole; MTG, middle

temporal gyrus; TP, temporal pole; L, left; R, right.

Another possible explanation for the results is that those

areas of well-performed participants may be less involved in the

sensorimotor process because the brain economizes resources as

learning progresses (Dayan and Cohen, 2011). For instance, the

explicit learning implemented by the prefrontal area can be reduced

as the participant becomes more proficient, resulting in low

BOLD activation as the task proceeds (Floyer-Lea and Matthews,

2004, 2005). Under this possibility, the BOLD signal in these

regions should be negatively correlated with task performance since

the region of a wellperformed participant shows reduced neural

activity. However, we found no significant negative correlation

in ROI analysis at the frontal area (correlation between mean

BOLD signal within each ROI in −90◦ context and mean rotation

performance: p > 0.2 for all ROIs; correlation between mean

BOLD signal within each ROI in +90◦ context and mean rotation

performance: p > 0.5 for all ROIs; n = 22, ROI mask: the clusters

that showed the significant negative correlation between rotation

context performance and “−90◦ vs. +90◦” decoding accuracy as

shown in Figure 10A). Therefore, we speculate that this explanation

is also unlikely to account for the observed findings.

Taken together, the negative correlation found in this

study is likely attributed to the beneficial impact of common

context representations on task performance, where the common

representations are potentially derived from structural learning.

Following this interpretation, we speculate that each area that

shows a negative correlation (as shown in Figure 10A) could play

a specific role in extracting the common structure between the

rotation contexts (i.e., rotation). Nonetheless, it is noteworthy that

the rotation contexts have shared attributes beyond just rotation.

For instance, the sensitivity of the computer mouse or the viewing

angle of the computer screen can be shared between the rotation

contexts due to the consistent use of the same computer mouse and

screen throughout. However, these are attributes also present in the

mirror context, prompting further discussion in the “rotation vs.

Frontiers inHumanNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1221944
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Song et al. 10.3389/fnhum.2023.1221944

mirror” decoding analysis to understand the role of each area when

extracting the common task structure.

Structural learning between task contexts
with limited shared structure, and
implications of brain regions regarding
structural learning in visuomotor
adaptation

Given that the structure of the mirror-reversal context shares

only limited similarities with visuomotor rotation contexts, a

common representation might hinder performance by promoting

interference instead of mitigating it (Musslick et al., 2017; Musslick

and Cohen, 2019; Sagiv et al., 2020; Badre et al., 2021). However,

the negative correlation between mirror context performance and

context-decoding accuracy (rotation vs. mirror) was still observed

in the various brain regions ranging from the posterior to the

anterior regions (Figure 10B). We confirmed that the alternative

explanations previously discussed are also unlikely to explain this

negative correlation (i.e., we could not find any significant voxel

in the correlation analysis between decoding accuracy of the four

directions in mirror context and mean mirror context performance

and the correlation analysis between the mean BOLD signal in

mirror context and mean mirror context performance: corrected

within the ROI, cluster-level correction with uncorrected threshold

p < 0.001, n = 22, one-sided, random-field theory, ROI mask: all

the areas that showed the significant negative correlation between

mirror context performance and “rotation vs. mirror” decoding

accuracy as shown in Figure 10B). This finding is an indication

that structural learning can occur and benefit performance by

extracting the shared task structure even between rotation and

mirror contexts.

As discussed above, computer mouse sensitivity and the

screen’s viewing angle can be shared between rotation and mirror

contexts due to the consistent use of the same computer mouse and

screen. Consequently, fine adjustments to mouse sensitivity and

the processing of sensory data (whether visual or somatosensory)

for task-specific details (like the mouse cursor’s position) are

shared elements of both task contexts. The former process can

be supported by the cerebellum (Martin et al., 1996; Krakauer

et al., 2019; Markov et al., 2021; Tzvi et al., 2022); while the latter

can be supported by the LOC and PPA (Husain and Nachev,

2007; Sack, 2009). Therefore, the negative correlation in the

cerebellum, LOC, and PPA is a possible indication that creating

common representations for those processes can enhance task

performance. Moreover, due to the environmental consistency

between rotation and mirror contexts, it can be beneficial to

have common representations for modulating voluntary muscle

movements by M1, coordinate planning by PM or SMA, or

regulating movement amplitude and velocity by BG (DeLong et al.,

1984a,b; Pearson, 2000; Graziano, 2006; Dudman and Krakauer,

2016; Krakauer et al., 2019; Bear et al., 2020; Bhattacharjee

et al., 2021). Thus, negative correlations in such motor areas may

implicate those benefits.

Interestingly, the anterior region, such as the frontal pole,

showed a negative correlation betweenmirror context performance

and context-decoding accuracy, suggesting that the more abstract

and explicit aspects of the cognitive process can be facilitated

by building a common representation, ultimately leading to

being more proficient at performing both task contexts (Koechlin

and Summerfield, 2007; O’Reilly, 2010). Given the observed

correlation in the thalamus, hippocampus, and frontal pole and the

implications of such areas in task-context inference (Heald et al.,

2023), the negative correlations in those areas may indicate that

optimizing those processes by building common representation

can benefit the process of such multi-contextual inference. Future

research needs to be addressed to gain a deeper understanding of

the role of those areas.

To pinpoint the regions responsible for extracting rotation

structure, we then focused on areas that demonstrated a significant

correlation in −90◦ vs. +90◦ decoding (pFWE < 0.05) as shown

in Figure 10A and lacked significance in the rotation vs. mirror

decoding as shown in Figure 10B, even with the weak control of

multiple comparisons (FDR > 0.05). Areas such as SFG, IFG,

TP, and MTG met these criteria, suggesting their vital roles in

extracting rotation structure. We note that the rotation structure

shared by the two rotation contexts is a highly abstract aspect

of task rules (i.e., mapping between sensory input and proper

motor output), requiring the encoding and extraction of these

abstract components to facilitate structural learning. Thus, the

commonality of neural representation in the frontal areas (i.e., SFG

and IFG) suggests the frontal representation of such an abstract

aspect of visuomotor mapping, underscoring the role of the frontal

area in abstract rule-based learning (Badre and D’Esposito, 2007;

Eiselt and Nieder, 2013). This implication is highly related to

the role of the frontal area in fostering cognitive flexibility in

sensorimotor control (Keisler and Shadmehr, 2010; Taylor and

Ivry, 2014; McDougle et al., 2016). Given the temporal cortex’s

recognized role in high-order functions such as processing abstract

concepts or semanticmemories (Binder et al., 2009; Chaumon et al.,

2009; Binder and Desai, 2011), the common neural representations

in temporal regions, such as TP and MTG, might suggest their

role in representing the abstract or semantic dimension of rotation

structure. Future research should explore how the frontal and

temporal regions contribute to extracting such abstract task

information and flexibly applying it to different contexts.

Overall, our findings imply that structural learning can occur

at multiple structural levels, ranging from high-level abstractions

(e.g., rotation structure) to lower-level details (e.g., viewing angle),

indicating that the brain optimizes the advantages of multi-

context learning by extracting as much commonality as possible.

These findings highlight the brain’s efficient learning mechanisms,

which dynamically balance multiple structural levels to optimize

performance. As a result, it raises intriguing questions about

the extent to which various structural levels impact the overall

effectiveness of multi-context learning, which should be addressed

in future studies.

Although we did not find any positive correlation between

mirror context performance and context-decoding accuracy, our

study does not rule out the possibility that a common context

representationmight still cause confusion and hinder performance.
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To truly understand this, wemay need to conduct experiments with

tasks that are very different from one another. This would allow

the interference to become the dominant factor, making it easier to

observe than structural learning, which should also be explored in

future research.

Di�erentiating rotation from mirror
structure and distinguishing rotations
angles (−90◦ vs. +90◦)

Context can be characterized as a distinct variable that governs

the active set of contingencies among potentially numerous

alternatives; specifically, it defines the associations among sensory

inputs, environmental states, and their dependence on actions

(Heald et al., 2022). This characterization aligns with the task

context examined in this study, where the task contexts (i.e.,

−90◦ rotation, +90◦ rotation, and mirror-reversal) dictate the

relationship between potential sensory inputs (i.e., visual direction

of a given stimulus) and appropriate motor outputs (i.e., hand-

movement direction). Thus, although the brain employs structural

learning at multiple structural levels and extracts as much

commonality as possible to optimize the multi-context information

process, the brain still needs to distinguish the three task contexts

(i.e.,−90◦ rotation,+90◦ rotation, andmirror-reversal) to generate

proper movements in each task context. Our findings in the

context-decoding analysis provide insights into this process.

As observed in Figure 9, the OP and possibly the cerebellum

significantly distinguish between rotation and mirror contexts

during both the execution and preparation of such tasks (see

Results for detail). Drawing from prior research, the OP is known

to play a role in visualizing tasks (Albers et al., 2013; Koenig-Robert

and Pearson, 2019); meanwhile, the cerebellum is involved in

predicting the outcomes or consequences of our actions (Wolpert

et al., 1998; Krakauer et al., 2019; Tanaka et al., 2020). Thus,

our observation implies that the task visualization by the OP and

action–outcome prediction by the cerebellum seem to operate

differently depending on the task context. In other words, how

the brain visualizes and predicts outcomes for rotation tasks is

distinct from how it does so for mirror tasks. This distinction

is crucial, as it helps in establishing the correct sensory-motor

connections appropriate for each type of context with largely

different task structures.

Although many brain areas are implicated in differentiating

the two rotation angles of rotation contexts (i.e., −90◦ vs. +90◦)

(Figure 8), most of these areas also display negative correlations

between the mean performance of rotation contexts and the

decoding accuracy of the two rotation contexts (Figure 10A).

This suggests that in most areas, the common representation of

the rotation structure is yet to be constructed. In other words,

these areas might not be essential for differentiating the rotation

angles once the common representation is established. However,

a notable difference was observed in the PPA (which includes

SPL and precuneus) when comparing Figures 8A, 10A: This area

significantly distinguishes the two rotation contexts but lacks a

negative correlation concerning task performance. This strongly

indicates that the PPA is involved in differentiating the rotation

angles (i.e., −90◦ vs. +90◦) rather than encoding the rotation

structure shared by the two rotation contexts. The role of the PPA

in distinguishing the rotation angle in visuomotor adaptation was

also noted in a previous MVPA study (Haar et al., 2015). Moreover,

the PPA is known for its role in integrating sensory information

and forming spatial representations necessary for coordinating

movements in space (Husain and Nachev, 2007; Sack, 2009), and

importantly, this area is associated with mental rotation (Jordan

et al., 2001; Gogos et al., 2010). Thus, our finding highlights the

significance of PPA in such spatial reasoning regarding the abstract

aspect (i.e., rotation angle) and the possible involvement of mental

rotation in the visuomotor rotation task.

The indication of interplay between
context representation and other levels of
representation

The sensorimotor process in the brain can be described as a

mapping from sensory inputs to motor outputs (i.e., sensorimotor

mapping) (Pouget and Snyder, 2000; Franklin and Wolpert,

2011; Merel et al., 2019). Thus, the contextual process can be

described as a higher-order process governing this mapping.

One last notable observation in this study is that the regions

highlighted in Figures 8–10, which display these context-related

areas, demonstrate significant overlap with either the visual

representation areas depicted in Figure 6 or the movement

representation areas depicted in Figure 7. This overlap suggests

a potentially integral relationship between visual and movement

representations with context-dependent brain areas. In other

words, such a pattern suggests that the proper encoding of

movement direction is not just a straightforward sensorimotor

transformation but may also be influenced by the specific task

contexts in which movements are made.

The visual representation (i.e., the direction of a given line

on the screen) can be decoded in the occipital areas, including

OP and LOC. This finding aligns with previous research (Haar

et al., 2015) and is consistent with the known directional or shape-

related selectivity in these areas (Hubel and Wiesel, 1959; Boynton

and Hegdë, 2004; Kamitani and Tong, 2005; Larsson and Heeger,

2006; Alink et al., 2013). Notably, the OP not only decodes visual

representation but also distinctly differentiates between rotation

and mirror contexts. This suggests that the encoding of visual

direction might be influenced by the task context. Given the

recognized role of OP in task visualization (Albers et al., 2013;

Koenig-Robert and Pearson, 2019), it is plausible that the encoding

of visual direction is contingent upon the visualization required by

each specific task.

Second, the movement representation (i.e., the direction of

hand movement) can be decoded across a range of brain areas,

and these areas demonstrate a notable consistency with BOLD-

activated brain areas during task performance (excluding visual

areas): e.g., M1, PM, SMA, PPA, BG, and cerebellum. These

areas align with movement-selective regions identified in previous

research (i.e., M1, PM, SMA, and cerebellum; Haar et al.,

2015), thereby underscoring the validity of these regions’ role in

representing movement directions.
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Each of these areas delineates a specific aspect of the process

of generating appropriate movements. For instance, M1 modulates

voluntary muscle movements by producing neural signals, while

the PM and SMA coordinate planning and action-sequence

preparation to facilitate motor actions (Pearson, 2000; Graziano,

2006; Bear et al., 2020; Bhattacharjee et al., 2021); the PPA

contributes to spatial reasoning (Husain and Nachev, 2007; Sack,

2009); the BG, including caudate and putamen, play a vital role in

modulating motor functions, such as the initiation and execution

of movements and the regulation of movement amplitude and

velocity, as well as the cognitive aspect of motor learning (DeLong

et al., 1984a,b; Dudman and Krakauer, 2016; Krakauer et al., 2019);

the cerebellum’s role is to refine movements, analyzing sensory

feedback to adjust motor outputs for precision (Martin et al.,

1996; Krakauer et al., 2019; Markov et al., 2021; Tzvi et al., 2022);

and lastly, the DLPFC is implicated in selecting and maintaining

task-relevant information and monitoring and adjusting motor

performance based on feedback and task demands, as well as

strategic modifications in aiming (Anguera et al., 2007, 2009;

Seidler et al., 2012; McDougle et al., 2016).

In summary, the movement directional selectivity distributed

across various brain regions suggests a multi-faceted approach

to executing appropriate movements. These processes range from

cognitive aspects, such as explicit aiming, to more autonomous

mechanisms, such as the fine-tuning of movements. The notable

overlap of these movement-selective areas with context-related

areas suggests that the multi-faceted process (ranging from

cognitive to autonomous aspects) may be largely dependent on

specific task contexts, shedding light on the intricate relationship

between sensory input interpretation and its translation to motor

action under diverse task conditions.

Moreover, M1, PM, SMA, and PPA are also activated during the

preparation period, signifying their role in preparing sensorimotor

mapping and comprehending upcoming context (Brass and

Von Cramon, 2002; Fontana et al., 2012; Bhattacharjee et al.,

2021). These observations underscore the significance of these

areas’ functional roles in multi-context processes. Conversely,

BG, cerebellum, and DLPFC were activated exclusively during

performing tasks and not during the preparation phase. These

findings suggest their distinct involvement in real-time motor

control and learning, which are potentially associated with

performance monitoring and adjustment. Yet, understanding

the exact contributions of task-context representations in these

regions to the visuomotor process remains an open question for

future studies.

Limitations of the study

Although the current study has provided valuable insights,

it is crucial to recognize its limitations and identify potential

directions for future research. First, the tasks utilized in this study

may not fully capture the complexity of real-world visuomotor

adaptation or the neural representation of visual directions: for

example, being limited to four erasing directions or necessitating

brief erasing movements (i.e., erasing a short line). While the

current experimental paradigm offers controlled conditions for

data collection, it may not adequately represent the complexities

of everyday visuomotor tasks that individuals typically face.

Developing more ecologically valid tasks that emulate real-life

situations could enhance our understanding of the underlying

neural mechanisms and increase the generalizability of the findings.

Future studies could explore different task designs that account

for the dynamic nature of real-world visuomotor adaptation,

incorporating a wider variety of task conditions and difficulty levels.

Second, we limited our analysis to using a linear classifier (i.e.,

SVM) for multivariate decoding analysis; as a result, the current

study might have identified only some neural representations

during visuomotor adaptation. Although linear separability is a

crucial foundation for understanding neural representation, non-

linear classifiers, such as deep learning or kernel methods, can

offer a more comprehensive understanding of the sensorimotor

process. Consequently, future research should consider employing

more comprehensive techniques, including non-linear classifiers,

to validate the present findings and investigate the robustness of

the observed neural representations of visual directions during

visuomotor adaptation tasks.

Conclusion

In conclusion, our study emphasizes the brain’s efficient

learning mechanisms by extracting commonality at various

task-structural aspects, and the intricate interplay between

context representations and the encoding visual and movement

representations. This study raises intriguing questions about the

extent to which various structural levels impact the overall

effectiveness of multi-context learning and sets the stage for future

investigations into the precisemechanisms throughwhich the brain

extracts and applies abstract task information to different contexts.

Future research should continue to investigate the brain’s intricate

but efficient nature and the implications of these findings for

real-world applications.
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